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Assuming an averaged form of Mertens’ conjecture and that the ordinates of the
non-trivial zeros of the Riemann zeta function are linearly independent over the
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Ramanujan.
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1. The formula of Ramanujan

Let μ(n) be the Möbius function and set

F (b) =
∞∑

n=1

μ(n)
n

e−(b/n)2 .

In their paper ‘Contributions to the theory of the Riemann zeta-function and the
theory of the distribution of primes’ [4], Hardy and Littlewood derived the formula

√
aF (a) −

√
bF (b) = − 1

2

∑
ρ

Γ( 1
2 − ρ

2 )
ζ ′(ρ)

bρ− 1
2 , (1.1)

where a, b > 0 and ab = π. Here the sum runs over the nontrivial zeros ρ = β + iγ of
the zeta function and we have assumed they are all simple (the sum can be modified
accordingly if they are not). The formula was suggested to them by some work of
Ramanujan. Hardy and Littlewood mentioned that there is a way to bracket the
terms in the sum over zeros to ensure convergence, but they were not explicit about
how to do this. Titchmarsh [13] (see pp. 219–220), however, proved that the series
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2 A. Chirre and S. M. Gonek

converges provided any two zeros ρ1, ρ2 in the sum for which

|γ1 − γ2| � e−Aγ1/ log γ1 + e−Aγ2/ log γ2 , (1.2)

with A a sufficiently small positive constant, are grouped together. In addition,
Hardy and Littlewood proved that for any ε > 0, the estimate

F (b) �ε b−
1
2+ε (1.3)

as b → ∞ is equivalent to the Riemann hypothesis (RH), and they conjectured that,
in fact, F (b) � b−

1
2 .

Several mathematicians have studied various aspects and analogues of F (b)
and Ramanujan’s formula. For instance, W. Staś [10–12] proved, under various
hypotheses, results of the form

max
T 1−o(1)�b�T

|F (b)| � T− 1
2−o(1),

for T sufficiently large. A. Dixit [2, 3] proved analogues of (1.1) with Dirichlet
characters and the insertion of other functions in the sums. Other results along
similar lines may be found in [1, 5, 6, 9] to cite just a few examples.

Our purpose here is to record a few observations about the finer behaviour of F (b)
as well as the sum over zeros on the right-hand side of (1.1) under the assumption of
two well-known and widely believed hypotheses. We will refer to our first hypothesis
as the weak Mertens hypothesis (WMH).

Weak Mertens Hypothesis. Let M(x) =
∑

n�x μ(n). Then as X → ∞,

∫ X

1

(
M(x)

x

)2

dx � log X. (1.4)

We assume WMH throughout. It has the following consequences:

(A) RH,

(B) all the zeros ρ are simple,

(C) ζ ′(ρ)−1 = o(|ρ|),
(D) there is a positive constant A such that if γ < γ′ are consecutive ordinates of

nontrivial zeros of ζ(s), then

γ′ − γ >
A

γ
exp

(
−A

log γ

log log γ

)
. (1.5)

For proofs that WMH implies (B), (C), and (D), we refer the reader to Titchmarsh
[13] (§ 14.29, 14.31). The proof that WMH implies RH is not in Titchmarsh, but
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Remarks on a formula of Ramanujan 3

it is short so we provide it here. Set

f(x) =
∫ x

1

M(u)
u

du.

By the Cauchy–Schwarz inequality and (1.4),

f(x)2 � x

∫ x

1

(
M(u)

u

)2

du � x log x.

Hence f(x) � (x log x)
1
2 . Thus, for s = σ + it with σ > 1

1
sζ(s)

=
∫ ∞

1

M(x)
xs+1

dx =
∫ ∞

1

df(x)
xs

dx = s

∫ ∞

1

f(x)
xs+1

dx, (1.6)

and it follows that the last integral in (1.6) is an analytic function for σ > 1/2.
Thus, ζ(s) has no zeros in σ > 1/2. In other words, RH follows.

From (1.5) we see that there are no zeros with ordinates γ1, γ2 large such
that (1.2) holds. Thus, assuming WMH, (1.1) holds with the sum interpreted as
limTν→∞

∑
|γ|�Tν

for any increasing sequence {Tν}. However, on WMH even more
is true – the series is in fact absolutely convergent. To see this, write

∑
ρ

Γ
(

1
2 − ρ

2

)
ζ ′(ρ)

bρ− 1
2 =

∑
γ

a(γ)biγ .

By Stirling’s formula,

log Γ(s) = (s − 1
2 ) log s − s + 1

2 log 2π + O(|s|−1),

where |s| → ∞ in any angle −π + δ < arg s < π − δ with δ > 0. Thus

log |Γ ( 1
2 − ρ

2

) | = −π
4 |γ| − 1

4 log |γ| + O(1).

Using this and (C), we find that

a(γ) = o(|γ|3/4 e−π|γ|/4). (1.7)

Hence, since N(T ) =
∑

0<γ�T 1 ∼ (T/2π) log T and the zeros ρ = 1
2 + iγ are sym-

metric about the real axis, we have

∑
γ

|a(γ)biγ | = O

(∑
γ

|γ|3/4 e−π|γ|/4

)
� 1.

Returning to (1.1), we see that since the zeros ρ = 1
2 + iγ are symmetric about

the real axis and ζ ′(s) and Γ(s) are real on the real axis, we may rewrite (1.1) as

√
aF (a) −

√
bF (b) = −�

∑
γ>0

a(γ)biγ .
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4 A. Chirre and S. M. Gonek

Then, since ab = π with a, b > 0, we may replace a by π/b and write

F (b) =
1√
b
�
∑
γ>0

a(γ)biγ +
√

π

b
F
(π

b

)
, (1.8)

where the sum over γ on the right-hand side is absolutely convergent under the
assumption of WMH. Since

∑∞
n=1 μ(n)n−1 = 0, we have

F
(π

b

)
=

∞∑
n=1

μ(n)
n

(e−(π/bn)2 − 1) =
∞∑

n=1

μ(n)
n

∞∑
k=1

(−1)k(π/bn)2k

k!

=
∞∑

k=1

(−1)k(π/b)2k

k!

∞∑
n=1

μ(n)
n2k+1

=
∞∑

k=1

(−1)k(π/b)2k

k!ζ(2k + 1)
,

where the interchange of summations is justified by absolute convergence. For b � π
it is easily checked that the absolute value of the terms of this alternating series
are decreasing, so for any integer K � 1, we see that

F
(π

b

)
=

K∑
k=1

(−1)k(π/b)2k

k!ζ(2k + 1)
+ EK+1(b),

where

|EK+1(b)| � (π/b)2K+2

(K + 1)!
.

Inserting this into (1.8), we now find that if WMH is true and b � π, then

F (b) =
1√
b
�
∑
γ>0

a(γ)biγ +
1√
π

K∑
k=1

(−1)k(π/b)2k+1

k!ζ(2k + 1)
+

√
π

b
EK+1(b). (1.9)

We will use this for the calculations in § 3. However, even the cruder estimate

F (b) = � 1√
b

∑
γ>0

a(γ)biγ + O(b−3) (1.10)

immediately leads to the following theorem.

Theorem 1.1. Assume WMH. Then for b � π we have

|F (b)| � C√
b

+ O(b−3),

where

C =
∑
γ>0

|a(γ)| =
∑
γ>0

∣∣∣∣∣Γ
(

1
4 − iγ

2

)
ζ ′( 1

2 + iγ)

∣∣∣∣∣ .
To analyse the sum over γ in (1.9) and (1.10), we assume, in addition to WMH,

the following linear independence hypothesis (LI).
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Remarks on a formula of Ramanujan 5

Linear Independence Hypothesis. The positive ordinates γ of the zeros of
the zeta function are linearly independent over the rationals.

To use this we first assume the γ > 0 have been ordered as γ1, γ2, γ3 . . . , in such
a way that |a(γ1)| � |a(γ2)| � |a(γ3)| � · · · . Then

∑
γ>0

Γ( 1
4 − iγ

2 )
ζ ′( 1

2 + iγ)
biγ =

∑
γ>0

a(γ)biγ =
∞∑

n=1

a(γn) eiγn log b.

LI implies that as b varies over [π,∞), this sum is dense in the set of complex
numbers

A =

{ ∞∑
n=1

|a(γn)|eiθn : θn ∈ [0, 1), n = 1, 2, 3, . . .

}
.

This set, being a ‘sum’ of circles centred at the origin, is, as is well-known, either a
closed annulus or a closed disk according to the following criteria:

(1) If |a(γ1)| >
∑∞

n=2 |a(γn)|, then A is a closed annulus centred at the origin
with outer radius

C =
∞∑

n=1

|a(γn)|

and inner radius

c = |a(γ1)| −
∞∑

n=2

|a(γn)|.

(2) If |a(γ1)| �
∑∞

n=2 |a(γn)|, then A is a closed disk centred at the origin of
radius

C =
∞∑

n=1

|a(γn)|.

In either of these two cases, the real parts of the complex num-
bers

∑∞
n=1 |a(γn)| eiθn in A fill out the interval [−C,C]. As the sum∑∞

n=1 a(γn) eiγn log b is dense in A (assuming LI), this and (1.10) give the
following result.

Theorem 1.2. Assume WMH and LI. Then
√

bF (b) is dense in [−C,C] and, in
particular, we have

lim inf
b→∞

√
bF (b) = −C and lim sup

b→∞

√
bF (b) = C.

For N a large positive integer, let

AN =

{
N∑

n=1

|a(γn)| eiθn : θn ∈ [0, 1), n = 1, 2, 3, . . . , N

}
,

which again is either an annulus or disk centred at the origin. By the reasoning
above, if one assumes LI, the curve fN (b) =

∑N
n=1 a(γn) eiγn log b is dense in AN .
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6 A. Chirre and S. M. Gonek

By the Kronecker-Weyl theorem, it is also uniformly distributed in AN . Thus,
the distribution function of the curve �fN (b) as b → ∞ tends to the distribution
function of the x coordinate of points (x, y) in the annulus or disk AN . Since∑∞

n=1 a(γn)eiγn log b is absolutely convergent, the same is true for the real part of
this series but with A in place of AN . Moreover, by (1.10),∣∣∣∣∣

√
bF (b) −�

∞∑
n=1

a(γn) eiγn log b

∣∣∣∣∣� b−
5
2 .

Thus, as b → ∞, the probability distribution function of
√

bF (b) tends to the dis-
tribution function of the x coordinate of points (x, y) in either the annulus centred
at the origin with inner radius c and outer radius C, or the disk centred at the
origin of radius C. Depending on whether the set A is an annulus or a disk, we
therefore have the following probability density function for

√
bF (b).

Theorem 1.3. Assume WMH and LI. Let c and C be as above, let

A =

{ ∞∑
n=1

|a(γn)| eiθn : θn ∈ [0, 1), n = 1, 2, 3, . . .

}
,

and let p(x) be the probability density function of
√

bF (b) for b large. If A is an
annulus with inner radius c and outer radius C, then

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if C � |x|,
2
√

C2 − x2

π(C2 − c2)
if c � |x| � C,

2(
√

C2 − x2 −√
c2 − x2)

π(C2 − c2)
if |x| � c.

If A is a disk of radius C, then

p(x) =

⎧⎪⎨
⎪⎩

0 if C � |x|,
2
√

C2 − x2

πC2
if |x| � C.

It seems difficult to prove, even under the strong assumptions of WMH and LI,
whether A is an annulus or disk, but we believe it to be an annulus. At issue is
determining the relative size of the two quantities

|a(γ1)| and
∞∑

n=2

|a(γn)|,

where

a(γ) =
Γ( 1

4 − iγ
2 )

ζ ′( 1
2 + iγ)

.

There are two sources of difficulty in settling this question. One is that, although
the size of Γ is well understood, the bound ζ ′(ρ)−1 = o(|ρ|) from C) is not explicit
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Remarks on a formula of Ramanujan 7

enough; what would suffice is an estimate of the type |ζ ′(ρ)−1| � B|ρ| for all γ > 0
with B an explicit constant, or even |ζ ′(ρ)−1| � B|γ|d with d > 1, and d and B
both explicit. The other difficulty, which is related to the first, is that we do not
know which γ should be γ1, that is, which γ maximizes |a(γ)|. (Note that if |a(γ)| is
maximal for more than one γ, then A is a disk.) However, if a constant B as above
exists that is not enormous, the fast exponential decay from the gamma function
in a(γ) suggests that the drop off between terms for successive γ’s is large, and
this suggests that a(γ1) (with γ1 = γ) is much larger than

∑∞
n=2 |a(γn)|. In § 3

we present the outcome of a limited number of calculations that suggest possible
approximate values of c and C and we present several graphs of

√
bF (b).

We next prove a formula for the second moment of F .

Theorem 1.4. Assume WMH. Then

∫ X

1

F (x)2 dx = A log X + O(1) (1.11)

as X → ∞, where

A = 1
2

∑
γ>0

|a(γ)|2.

Remark. Note that A > 0.

Proof. Writing

S =
∑
γ>0

a(γ)xiγ ,

we find by (1.8) that

∫ X

1

F (x)2 dx =
∫ X

1

(�S√
x

+ O(x−3)
)2

dx

=
∫ X

1

(
�S + O(x−5/2)

)2 dx

x

=
∫ X

1

(
(�S)2 + O(|S|x−5/2) + O(x−5)

) dx

x
.

Since the series defining S is absolutely convergent, the last two terms of the
integrand contribute O(1). Thus,

∫ X

1

F (x)2 dx =
∫ X

1

(�S)2
dx

x
+ O(1)

=
1
4

∫ X

1

(S2 + 2|S|2 + S
2
)
dx

x
+ O(1). (1.12)
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8 A. Chirre and S. M. Gonek

Again, by absolute convergence of the sum defining S, we have∫ X

1

S2 dx

x
=
∫ X

1

∑
γ,γ′>0

a(γ)a(γ′)xi(γ+γ′) dx

x
=
∑

γ,γ′>0

a(γ)a(γ′)
∫ X

1

xi(γ+γ′)−1 dx

=
∑

γ,γ′>0

a(γ)a(γ′)
Xi(γ+γ′) − 1

i(γ + γ′)
�
(∑

γ>0

|a(γ)|
)2

� 1.

Similarly,
∫X

1
S

2 dx
x � 1. Finally,

∫ X

1

|S|2 dx

x
=
∑

γ,γ′>0

a(γ)a(γ′)
∫ X

1

xi(γ−γ′)−1 dx

= log X
∑
γ>0

|a(γ)|2 +
∑

γ,γ′>0
γ �=γ′

a(γ)a(γ′)
Xi(γ+γ′) − 1

i(γ − γ′)

= log X
∑
γ>0

|a(γ)|2 + O

⎛
⎜⎜⎝ ∑

γ,γ′>0
γ �=γ′

|a(γ)a(γ′)|min
(

log X,
1

|γ − γ′|
)⎞⎟⎟⎠ .

By (D), for any ε > 0 we have |γ − γ′|−1 � γ1+ε. Thus, by (1.7), we find that the
O-term is

�
∑
γ′>0

|a(γ′)|
∑
γ<γ′

|a(γ)|γ1+ε �
∑
γ′>0

|a(γ′)|
∑
γ<γ′

γ7/4+ε e−π|γ|/4

�
∑
γ′>0

|a(γ′)| � 1.

Hence ∫ X

1

|S|2 dx

x
= log X

∑
γ>0

|a(γ)|2 + O(1).

Combining our estimates together in (1.12), we obtain

∫ X

1

F (x)2 dx = log X

(
1
2

∑
γ>0

|a(γ)|2
)

+ O(1).

�

Remark. One can show that if a weak version of (1.11) holds, namely,∫ X

1

F (x)2dx � log X,

then (A) and (B) as well as the following analogue of (C) follow:
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Remarks on a formula of Ramanujan 9

(C*) ζ ′(ρ)−1 � ec|γ| for some positive constant c.

These can be proved along the lines of the proofs that (A)–(C) follow from WMH.

2. Riesz’s function

Analogues of the results above may easily be extended to M. Riesz’s function [8]

P (x) =
∞∑

n=1

μ(n)
n2

e−x/n2
,

which is similar to F (x) and was introduced around the same time as Hardy and
Littlewood’s work on Ramanujan’s formula. Note that P (x) has n2 rather than n
in the denominator and x rather than x2 in the exponential. Agarwal, Garg, and
Maji [1] recently generalized this to a one parameter family of functions

Pk(x) =
∞∑

n=1

μ(n)
nk

e−x/n2
,

where k � 1 is a fixed real number. Note that F (x) = P1(x2) and P (x) = P2(x).
They then proved the following analogue of (1.1) (see their Theorem 1.1):

Pk(x) = Γ(k
2 )x− k

2

∞∑
n=1

μ(n)
n

1F1

(
k
2 ; 1

2 ;− π2

n2x

)
+ 1

2

∑
ρ

ak(γ)x− k−ρ
2 . (2.1)

Here 1F1

(
k
2 ; 1

2 ; z
)

is the generalized hypergeometric series,

ak(ρ) =
Γ
(

k−ρ
2

)
ζ ′(ρ)

,

the zeros ρ are all assumed to be simple, and any two zeros ρ1 and ρ2 in the series
on the right in (2.1) are grouped together if they satisfy the inequality (1.2). They
used this to show that for any fixed real number k � 1 and any ε > 0, the Riemann
hypothesis is equivalent to

Pk(x) �ε x− k
2 + 1

4+ε

as x → ∞ (similarly to (1.3)).
Assuming WMH and using (2.1), we may easily prove a version of (1.10) for

Pk(x). First note, as before, that from WMH it follows that RH holds, all the zeros
ρ of ζ(s) are simple, and |ζ(ρ)−1| = o(|ρ|). Also, by Stirling’s formula, we have

log
∣∣Γ (k

2 − ρ
2

)∣∣ = −π
4 |γ| + (k

2 − 3
4 )log |γ| + O(1).
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10 A. Chirre and S. M. Gonek

Thus, ∑
ρ

|ak(ρ)| �
∑

γ

|γ| k
2 + 1

4 e−π|γ|/4 � 1.

Hence, the series

1
2

∑
ρ

ak(ρ)x− k−ρ
2 = 1

2x− k
2 + 1

4

∑
ρ

ak(ρ)xiγ/2 = x− k
2 + 1

4�
∑
γ>0

ak(ρ)xiγ/2

on the right-hand side of (2.1) converges absolutely. Next, for z complex and
bounded, we have

1F1(k
2 , 1

2 , z) =
∞∑

j=0

Γ(k
2 + j)Γ( 1

2 )
Γ(k

2 )Γ( 1
2 + j)j!

zj = 1 + O(|z|).

Thus, the first term on the right-hand side of (2.1) equals

Γ(k
2 )x− k

2

∞∑
n=1

μ(n)
n

(1 + O(n−2x−1)) � x− k
2−1,

since
∑

n μ(n)n−1 = 0.
Using these estimates and observations with (2.1), we arrive at

Pk(x) = x− k
2 + 1

4 �
∑
γ>0

ak(ρ)xiγ/2 + O(x− k
2−1).

With this formula as a starting point, we may easily prove analogues of Theorems
1.1–1.4 for Pk(x). In the case of Theorem 1.4, we obtain an asymptotic formula for∫ X

1

Pk(x)2xk− 3
2 dx.

3. Calculations

We mentioned in § 1 that we believe A to be an annulus. In this final section we
briefly report the results of calculations of a number of |a(γ)|’s, and use these to
approximate the values of the inner and out radii, c and C, of the annulus A .
We also provide several graphs of

√
bF (b). We have used Mathematica for these

calculations and to generate our graphs.
For a table of values of |a(γ)| for the first ten ordinates γ > 0, see Table 1.
Notice that, for the most part, these terms are quickly decreasing. If we sum them

to approximate C, the outer radius of A , we obtain the value C ≈ 0.0000293414.
To approximate c we subtract the sum of the last nine values from |a(γ1)| and
obtain c ≈ 0.0000291702. Interestingly, performing the same calculations with the
first 500 ordinates γ gives exactly the same values for C and c up to ten significant
figures. This suggests (but, of course, does not prove) that A really is an annulus
rather than a disk.

We conclude with several graphs of
√

bF (b) for various ranges of b from the
formula (1.9) using the first 50 ordinates γ and the sum over k with K = 50 and
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Remarks on a formula of Ramanujan 11

Table 1. Some values of |a(γ)|.

γn |a(γn)|
γ1 2.9255 . . . · 10−5

γ2 8.2702 . . . · 10−8

γ3 2.8609 . . . · 10−9

γ4 4.0789 . . . · 10−11

γ5 5.2534 . . . · 10−12

γ6 9.4006 . . . · 10−14

γ7 8.7272 . . . · 10−15

γ8 1.0550 . . . · 10−15

γ9 3.0507 . . . · 10−17

γ10 8.3287 . . . · 10−18

Figure 1. Graph of
√

bF (b) for 1 � b � 10.

Figure 2. Graph of
√

bF (b) for 100 � b � 1000.

ignoring the error term E51(b). Although our estimate for EK+1 in (1.9) was for
b � π, it is not difficult to check that E51(b) is quite small even when 1 � b � π.
Thus, figure 1 is accurate for this range of b as well. For other ranges, see figures 2
and 3.
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Figure 3. Graph of
√

bF (b) for 1000 � b � 20, 000.

For some related graphs see Paris [7].
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