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Turnpike in infinite dimension
Paolo Leonetti and Michele Caprio

Abstract. Let Φ be a correspondence from a normed vector space X into itself, let u ∶ X → R be a
function, and let I be an ideal on N. In addition, assume that the restriction of u on the fixed points
of Φ has a unique maximizer η⋆. Then, we consider feasible paths (x0 , x1 , . . .) with values in X such
that xn+1 ∈ Φ(xn), for all n ≥ 0. Under certain additional conditions, we prove the following turnpike
result: every feasible path (x0 , x1 , . . .) which maximizes the smallest I-cluster point of the sequence
(u(x0), u(x1), . . .) is necessarily I-convergent to η⋆.

We provide examples that, on the one hand, justify the hypotheses of our result and, on the other
hand, prove that we are including new cases which were previously not considered in the related
literature.

1 Introduction

Let X be a normed real vector space, and fix a correspondence Φ from X into itself
and a functional u ∶ X → R which may be interpreted as a utility function. Then, a
sequence x = (x0 , x1 , . . .) with values in X is said to be feasible if xn+1 ∈ Φ(xn), for
all n ≥ 0. Note that this sequence is simply the orbit of the starting point x0 if Φ
is singleton-valued. Fix also an ideal I on the nonnegative integers N, which will
represent the family of “small” sets (see Section 1.1 for definitions). Assuming that
x belongs to a given constraint set C of feasible sequences, we say that x is I-optimal
if it maximizes the smallest I-cluster point of the real sequence (u(x0), u(x1), . . .);
here, an I-cluster point is, informally, an accumulation point which is not small with
respect to I.

Our aim is to study the asymptotic stability of I-optimal paths, which is often
referred to as turnpike property (see, e.g., [26, 27] for a textbook exposition). Roughly,
this property states that an I-optimal path spends “most” of the time within a small
neighborhood of some optimal stationary point, which is an identified fixed point of
Φ. Here, following the same lines of [5, 20, 25], the adjective “most” is intended with
respect to the ideal I. In particular, I-optimal paths are potentially not convergent
to the optimal stationary point. As remarked in [26], the turnpike property has the
following interpretation: if one is looking for an optimal way to reach A from B by car,
then he should enter onto a turnpike, spend most of the time there, and finally leave
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the turnpike to reach the claimed point. There is an extensive literature which studies
this phenomenon (see, e.g., [3, 4, 12, 18, 21, 23]).

Our main result (Theorem 2.1) generalizes the main ones obtained in [5, 20]. We
discuss later how our assumptions are related to the ones in these articles. In addition,
we show with some novel examples that:
(i) The turnpike property provided in Theorem 2.1 does not hold without any

restriction on the ideal I (see Example 2.3);
(ii) An I-optimal path may not converge, in the classical sense, to the optimal

stationary point (see Example 2.5);
(iii) The turnpike property holds also in infinite dimension (see Example 5.1).
Our main result and its consequences follow in Section 2.

1.1 Preparation

An ideal I ⊆ P(N) is a family closed under finite union and subsets. It is also assumed
that I contains the family of finite sets Fin and it is different from P(N). Let also
I⋆ ∶= {S ⊆ N ∶ Sc ∈ I} be its dual filter and I+ ∶= {S ⊆ N ∶ S ∉ I} be the collection of
I-positive sets. We denote by Z the ideal of asymptotic density zero sets, i.e.,

Z = {A ⊆ N ∶ ∣{a ∈ A ∶ a ≤ n}∣ = o(n) as n → ∞} .

An ideal I on N is said to be translation invariant if (A + k) ∩ N ∈ I for all A ∈ I and all
(possibly negative) integers k ∈ Z. Note that the idealZ is translation invariant. Classes
of translation invariant ideals have been widely studied (see, e.g., [6, 9] and the ideals
generated by the upper densities considered in [17]). However, there exist ideals which
are not translation invariant: for instance, all the maximal ideals (indeed, exactly one
between the even and the odd integers belongs to a maximal ideal) and much simpler
ones as the family of all sets A ⊆ N containing finitely many even integers.

Let x = (xn) be a sequence taking values in a topological vector space S. Then, we
say that x is I-convergent to η ∈ S, shortened as I- lim x = η, if {n ∈ N ∶ xn ∈ U} ∈ I⋆
for all open neighborhoods U of η. Moreover, we say that η ∈ S is an I-cluster point of x
if {n ∈ N ∶ xn ∈ U} ∈ I+ for all open neighborhoods U of η. The set of I-cluster points
of x is denoted by �x (I). Usually, Z-convergence and Z-cluster points are referred to
as statistical convergence and statistical cluster points, respectively (see, e.g., [10, 24]).
Note that Fin-convergence coincides with the ordinary convergence and that �x (Fin)
is the set of ordinary accumulation points of x. It is worth noting that I-cluster points
have been studied much before under a different name. Indeed, as it follows by [16,
Theorem 4.2] and [14, Lemma 2.2], they correspond to classical “cluster points” of a
filter (depending on x) on the underlying space (cf. [2, Definition 2, p. 69]).

Finally, following [11], for each real sequence x such that {n ∈ N ∶ ∣xn ∣ ≥ M} ∈ I,
for some M ∈ R, we define its I-limit inferior as

I- lim inf x ∶= inf{r ∈ R ∶ {n ∈ N ∶ xn > r} ∈ I+}.

Simmetrically, we let I- lim sup x ∶= −I- lim inf(−x) be the I-limit superior. Again, it
is easy to see that if I = Fin, then they coincide with the ordinary limit inferior and
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limit superior of x, respectively. It is remarkable that they can be rewritten also as the
smallest and the biggest I-cluster points of x, respectively (cf. Corollary 3.3 below).

Given sets A, B, we say that α ∶ A ⇉ B is a correspondence if α(x) is a (possibly
empty) subset of B for each x ∈ A. Moreover, we denote the set of its fixed points by

Fix(α) ∶= {x ∈ A ∶ x ∈ α(x)}.

We recall that, if A and B are endowed with some topologies, then the correspondence
α is upper hemicontinuous at x ∈ A if for each open U ⊇ α(x), there exists an
open neighborhood V of x such that z ∈ V implies φ(z) ⊆ U . Moreover, α is lower
hemicontinuous at x ∈ A if for every open U ⊆ B with φ(x) ∩ U ≠ ∅, there exists
an open neighborhood V of x such that z ∈ V implies φ(z) ∩ U ≠ ∅. Finally, the
correspondence α is said to be continuous if it is both upper and lower hemicontinuous
at each point x ∈ A (see [1, Definition 17.2]).

Given a function h ∶ A → B and a sequence x = (x0 , x1 , . . .) with values in A, we
write h(x) for the sequence (h(x0), h(x1), . . .). Finally, if B = R, we say that x0 ∈ A is
a maximizer of h if h(x) ≤ h(x0), for all x ∈ A (and similarly for minimizers).

2 Main result

Let X be a real normed vector space and denote by K the collection of its nonempty
compact subsets. In addition, let I be an ideal on the nonnegative integers N, and fix
a correspondence Φ ∶ X ⇉ X and a function u ∶ X → R. In this setting, the function
u will take the role of a utility function which induces a total preorder on X.

Let K be the family of sequences x = (x0 , x1 , . . .) taking values in X which are
I-contained in a compact, that is, such that {n ∈ N ∶ xn ∉ K} ∈ I, for some K ∈ K.
Moreover, we let F be the collection of feasible paths x which satisfy xn+1 ∈ Φ(xn),
for all n, that is,

F = {x ∈ XN ∶ ∀n ∈ N, xn+1 ∈ Φ(xn)}.

It is easy to see that, if u is continuous, then I- lim inf u(x) and I- lim sup u(x) are
well defined for each sequence x ∈ FK, where

FK ∶= F ∩ K

(cf. Section 3). Fix also a nonempty subset C ⊆ FK, which will take the role of
the collection of constraints. Note that the primitive elements of this system are
represented by the tuple ⟨X , Φ, u, I, C ⟩. Finally, we say that a sequence x ∈ C is I-
optimal if

∀y ∈ C , I- lim inf u(x) ≥ I- lim inf u(y).(2.1)

In other words, an I-optimal path x is a maxmin solution in a precise sense: it
maximizes the minimal I-cluster point of the sequence (u(y0), u(y1), . . .) among all
feasible paths y in the constraint set C (cf. Corollary 3.3 below).

The aim of this work, in the same spirit of [5, 20, 21, 25], is to find sufficient
conditions on the system ⟨X , Φ, u, I, C ⟩ such that every I-optimal path is necessarily
I-convergent to some identified fixed point of Φ (in this setting, a fixed point of Φ is

https://doi.org/10.4153/S0008439521000382 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000382


Turnpike in infinite dimension 419

usually called stationary point). We are going to show that certain feasible paths satisfy
this property whenever the following conditions on ⟨X , Φ, u, I, C ⟩ hold:
(A1) Φ is continuous and takes values in K;
(A2) u is continuous;
(A3) I is translation invariant;
(A4) There exists a unique η⋆ ∈ Fix(Φ) which maximizes the restriction of u on

Fix(Φ);
(A5) There exists a continuous linear functional T ∶ X → R such that

∀x ∈ F , ∀y ∈ Φ(x), Tx ≤ Ty �⇒ x = y = η⋆,(2.2)

where F ∶= {x ∈ X ∶ u(x) ≥ u(η⋆)};
(A6) supy∈C I- lim inf u(y) ≥ u(η⋆).
We remark that condition (A1) is equivalent to the fact that the function X → K

defined by x ↦ Φ(x) is continuous with respect to the Hausdorff metric (see [1,
Theorem 17.15]).

Note that the separation property given in condition (A5) has been already used
in [5, 20] for the case X = Rn , replacing (2.2) with the weaker variant

∀x ∈ F , ∀y ∈ Φ(x), Tx ≤ Ty �⇒ x = η⋆.(2.3)

However, a careful analysis of their proofs reveals that, in fact, they were both implic-
itly using (2.2). Indeed, as pointed out by Piotr Szuca in a private communication
[22], condition (2.3) is, in fact, not sufficient for their purposes. On this direction, see
also Remark 4.1 below. Condition (2.3) appeared also in [19] in the study of turnpike
theorems for integral functionals in a continuous time setting. A somehow related
condition can be found in [21, Lemma 4.3].

Our main result follows.

Theorem 2.1 Let ⟨X , Φ, u, I, C ⟩ be a system which satisfies conditions (A1)–(A6).
Let also x ∈ C be an I-optimal path. Then, I- lim x = η⋆.

It is worth to remark that, differently from most of the literature on turnpike
theorems, we do not assume neither the concavity of the utility function u nor the
convexity of the images Φ(x), for each x ∈ X. Moreover, a sufficient condition to
imply condition (A6) is the existence of a sequence y ∈ C which is I-convergent to
η⋆, which gives us the following corollary.

Corollary 2.2 Let ⟨X , Φ, u, I, C ⟩ be a system which satisfies conditions (A1)–(A5) and
suppose that there exists y ∈ C such that I- lim y = η⋆. Let also x ∈ C be an I-optimal
path. Then, I- lim x = η⋆.

Corollary 2.2 generalizes the main results obtained in [5, 20]. Indeed, in [20],
Mamedov and Pehlivan assumed, in addition, that: X is the finite dimensional vector
space Rk , F is compact, there exists a compact set containing (the image of) each
feasible sequence in FK, the set of contraints C depends on the sequence x, so that C
is of the type {z ∈ FK ∶ x0 = z0}, and there exists y ∈ C which is convergent to η⋆ (in
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the place of the weaker assumption of I-convergence). The same hypotheses have been
also used by Das et al. in [5], where the authors considered certain correspondences
Φ ∶ Rk ⇉ Rk such that Φ(x) = {h(x , y) ∶ y ∈ U}, for all x ∈ Rk , where h ∶ Rk → Rm

is a continuous function and U ⊆ Rm is a fixed nonempty compact set (it is routine to
show that all correspondences Φ of this type are continuous). Finally, Mamedov and
Pehlivan [20] focused on the case I = Z. Hence, Corollary 2.2 proves that all these
assumptions are not really needed.

In the next example, we show that Corollary 2.2 (and, hence, also Theorem 2.1)
cannot be extended to all the ideals I.

Example 2.3 Let I be an ideal on N such that 2N ⊆ I. Note that such ideals exist, e.g.,
the family of subsets of N containing finitely many odd integers, or the maximal ideals
extending 2N. Now, let X = R, and define Φ(x) = {−x , x/2} and u(x) = x3, for each
x ∈ R. Moreover, set C ∶= {y ∈ FK ∶ y0 = 1}. Then, the continuous correspondence
Φ has a unique fixed point, i.e., Fix(Φ) = {0}. It is easily seen that the system
⟨X , Φ, u, I, C ⟩ satisfies conditions (A1)–(A4). Moreover, also condition (A5) holds:
indeed, notice that F = {x ∈ R ∶ u(x) ≥ u(0)} = [0, ∞). Then, setting T(r) = r, for
all r ∈ R, we obtain that Ty < Tx for all (x , y) ≠ (0, 0) with x ∈ F and y ∈ Φ(x), i.e.,
for all x > 0 and y ∈ {−x , x/2}.

At this point, let x = (x0 , x1 , . . .) ∈ C be the sequence defined by xn = (−1)n , for
all n ∈ N. Then, x ∈ C and u(x) = x, so that I- lim u(x) = 1. Because ∣u(yn)∣ ≤ 1, for
all y ∈ C and n ∈ N, it follows that x is I-optimal. In addition, the sequence y defined
by yn = 2−n , for all n ∈ N, belongs to C , and it is convergent (in the classical sense) to
0. Hence, all hypotheses of Corollary 2.2 hold. However, the sequence x is clearly not
I-convergent to 0.

Note that the same construction given in Example 2.3 does not contradict Corol-
lary 2.2 in the case that I is a translation invariant ideal. Indeed, in such case, 2N ∈ I if
and only if 2N + 1 ∈ I. However, because their union is N, then they are both I-positive
sets, so that �u(x)(I) = {1, −1} and I- lim inf u(x) = −1. Therefore, x would be not I-
optimal. Moreover, this provides an example of a system ⟨X , Φ, u, I, C ⟩ such that u is
neither concave nor convex, Φ is not convex-valued, and F is not compact.

Suppose now that Φ is singleton-valued, that is, there exists a function ϕ ∶ X → X
such that Φ(x) = {ϕ(x)}, for all x ∈ X. Note that the continuity of Φ in condition (A1)
is equivalent to the continuity of ϕ (see [1, Lemma 17.6]). Here, let us identify Φ with ϕ.
Notice also that a feasible sequence x ∈ F is simply an orbit (x0 , ϕ(x0), ϕ2(x0), . . .).
Hence, the constraint set C can be identified with the set of starting values C ∶=
{x ∈ X ∶ ∃x ∈ C , x0 = x}. To sum up, the system can be identified with the tuple
⟨X , ϕ, u, I, C⟩, and a sequence x with x0 ∈ C is I-optimal provided that

∀y ∈ C , I- lim inf n u(ϕn(x0)) ≥ I- lim inf n u(ϕn(y)),

where ϕ0(x) ∶= x, for all x ∈ X. With these premises, we have the following corollary.

Corollary 2.4 Let ⟨X , ϕ, u, I, C⟩ be a system which satisfies conditions (A1)–(A5), and
suppose that there exists y0 ∈ C such that lim inf n u(ϕn(y0)) ≥ u(η⋆). Fix also x0 ∈ X
such that the orbit (ϕn(x0)) is I-optimal. Then, I- limn ϕn(x0) = η⋆.
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At this point, one may wonder if the standing assumptions of Theorem 2.1 together
with the I-optimality of the sequence x imply the stronger conclusion that lim x =
η⋆, so that, in a sense, it would be not necessary to speak about ideals. In the next
example, we show that this is not the case. Indeed, there exists a system ⟨X , Φ, u, I, C ⟩
which satisfies conditions (A1)–(A6) and an I-optimal sequence x ∈ C which is not
convergent in the ordinary sense (however, thanks to Theorem 2.1, it is I-convergent
to η⋆).

Example 2.5 Set X = R, I = Z, C = FK, Φ(x) ∶= [−2x , − x
2 ], and u(x) = x, for all

x ∈ R. It is not difficult to see that conditions (A1)–(A6) hold, and Fix(Φ) = {0} (cf.
Example 2.3).

At this point, let x = (x0 , x1 , . . .) be the sequence for which for all nxn = (−1)nzn ,
where z = (z0 , z1 , . . .) is defined as it follows:

(
B1�

1, 1/2,

B2�������������������������������������������������������������������
1, 1/2, 1/4, 1/4, 1/2, . . . ,

Bk�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
1, 1/2, 1/4, . . . , 1/2k−1 , 1/2k , 1/2k , . . . , 1/2k

�����������������������������������������������������������������������������
k! times

, 1/2k−1 , 1/2k−2 , . . . , 1/2, . . .).

Here, for each k ≥ 1, the block Bk has 2k − 1 + k! terms and its middle part is made by
k! consecutive terms equal to 1/2k .

Let us show that x is Z-optimal: first of all, using the fact that

∑k≤n−1 ∣Bk ∣ ≤ ∑k≤n−1 3 ⋅ (k − 1)! = o(n!) as n → ∞,

thusZ- lim x = 0 (cf. also [17, Lemma 1]). In particular,Z- lim inf x = Z- lim inf u(x) =
0. Let us suppose, for the sake of contradiction, that there exists a sequence y ∈ FK
such that κ ∶= I- lim inf y > 0. Hence, κ is a statistical cluster point of y (see Corollary
3.3 below). It follows that

A ∶= {n ∈ N ∶ yn > κ/2} ∈ I+.

However, by construction, we have that yn yn+1 < 0 whenever yn ≠ 0. Therefore,
yn+1 < −κ/4, for all n ∈ A. Considering that Z is a translation invariant ideal, it follows
that y is a bounded sequence such that {n ∈ N ∶ yn < −κ/4} ⊇ A + 1 ∈ I+. We conclude
by Lemma 3.1(ii) below that the sequence y has a negative statistical cluster point,
contradicting the standing hypothesis that I- lim inf y > 0.

Hence, x is Z-optimal. However, because the length of block Bk is odd for each
k ≥ 2, it follows that lim inf x = −1 and lim sup x = 1.

With these premises, we give below a practical application of our main result in
the context of (correspondences generated by) iterated function systems, a basic tool
in fractal geometry (see, e.g., [8]). Additional examples can be found also in [22].

Example 2.6 Set X = R, let I be a translation invariant ideal on N, and let u ∶ R →
R be a strictly increasing continuous function. In addition, let {ϕ1 , . . . , ϕk} be an
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iterated function system on R, that is, a finite number of contractions on R, and define
the correspondence Φ ∶ R ⇉ R by

∀x ∈ R, Φ(x) ∶= {ϕ1(x), . . . , ϕk(x)}.

Accordingly, let C be an arbitrary subset of bounded feasible sequences such that

∀i = 1, . . . , k, ∃x ∈ R, (x , ϕ i (x), ϕ2
i (x), . . .) ∈ C .(2.4)

(It is remarkable that there exists a unique nonempty compact set S ⊆ R, called
attractor, such that limn Hn({x0}) = S, for all x0 ∈ R, in the Hausdorff metric, where
H stands for Hutchinson operator defined by H(A) ∶= ⋃x∈A Φ(x), for all A ⊆ R; see
[13].)

For each i = 1, . . . , k, let η i be the fixed point of ϕ i , hence the restriction of u on
Fix(Φ) = {η1 , . . . , ηk} is maximized at the unique point η⋆ = max{η1 , . . . , ηk}. In
particular, conditions (A1)–(A4) hold. At this point, note that F = [η⋆ , ∞) and

∀i = 1, . . . , k, ∀η > η i , ϕ i (η) − η i ≤ ∣ϕ i (η) − ϕ i (η i )∣ < η − η i ,

hence ϕ i (η) < η whenever η > η i . In particular, max Φ(η⋆) = η⋆ and max Φ(η) <
η, for all η > η⋆. Therefore, condition (A5) holds letting T be the identity map.
Finally, let j be an index such that η j = η⋆. Then, it follows by (2.4) and the Banach
contraction theorem that there exists x ∈ R such that (x , ϕ j(x), ϕ2

j (x), . . .) ∈ C and
limn ϕn

j (x) = η⋆.
We conclude by Corollary 2.2 that, if a sequence x in the constraint set C is

I-optimal, then I- lim x = η⋆. In particular, in the special case C = FK, u(x) = x,
and I = Fin, we obtain that: if a bounded feasible sequence x maximizes its smallest
accumulation point, then it is convergent to the maximal fixed point η⋆ (this could
be obtained, of course, also by a direct method.)

As a last motivation for the assumptions given in Theorem 2.1, we provide in
Section 5 an example where our main result holds in an infinite dimensional vector
space X (we postpone it because of its length). The proofs of our results are given in
Section 4.

3 Preliminaries on I-cluster points

We collect in the next lemma the basic properties of I-cluster points and I-
convergence. These properties hold in greater generality, which we do not require
here.

Lemma 3.1 Let x be a sequence taking values in a metric space S and fix an ideal I.
Then:
(i) �x (I) is closed;
(ii) �x (I) ∩ K ≠ ∅, provided that there exists a compact K ⊆ S such that {n ∈ N ∶ xn ∈

K} ∈ I+;
(iii) I- lim x = η implies �x (I) = {η};
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(iv) I- lim x = η if and only if �x (I) = {η}, provided that there exists a compact K ⊆ S
such that {n ∈ N ∶ xn ∈ K} ∈ I⋆;

(v) �x (I) is the smallest closed set C such that {n ∈ N ∶ xn ∈ U} ∈ I⋆ for all open sets
U ⊇ C, provided that there exists a compact K ⊆ S such that {n ∈ N ∶ xn ∈ K} ∈
I⋆.

Proof See [16, Lemma 3.1, Corollaries 3.2 and 3.4, and Theorem 4.3]. ∎

To the best of our knowledge, the following result is the first one of this type, even
if some consequences were known (cf. Corollary 3.3 below). Informally, it states that,
for each sequence contained in a compact, the set of I-cluster points of its continuous
image coincides with the continuous image of its I-cluster points.

Proposition 3.2 Let S , S′ be metric spaces, and let I be an ideal. Fix also a continuous
function h ∶ S → S′, and let x be a sequence with values in S such that {n ∈ N ∶ xn ∈
K} ∈ I⋆ for some compact K ⊆ S. Then, h(�x (I)) = �h(x)(I).

Proof First, suppose that η ∈ �x (I). Then, it follows by the continuity of h that
h(η) ∈ �h(x)(I): indeed, for each open neighborhood U of h(η), there exists an
open neighborhood V of η such that {n ∈ N ∶ xn ∈ V} ⊆ {n ∈ N ∶ h(xn) ∈ U}. Hence,
h(�x (I)) ⊆ �h(x)(I).

Conversely, suppose that ν ∈ �h(x)(I). Note that F ∶= h−1({ν}) is closed and that
{n ∈ N ∶ h(xn) ∈ H} ∈ I⋆, where H ∶= h(K) is compact. Because ν belongs to H, then
K0 ∶= F ∩ K is a nonempty compact set. We claim that there exists η ∈ K0 which is
also an I-cluster point of x. To show this, for each r > 0, let Vr be the closed ball with
center ν and radius r. Moreover, for each x ∈ F, let Ux ,r be the open ball with center x
and radius r.

Because h is continuous and K is compact, then Gr ∶= K ∩ h−1(Vr) is compact and
contains K0 for each r > 0. Let h0 be the restriction of h to the compact set K, so that
h0 is uniformly continuous. It follows that h0 admits a modulus of continuity, i.e.,
there exists a function ω ∶ [0, ∞] → [0, ∞] such that

limr→0 ω(r) = 0 and ∀a, b ∈ K , d′(h0(a), h0(b)) ≤ ω(d(a, b)),

where d and d′ represent the metric on S and S′, respectively. In particular, ω is finite
in a (right) neighborhood of 0, let us say [0, ε]. Replacing, if necessary, each ω(r)
with supq≤r ω(q), we can assume without loss of generality that ω is nondecreasing.
Finally, let ω−1 be the generalized inverse of ω, i.e., ω−1(r) ∶= inf{q ∶ ω(q) > r}, for
each r > 0. For each r > 0, we obtain that r ≤ sup ω(d(a, b)), where the supremum is
taken with respect to all a ∈ F and b ∈ Ua ,ω−1(r). This implies that

∀r > 0, Gr ⊆ ⋃x∈F Ux , 2ω−1(r).(3.1)

However, because Gr is compact, there exists xr ,1 , . . . , xr ,mr ∈ F such that Gr is
contained into ⋃i≤mr Uxr , i ,2ω−1(r). To conclude, for each r > 0, we have that Ar ∶= {n ∈
N ∶ h(xn) ∈ Vr} ∈ I+, hence it follows by (3.1) that

Ar/I = {n ∈ N ∶ xn ∈ Gr} ⊆ ⋃i≤mr {n ∈ N ∶ xn ∈ Uxr , i ,2ω−1(r)},
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where I ∶= {n ∈ N ∶ xn ∉ K} ∈ I. Because Ar/I ∈ I+ and I is closed under finite unions,
it follows that, for each t ∈ N, there exists k(t) ∈ {1, . . . , m1/t} such that

Bt ∶= {n ∈ N ∶ xn ∈ Ux1/t ,k(t) ,2ω−1(1/t)} ∈ I+.

Because (x1/t ,k(t) ∶ t ∈ N) is a sequence in the compact set K0, there exists a conver-
gent subsequence with limit, let us say, η ∈ K0. Considering that limt 2ω−1(1/t) = 0
and that, for every r > 0, the set Cr ∶= {n ∈ N ∶ xn ∈ Uη ,r} contains Bt for every t
sufficiently large in the latter subsequence, we obtain that Cr ∈ I+, for all r > 0. In other
words, η ∈ �x (I) and h(η) = ν. This shows that �h(x)(I) ⊆ h(�x (I)), concluding the
proof. ∎

Corollary 3.3 Let S be a metric space and I be an ideal. In addition, fix a continuous
function h ∶ S → R and a sequence x in S such that {n ∈ N ∶ xn ∈ K} ∈ I⋆ for some
compact K ⊆ S. Then,

I- lim inf h(x) = min �h(x)(I) = minη∈�x(I) h(η),(3.2)

and, simmetrically,

I- lim sup h(x) = max �h(x)(I) = maxη∈�x(I) h(η).(3.3)

Proof The first equality of (3.2) is a consequence of [15, Corollary 2.3] (cf. also
[11, Theorem 1′] for the case I = Z). The second equality of (3.2) follows directly by
Proposition 3.2. The proof for the case S = Rn and I = Z can be found also in [25,
Lemma 3.1].

The proof of (3.3) is analogous. ∎

4 Proofs

Proof of Theorem 2.1 Suppose that x is an I-optimal path. Because x ∈ C ⊆ K ,
there exists a compact set K ⊆ X such that {n ∈ N ∶ xn ∉ K} ∈ I. It follows by (2.1),
Corollary 3.3, and conditions (A2) and (A6) that

min
η∈�x(I)

u(η) = I- lim inf u(x) ≥ sup
y∈C

I- lim inf u(y) ≥ u(η⋆),

hence �x (I) ⊆ K ∩ F, where we recall that F is the closed set {x ∈ X ∶ u(x) ≥ u(η⋆)}.
Because K is compact and �x (I) is closed by Lemma 3.1(i), we obtain that �x (I) is
compact. In addition, it is nonempty by Lemma 3.1(ii), therefore �x (I) ∈ K.

Suppose that F = {η⋆}. Because �x (I) is a nonempty subset of F, it follows that
�x (I) = {η⋆}, hence I- lim x = η⋆ by Lemma 3.1(iv).

Let us suppose hereafter that ∣F∣ ≥ 2, so that the linear operator T in (A5) is
nonzero. Replacing T with T/∥T∥, we can assume without loss of generality that
∥T∥ = 1.

Claim 1 The map Gr(Φ) → R ∶ (x , y) ↦ T(x − y) is continuous.
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Proof The claimed map can be rewritten as the restriction on Gr(Φ) of the
composition T ○ g, where g is the continuous function g ∶ X2 → X ∶ (x , y) ↦ x − y.

∎

Because T is continuous and Φ(x) ∈ K, for each x ∈ X, the function

T̂ ∶ X → R ∶ x ↦ max
y∈Φ(x)

T(y − x)

is well defined. Because the maximum is reached, we have T̂x < 0, for all x ∈ F/{η⋆},
by (A5).

Claim 2 T̂ is continuous and T̂η⋆ = 0.

Proof Because Φ is a continuous correspondence by (A1) and the map defined in
Claim 1 is continuous, it follows by Berge’s maximum theorem [1, Theorem 17.31] that
T̂ is continuous.

For the second part, we obtain by (A5) that T(y − η⋆) < 0, for all y ∈ Φ(η⋆), with
y ≠ η⋆. Because η⋆ ∈ Fix(Φ), we conclude that T̂η⋆ = T(η⋆ − η⋆) = 0. ∎

Because T is continuous and x ∈ C ⊆ K , it follows that there exists M ∈ R such
that {n ∈ N ∶ ∣Txn ∣ ≥ M} ∈ I. Hence, the I-limit inferior and the I-limit superior of
the real sequence (Txn) are well defined.

Claim 3 Fix η ∈ �x (I) such that I- lim inf n Txn = Tη. Then, η = η⋆.

Proof Assume that there exists η0 ∈ �x (I) different from η⋆ such that I- lim inf n
Txn = Tη0. Because �x (I) ⊆ F and η0 ≠ η⋆, then T̂η0 < 0. Because T̂ is continuous
by Claim 2, there exist ε, δ > 0 such that T̂x < −ε whenever ∥x − η0∥ < δ. Moreover, it
can be assumed without loss of generality that δ < ε/2. At this point, fix x , y ∈ X such
that ∥x − η0∥ < δ and y ∈ Φ(x), and let πy be a minimizer of ∥π − y∥ with π ∈ �x (I).
Because T̂x < −ε, we get

Ty < Tx − ε = Tη0 + T(x − η0) − ε ≤ Tη0 + ∥T∥∥x − η0∥ − ε < Tη0 − ε/2.

At the same time, we have

Ty = Tπy + T(y − πy) ≥ Tη0 − ∥y − πy∥,

which implies that ∥y − πy∥ > ε/2.
To sum up, if ∥x − η0∥ < δ, then ∥y − πy∥ > ε/2, for all y ∈ Φ(x). Because η0 is

an I-cluster point of x, we have A ∶= {n ∈ N ∶ ∥xn − η0∥ < δ} ∈ I+. Thus, because I is
translation invariant by (A3), then also A + 1 ∈ I+. However, considering that xn+1 ∈
Φ(xn), for all n ∈ A, we obtain by the preceding part that ∥xn+1 − πxn+1 ∥ > ε/2. To sum
up, the open set U ∶= {z ∈ X ∶ ∃η ∈ �x (I), ∥z − η0∥ < ε/2} contains �x (I) and it has
empty intersection with the I-positive set A + 1. This contradicts Lemma 3.1(v). ∎

Claim 4 Fix η ∈ �x (I) such that I- lim supn Txn = Tη. Then, Tη = Tη⋆.

https://doi.org/10.4153/S0008439521000382 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000382


426 P. Leonetti and M. Caprio

Proof Assume that there exists η0 ∈ �x (I) such that I- lim supn Txn = Tη and
Tη ≠ Tη⋆. Because η⋆ is a minimizer of Tη with η ∈ �x (I) by Claim 3, then κ ∶=
T(η0 − η⋆) > 0.

Because T̂ is continuous and T̂η⋆ = 0 by Claim 2, there exist ε, δ ∈ (0, κ/4) such that
T̂x < ε whenever ∥x − η⋆∥ < δ. Therefore, for each y ∈ Φ(x) such that ∥x − η⋆∥ < δ,
we obtain

Ty ≤ Tx + ε = Tη⋆ + T(x − η⋆) + ε < Tη⋆ + δ + ε < Tη⋆ + κ/2,

and, at the same time,

Ty = Tη0 + T(y − η0) ≥ Tη⋆ + κ − ∥y − η0∥.

Therefore, ∥y − η0∥ > κ/2 whenever ∥x − η⋆∥ < δ and y ∈ Φ(x). It follows that, if x ∈ X
is chosen such that ∥x − η∥ < δ/2 and ∥η − η⋆∥ < δ/2, for some η ∈ �x (I), then ∥x −
η⋆∥ ≤ ∥x − η∥ + ∥η − η⋆∥ < δ and hence ∥y − η0∥ < κ, for all y ∈ Φ(x).

At this point, note that the set Q ∶= {η ∈ �x (I) ∶ ∥η − η⋆∥ ≥ δ/2} is compact. Sup-
pose that Q ≠ ∅. By the continuity of T̂ , we have maxη∈Q T̂η < 0. It follows there exist
λ, τ > 0 such that T̂x < −λ whenever ∥x − η∥ < τ, for some η ∈ Q. In addition, it can
be assumed without loss of generality that τ < λ/2. Now, let us suppose that x ∈ X is
chosen such that ∥x − η∥ < τ for some fixed η ∈ Q. Fix y ∈ Φ(x); then,

Tη0 − ∥y − η0∥ ≤ Ty < Tx − λ ≤ Tηx + ∥x − η∥ − λ ≤ Tη0 − λ/2,

so that ∥y − η0∥ > λ/2.
Set ν ∶= min{δ/2, κ/2, τ, λ/2} > 0 and fix x , y ∈ X with y ∈ Φ(x). To sum up the

previous observations, we have that:
(i) If there exists η ∈ �x (I) such that ∥x − η∥ < ν and ∥η − η⋆∥ < δ/2, then ∥y −

η0∥ > ν;
(ii) If there exists η ∈ �x (I) such that ∥x − η∥ < ν and ∥η − η⋆∥ ≥ δ/2 (so that Q ≠ ∅),

then ∥y − η0∥ > ν.
Putting everything together, if ∥y − η0∥ ≤ ν, then ∥x − η∥ > ν, for all η ∈ �x (I).

We conclude as in the proof of Claim 3: because A ∶= {n ∈ N ∶ ∥xn+1 − η0∥ ≤ ν} ∈
I+ and I is translation invariant by (A3), then A − 1 ∈ I+. However, A − 1 is a subset of
{n ∈ N ∶ ∀η ∈ �x (I), ∥xn − η∥ > ν}, which belongs to I thanks to Lemma 3.1(v). This
contradiction concludes the proof. ∎

To complete the proof, note that by Corollary 3.3 there exist nonempty com-
pact sets �min , �max ⊆ �x (I) such that I- lim inf n Txn = Tη, for all η ∈ �min, and
I- lim supn Txn = Tη, for all η ∈ �max. Hence, Claims 3 and 4 imply that

{η⋆} = �min and η⋆ ∈ �min ∩ �max .

In other words, the function �x (I) → R defined by η ↦ Tη has a unique point of
minimum which is also a maximizer. Therefore, �x (I) = {η⋆}, which is equivalent to
I- lim x = η⋆ by Lemma 3.1(iv). ∎

Remark 4.1 As it is evident from the proof of Theorem 2.1, the full strength of
condition (A5) has not been used. Indeed, we needed it only in Claim 3 to show that
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T̂η0 < 0 for some η0 ∈ �x (I) and in Claim 4 to show that maxη∈Q T̂η < 0 for a suitable
subset Q ⊆ �x (I). Therefore, it is enough to replace (2.2) with the weaker condition

∀x ∈ �x (I), ∀y ∈ Φ(x), Tx ≤ Ty �⇒ x = y = η⋆ .

However, this condition, differently from (A5), depends on a given sequence x.

Proof of Corollary 2.2 Thanks to Theorem 2.1, it is sufficient to show that the
existence of a sequence y ∈ C which is I-convergent to η⋆ implies condition (A6).
To this aim, observe that �y(I) = {η⋆} by Lemma 3.1(iii). It follows by Corollary 3.3
that

I- lim inf u(y) = min
η∈�y(I)

u(η) = u(η⋆),

concluding the proof. ∎

Proof of Corollary 2.4 It is enough to note that every I-cluster point is an ordinary
accumulation point, so that by Corollary 3.3 we obtain

supy∈C I- lim inf n u(ϕn(y)) ≥ I- lim inf n u(ϕn(y0))
= min �(u(ϕn(y0)))(I) ≥ lim inf n u(ϕn(y0)) ≥ u(η⋆).

Hence, condition (A6) holds, and the conclusion follows by Theorem 2.1. ∎

5 An infinite dimensional example

As promised, we provide a practical example where Theorem 2.1 holds in infinite
dimension.

Example 5.1 Let X be the Hilbert space �2 of square summable real sequences, i.e.,
sequences x = (x0 , x1 , . . .) such that

∥x∥ ∶=
√

∑i≥0 x2
i < ∞.

Fix a sequence x⋆ ∈ �2, and define C = {(x(n)) ∈ FK ∶ x(0) = x⋆}. Let also I be an
arbitrary translation invariant ideal, and, for each x ∈ �2, set u(x) = x0 and

Φ(x) = {(− ∑i≥1 x2
i , y1 , y2 , . . .) ∶ 2x i ≤ y i ≤ x i + 1/i for all i ≥ 1} ∪ { 1

2 x},(5.1)

where 1
2 x = (x0/2, x1/2, . . .). First of all, let us show that Φ is well defined. To do this,

fix x ∈ �2 and let us prove that Φ(x) ⊆ �2. If y ∈ Φ(x) is equal to 1
2 x, then it clearly

belongs to �2. Otherwise, because �2 is a vector space, it is sufficient to show that
z = y − x = (−x0 − ∑i≥1 x2

i , z1 , z2 , . . .) ∈ �2, where x i ≤ z i ≤ 1/i, for all i ≥ 1. Therefore,

∑i≥0 z2
i ≤ z2

0 + ∑i≥1 (∣x i ∣ + 1
i )2 ≤ z2

0 + ∑i≥0 x2
i + ∑i≥1

1
i2 + 2 ∑i≥1

∣x i ∣
i

≤ z2
0 + ∑i≥0 x2

i + ∑i≥1
1
i2 + 2

√
∑i≥1 x2

i ⋅ ∑i≥1
1
i2 < ∞,

https://doi.org/10.4153/S0008439521000382 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000382


428 P. Leonetti and M. Caprio

where the last ≤ follows by the Cauchy–Schwarz inequality. In addition, Φ(x)
is compact. To this aim, because { 1

2 x} is compact, it is sufficient to show that
a translation of the first set in the definition (5.1) of Φ(x) is compact. Let
us define

φ(x) ∶= {(−x0 − ∑i≥1 x2
i , z1 , z2 , . . .) ∶ x i ≤ z i ≤ 1/i for all i ≥ 1} .(5.2)

Let a be the sequence defined by a0 ∶= −x0 − ∑i≥1 x2
i and a i ∶= ∣x i ∣ + 1

i . Note that a ∈
�2 and that φ(x) is a closed subset of {z ∈ �2 ∶ ∣z i ∣ ≤ a i for all i ≥ 0}. However, the
latter set is compact thanks to [7, p. 453], hence φ(x) is compact too. To sum up,
Φ(x) is compact subset of �2 which is nonempty (because it contains 1

2 x).
At this point, let us show that Φ is continuous. Reasoning as above, it is sufficient

to show that the correspondence φ defined in (5.2) is continuous at x. Assume that
φ(x) ≠ ∅, i.e., x i ≤ 1/i, for all i ≥ 1, otherwise the claim is trivial.

First, let us show that φ is upper hemicontinuous. Fix ε > 0 and define the open
set Uε ∶= {z ∈ �2 ∶ ∃y ∈ φ(x), ∥z − y∥ < ε}. We need to find a constant δ > 0 such that,
for each x′ ∈ �2, if ∥x − x′∥ < δ, then φ(x′) ⊆ Uε . Hence, fix also x′ ∈ �2 such that ∥x −
x′∥ < δ for a suitable δ > 0 that will be chosen later and pick y′ ∈ φ(x′). In particular,
∣x i − x′i ∣ < δ, for all i ≥ 0. Similarly, we can assume without loss of generality that x′i ≤
1/i, for all i ≥ 1, otherwise φ(x′) = ∅. Then,

∀y ∈ φ(x), ∣y0 − y′0∣ ≤ ∣x0 − x′0∣ + ∣ ∑i≥1 x2
i − ∑i≥1(x′i )2 ∣

≤ ∣x0 − x′0∣ + ∣x2
0 − (x′0)2∣ + ∣∥x∥2 − ∥x′∥2 ∣

≤ δ + δ∣x0 + x′0∣ + δ(∥x∥ + ∥x′∥)
≤ δ (1 + 2(∥x∥ + ∥x′∥))
≤ δ (1 + 4∥x∥ + 2δ) .

(5.3)

Now, recall that, for each integer i ≥ 1, we have x′i ≤ y′i ≤ 1/i and x i ≤ y i ≤ 1/i.
In particular, there exists y ∈ φ(x) such that ∣y i − y′i ∣ ≤ ∣x i − x′i ∣, for all i ≥ 1. It
follows that

∑i≥1(y i − y′i )2 ≤ ∑i≥1(x i − x′i )2 ≤ ∥x − x′∥2 ≤ δ2 .(5.4)

Putting together the above estimates, we obtain that, for each given y′ ∈ φ(x′), there
exists y ∈ φ(x) such that

∥y − y′∥ =
√

∣y0 − y′0∣2 + ∑i≥1(y i − y′i )2 ≤ δ
√

(1 + 4∥x∥ + 2δ)2 + 1 < ε,(5.5)

where the last inequality holds if δ is sufficiently small.
Second, let us show that φ is lower hemicontinuous. To this aim, fix an arbitrary

y ∈ φ(x) and some ε > 0. We claim that there exists δ > 0 such that if ∥x − x′∥ <
δ, then ∥y − y′∥ < ε, for some y′ ∈ φ(x′). Note that estimates (5.3) and (5.4) hold
simmetrically also in this case, with the conclusion that we have exactly the same
upper bound computed in (5.5) for ∥y − y′∥.

Therefore, Φ is a nonempty compact-valued continuous correspondence on �2, I is
translation invariant, and u is clearly continuous. Hence, conditions (A1)–(A3) hold.
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The set of fixed points of Φ is neither convex nor compact, and it is equal to

Fix(Φ) = {x ∈ �2 ∶ x0 = − ∑i≥1 x2
i and x j ≤ 0 for all j ≥ 1}.

It follows that the restriction of u on Fix(Φ) has a unique maximizer, which is the
zero sequence 0 of �2, hence condition (A4) holds. Moreover, we have that

F = {x ∈ C ∶ u(x) ≥ u(0)} = {x ∈ C ∶ x0 ≥ 0}.

Fix sequences x ∈ F and y ∈ Φ(x) such that (x , y) ≠ (0, 0). Note that Φ(0) = {0},
hence x ≠ 0 (in particular, if x0 = 0, then x i ≠ 0, for some i ≥ 1). Thus, setting T = u
(which is a continuous linear functional on �2), we obtain that T y = − ∑i≥1 x2

i < x0 =
Tx, i.e., condition (A5) holds. Finally, note that the sequence (x⋆ , 1

2 x⋆ , 1
4 x⋆ , . . .) is

convergent to 0 and belongs to C (indeed, it is starts at x⋆, it is feasible, and its image
is contained in the compact set {kx⋆ ∶ k ∈ [0, 1]}).

We conclude by Corollary 2.2 that each I-optimal sequence (x(n)) ∈ C in the
system ⟨ �2 , Φ, u, I, C ⟩ is necessarily I-convergent to 0.
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