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We consider Calderón’s problem for the connection Laplacian on a real-analytic
vector bundle over a manifold with boundary. We prove a uniqueness result for this
problem when all geometric data are real-analytic, recovering the topology and
geometry of a vector bundle up to a gauge transformation and an isometry of the
base manifold.
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1. Statement and discussion of results

1.1. Introduction

The purpose of this paper is to prove a uniqueness result for the Calderón inverse
problem for the connection Laplacian on a vector bundle. Our main hypothesis is
that the geometry of a vector bundle, that is a connection, a compatible inner prod-
uct, and a Riemannian metric on the base manifold, are real-analytic. This Calderón
problem is motivated by the Aharonov–Bohm effect that says that different gauge
equivalence classes of electromagnetic potentials have different physical effects that
can be detected by experiments. Thus, our uniqueness result shows that different
gauge equivalence classes of connections have different boundary data, that is such
classes are detectable by boundary measurements.

We discuss some of the related literature on this problem in due course, but now
say a few words about the classical Calderón problem. Recall that the anisotropic
Calderón problem asks whether one can read off the conductivity matrix of a
medium from electrical voltage and current measurements on the boundary. In
dimension greater than two this problem is equivalent to recovering a Riemannian
metric on a compact manifold with boundary from the Dirichlet and Neumann
data of harmonic functions. A classical result by Lassas and Uhlmann [13], see
also [14, 15], solves this problem when a Riemannian metric is real-analytic. In
more detail, it says that the topology and geometry of a real-analytic Riemannian
manifold with boundary can be recovered from the Dirichlet-to-Neumann map for
the Laplace–Beltrami operator. The main result of this paper can be viewed as
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2 R. Gabdurakhmanov and G. Kokarev

a version of the Lassas–Uhlmann theorem in the setting of vector bundles, which
allows us to recover additional topological and geometric structures. We proceed
with the statement of related hypotheses and conclusions in more detail.

1.2. Main result

Let (Mi, gi), where i = 1, 2, be two connected compact Riemannian manifolds
with boundary, and let Ei be vector bundles over Mi. We assume that each Ei

is equipped with a connection ∇i and a Euclidean structure, that is a compatible
inner product 〈·, ·〉Ei

in the sense that

DX〈u, v〉Ei
= 〈∇i

Xu, v〉Ei
+ 〈u,∇i

Xv〉Ei

for any smooth sections u and v of Ei, and any vector field X on Mi. For
open subsets Σi ⊂ ∂Mi we denote by ΛΣi

the corresponding Dirichlet-to-Neumann
maps defined on compactly supported sections of Ei|Σi

by the taking the normal
derivative of the harmonic extension, that is the solution of the equation

ΔEiu = 0, u|∂Mi
= s,

where s is a section of Ei|∂Mi
supported in Σi, and ΔEi is the connection Laplacian

on Ei, see § 2 for details.
Let φ : E1|Σ1

→ E2|Σ2
be a morphism of vector bundles that covers a diffeomor-

phism ψ : Σ1 → Σ2, that is π2 ◦ φ = ψ ◦ π1, where πi is the projection map for Ei,
i = 1, 2. We say that such a morphism φ intertwines with the Dirichlet-to-Neumann
maps ΛΣi

if

φ ◦ ΛΣ1(s) ◦ ψ−1 = ΛΣ2(φ ◦ s ◦ ψ−1)

for any smooth section s of E1|Σ1
. Recall that a vector bundle isomorphism is called

Euclidean, if it preserves Euclidean structures. Our main result is the following
theorem.

Theorem 1.1. Let (Mi, gi, Ei, ∇i), where i = 1, 2, be two Euclidean real-analytic
vector bundles defined over connected compact real-analytic Riemannian manifolds
with boundary, equipped with real-analytic connections. Suppose that dimMi � 3
for each i = 1, 2, and for some open subsets Σi ⊂ ∂Mi there exists a real-analytic
Euclidean vector bundle isomorphism φ : E1|Σ1

→ E2|Σ2
that intertwines with the

corresponding Dirichlet-to-Neumann operators ΛΣ1 and ΛΣ2 . Then the vector bun-
dles E1 and E2 are isomorphic, and moreover, there exists a real-analytic Euclidean
vector bundle isomorphism Φ : E1 → E2 that covers an isometry Ψ : (M1, g1) →
(M2, g2), such that Φ∗∇2 = ∇1 and Φ|Σ1

= φ.

We note that the presence of Euclidean structures on vector bundles Ei in
theorem 1.1 plays an auxiliary, but important role. In more detail, neither the
connection Laplacian nor the associated Dirichlet-to-Neumann operator depend on
them, see § 2. On the other hand, we do not know whether the assumption that
the isomorphism φ in theorem 1.1 is Euclidean, and the conclusion that so is its
extension Φ, can be dropped.
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On Calderon’s problem for the connection Laplacian 3

It is an open problem whether the conclusions in theorem 1.1 hold for arbitrary
smooth geometric data, connections and Riemannian metrics, on vector bundles.
Under different conditions a similar problem has been considered by Cekić [2, 3].
Let us also mention that in [12] the authors consider the Calderón problem for
the wave operator of the connection Laplacian on Hermitian vector bundles, and
obtain conclusions similar to the ones in theorem 1.1 without any hypotheses on
the geometry of vector bundles.

Note that the hypothesis on the dimension of the base manifolds Mi in our results
is essential for the conclusions to hold. In dimension two the connection Laplacian
behaves differently when a Riemannian metric on the base changes conformally, see
§ 2, and the Riemannian metric on the base can not be recovered. However, as our
next theorem shows, a vector bundle with a connection are still determined by the
corresponding Dirichlet-to-Neumann operator. To state this result we first need to
fix more specific notation.

As is well-known, the conformal class of any smooth metric g on a compact
connected surface M determines a real-analytic structure, that is an atlas formed
by isothermal charts of g. We say that a pair (M, c), where c is a conformal class
of Riemannian metrics on M , is a real-analytic surface with boundary, if the real-
analytic structure on M is determined by the conformal class c, and the boundary is
real-analytic with respect to this structure. Let Ei, where i = 1, 2, be vector bundles
overM . Suppose that for an open set Σ ⊂ ∂M there is a morphism of vector bundles
φ : E1|Σ → E2|Σ that covers the identity map on the base, that is π2 ◦ φ = π1,
where πi is the projection map for Ei, i = 1, 2. Similarly to the notation used
above, we say that such a morphism φ intertwines with the Dirichlet-to-Neumann
maps Λi,Σ relative to the conformal class c, if

φ ◦ Λ1,Σ(s) = Λ2,Σ(φ ◦ s)
for any smooth section s of E1|Σ, where the Dirichlet-to-Neumann operators are
defined using some metric g ∈ c. It is straightforward to see that this relation does
not depend on a metric g in a fixed conformal class c, used to define the Dirichlet-to-
Neumann operators, but depends on the conformal class c. The following theorem
is the version of our main result for vector bundles over surfaces.

Theorem 1.2. Let (M, c) be a compact connected real-analytic surface with bound-
ary, and let E1 and E2 be two Euclidean real-analytic vector bundles over M
equipped with real-analytic connections ∇1 and ∇2 respectively. Suppose that for
some open subset Σ ⊂ ∂M there exists a real-analytic Euclidean vector bundle iso-
morphism φ : E1|Σ → E2|Σ that covers the identity map and intertwines with the
corresponding Dirichlet-to-Neumann operators Λ1,Σ and Λ2,Σ relative to c. Then
the bundles E1 and E2 are isomorphic, and moreover, there exists a real-analytic
Euclidean vector bundle isomorphism Φ : E1 → E2 that covers the identity map of
M , such that Φ∗∇2 = ∇1 and Φ|Σ = φ.

Related results on the Calderón problem for the connection Laplacian on vector
bundles over surfaces can be found in [1, 10], where the authors are concerned with
recovering a connection on a fixed vector bundle. Although our hypothesis that
the related data are real-analytic might be more restrictive than the ones used in
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the literature, we do not know any similar uniqueness results for the topology of
a vector bundle. It is likely that theorem 1.2 can be improved, and the topology
of the base surface together with the conformal class of metrics on it can also be
identified. We plan to address this problem in a future work.

The proofs of theorems 1.1 and 1.2 build on an elegant idea in [14]. Using Green
kernels for the connection Laplacian, we construct immersions of our vector bun-
dles into some function space, and recover the geometry and topology from their
images. We believe that some technical details of our argument in the setting of
vector bundles might be of independent interest, and the improvements give a more
streamlined proof of the original results in [14]. A few generalizations of our results
are possible. First, theorem 1.1 can be extended to vector bundles over non-compact
complete manifolds with compact boundaries. Second, the conclusions continue to
hold for the Dirichlet-to-Neumann operators associated with Schrodinger opera-
tors, that is connection Laplacians with symmetric real-analytic potentials, see [7].
It is likely that the hypothesis that potentials are real-analytic can be significantly
weakened, but we have made no attempt in pursuing this direction. In [7] the first-
named author also obtains analogous results for the Jacobi operator, and applies
them to the Calderón problem for the harmonic map equation.

1.3. Organization of the paper

The paper is organized in the following way. In § 2 we introduce notation and
recall background material on the connection Laplacian and its Green kernel. Here
we also recall the results that relate the symbol of the Dirichlet-to-Neumann oper-
ator to the geometry on and near the boundary. Section 3 is the main body of the
paper. Here we define the immersions of vector bundles via Green kernels to some
function space, describe its properties, and prove main results. In § 4 we outline
the version of the main argument for vector bundles over surfaces, which gives the
proof of theorem 1.2. In the last section we collect proofs of auxiliary statements.

2. Preliminaries

2.1. Notation

Let (M, g) be a connected compact Riemannian manifold with boundary, and
let E be a vector bundle over M . We suppose that E is equipped with a connection
∇E and a Euclidean structure, that is an inner product 〈·, ·〉E compatible with ∇E .
The latter induces a natural L2-product on the space of smooth sections Γ(E) by
the formula

(u, v)2 =
∫
M

〈ux, vx〉EdVolg(x),

where Volg is the volume measure on M . Below we use the notation Γ(V ) for the
space of smooth sections of a vector bundle V over M . We also have a natural
L2-product on Γ(T ∗M ⊗ E), defined by the formula

(α, β)2 =
∫
M

traceg〈αx(·), βx(·)〉EdVolg(x),
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where traceg is the trace (contraction) with respect to a metric tensor g on M .
Recall that the connection Laplacian ΔE

g is a second order differential operator
on sections of E defined by the formula

ΔE
g = −traceg∇2, (2.1)

where ∇2 : Γ(E) → Γ(⊗2T ∗M ⊗ E) is the natural second derivative determined by
the Levi-Civita connection on M and the connection ∇E on E. Equivalently, it
can be defined as the composition (∇E)∗∇E , where (∇E)∗ is the formally adjoint
operator with respect to the L2-products on Γ(E) and Γ(T ∗M ⊗ E) defined above,
see [5, Section 1]. Note that although the second definition uses the inner product
on E, by relation (2.1) the operator ΔE

g does not depend on such an inner product.
Now we briefly discuss the behaviour of the connection Laplacian when a Rieman-

nian metric or a connection change. First, if g̃ = exp(2ϕ)g is another Riemannian
metric, then a direct computation shows that

ΔE
g̃ s = exp(−2ϕ)(ΔE

g s− (n− 2)∇E
Zs),

where Z = gradϕ is the gradient vector field with respect to a metric g, and n is
the dimension of M . In particular, when n = 2, the operator ΔE

g is conformally
covariant, and a section s ∈ Γ(E) is harmonic or not with respect to g and g̃
simultaneously. Second, consider another connection ∇̃E on E, and denote by Δ̃E

g

the corresponding connection Laplacian. Recall that a vector bundle isomorphism
Φ : E → E is called a gauge equivalence if Φ∗∇̃E = ∇E , that is

∇E
Xs = Φ−1 ◦ ∇̃E

X(Φ ◦ s)
for any section s ∈ Γ(E). In a local frame for E, this relation is equivalent to

ω = γ−1ω̃γ + γ−1dγ,

where ω and ω̃ are the connection matrices of ∇E and ∇̃E respectively, and γ is the
matrix of Φ. A straightforward calculation shows that the connection Laplacians of
gauge equivalent connections are related by the formula

ΔE
g = Φ−1 ◦ Δ̃E

g (Φ ◦ s) (2.2)

for any section s ∈ Γ(E). These properties determine the behaviour of other
quantities closely related to the Laplacian, such as its Green kernel and Dirichlet-
to-Neumann operator. We recall the necessary background material on them
below.

2.2. The Green kernel for the connection Laplacian

Choosing local coordinates on M and a local frame for E, it is straightforward
to see that the equation

ΔEu = w, where w ∈ Γ(E), (2.3)

takes the form of an elliptic system of the second order differential equations, whose
principal symbol σ(x, ξ) ∈ L(TxM, TxM) equals |ξ|2g Id, where ξ ∈ T ∗

xM , x ∈M .
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In particular, this system is strongly elliptic in the sense of Petrowsky, which is the
strongest notion of ellipticity for systems, and by the results in [11, 18, 19] there
exists a Green matrix locally around every point. For a brief overview of various
notions of ellipticity for systems of differential equations and related results we
refer to [20]. In our notation the existence of the Green matrix means that for any
point p ∈M there exists a neighbourhood Up and a smooth matrix-valued function
G(x, y), where x, y ∈ Up, x 
= y, such that∫

M

〈G(x, y),ΔEw(y)〉y,EdVolg(y) = w(x) (2.4)

for any section w ∈ Γ(E) whose support lies in Up. Above we view 〈G(x, y), ·〉y,E

as a linear operator from the fibre Ey to the fibre Ex. For the sequel we need the
existence of a similar object globally on M .

Below by E � E we denote the so-called external tensor product, that is the vec-
tor bundle over M ×M whose fibre over a point (x, y) equals Ex ⊗ Ey. With some
abuse of notation, for any vectors vx ∈ Ex, u1

y, u
2
y ∈ Ey we write 〈vx ⊗ u1

y, u
2
y〉y,E for

the vector 〈u1
y, u

2
y〉Evx ∈ Ex. Thus, if G(x, y) is viewed as an element in Ex ⊗ Ey,

the notation 〈G(x, y), ΔEw(y)〉y,E in relation (2.4) can be understood as an ele-
ment in Ex. We also use the notation D(E) for a subspace of Γ(E) formed by
smooth sections whose supports lie in the interior of M .

Definition 2.1. A smooth section G of the vector bundle E � E defined away
from the diagonal diag(M) = {(x, x) ∈M ×M} is called the Dirichlet Green kernel
if:

(i) the integral of the function y �→ |G(x, y)|E⊗E is finite for all x ∈M ;

(ii) relation (2.4) holds for all w ∈ D(E);

(iii) G(x, y) = 0 for all x ∈M , y ∈ ∂M , x 
= y.

It is straightforward to see that the Dirichlet Green kernel occurs as the kernel
of a linear operator that sends a section w ∈ Γ(E) to the solution of equation
(2.3) with the Dirichlet boundary condition u|∂M = 0. Note that the connection
Laplacian ΔE on sections of E naturally induces the operator ΔE

y on the sections
of E � E that sends vx ⊗ uy to vx ⊗ ΔEuy for any smooth sections v, u ∈ Γ(E). In
this notation the condition (ii) in the definition means that

ΔE
y G(x, ·) = δx

for any x ∈M . For the sequel we note that the combination of the Sobolev embed-
ding together with standard regularity theory shows that the section y �→ G(x, y)
lies in the Sobolev space W 2−k,2(E) for any k > n/2, x ∈M , where n = dimM .

The following statement can be found in [7]; it is a consequence of local existence
results in [11, 18, 19].

Proposition 2.2. Let (M, g, E) be a Euclidean vector bundle over a compact Rie-
mannian manifold with boundary, equipped with a compatible connection ∇E. Then
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there exists a unique Dirichlet Green kernel on E. Besides, it is symmetric in the
sense that

G(y, x) = τx,yG(x, y) for all x, y ∈M,

where τx,y : Ex ⊗ Ey → Ey ⊗ Ex is a natural isomorphism that sends vx ⊗ uy to
uy ⊗ vx.

Now suppose that (M, g, E) is a real-analytic Euclidean vector bundle over a
compact real-analytic Riemannian manifold M with boundary, equipped with a
real-analytic compatible connection ∇E . Then locally the equation

ΔE
y G(x, y) = 0, where y ∈M\{x},

takes the form of a system of differential equations with analytic coefficients,
and by [11, 21] we conclude that the Green kernel is real-analytic in the second
variable y. More generally, we shall often use the fact that a section of E that is
harmonic on an open set is automatically real-analytic on this set.

Let ∇̃E be another connection on a fixed vector bundle E that is gauge equiv-
alent to ∇E , that is there exists a vector bundle isomorphism Φ : E → E such
that Φ∗∇̃E = ∇E . Denote by G̃ the Green kernel corresponding to the connection
Laplacian Δ̃E . Using relation (2.2), it is straightforward to see that G̃ = Φ� ◦G,
where Φ� : E � E → E � E is an isomorphism that equals Φx ⊗ Φy on each fibre
Ex ⊗ Ey, where x, y ∈M . In addition, as expected, when dimension of M equals
two, the Green kernel is invariant under conformal changes of a metric on M .

2.3. The Dirichlet-to-Neumann operator and its symbol

As follows from standard theory [8], see also a discussion in [7], the Dirichlet
problem

ΔEu = 0, u|∂M = s, (2.5)

has a unique solution for any smooth section s of E|∂M . For a given open set
Σ ⊂ ∂M the Dirichlet-to-Neumann operator ΛΣ : D(E|Σ) → D(E|Σ) is defined on
smooth compactly supported in Σ sections by the formula

ΛΣ(s) = ∇E
∂/∂nu,

where u is the solution to Dirichlet problem (2.5), and n is the outward unit normal
vector to ∂M . Note that if Σ = ∂M , and Λ is the corresponding Dirichlet-to-
Neumann operator, then for any Σ ⊂ ∂M the operator ΛΣ is precisely the restriction
of Λ to the space of sections whose supports lie in Σ.

Following [23], it is straightforward to show, see [7], that the Dirichlet-to-
Neumann operator Λ defined above is an elliptic pseudodifferential operator of
first order. In more detail, in local coordinated on ∂M that trivialize E|∂M the
operator Λ takes the form of a pseudodifferential operator whose symbol p(x, ξ),
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where x ∈M , ξ ∈ T ∗
xM , has an asymptotic expansion

p(x, ξ) ∼
∑
j�1

pj(x, ξ),

where pj(x, ξ) is a homogeneous matrix-valued function of degree j in ξ, and j ∈ Z.
The asymptotic expansion above is understood in the sense that for any integer
N � 0 the matrix-valued function p(x, ξ) −∑1

j=−N pj(x, ξ) lies in the class S1−N
1,0 ,

see [22, 24] for details.
Recall that any local coordinates (x1, . . . , xn−1) on Σ can be extended to the so-

called boundary normal coordinates (x1, . . . , xn−1, xn) onM . The latter are defined
by the conditions that the equation xn = 0 describes the boundary ∂M and each
curve t �→ (x1, . . . , xn−1, t) is a unit speed geodesic orthogonal to the boundary.
Similarly, any local frame {sl} for E|∂M can be extended to the so-called boundary
normal frame {s̄l} for E such that

∇E
∂/∂xn s̄l = 0 and s̄l|Σ = sl,

where l = 1, . . . , rankE.
For the sequel we need the following result that gives a more precise information

about the coefficients pj(x, ξ) and their derivatives. Its proof follows the general
strategy used in [17], and can be found in [6]. In a slightly different notation it also
appears in [3].

Proposition 2.3. Let (M, g, E) be a vector bundle over a compact Rieman-
nian manifold with boundary, equipped with a connection ∇E. Suppose that
n = dimM � 3, and let Σ ⊂ ∂M be an open set that trivializes E|∂M . For local
coordinates (x1, . . . , xn−1) on Σ and a local frame {s�} of E over Σ let pj(x, ξ),
where j � 1, be a full symbol of the Dirichlet-to-Neumann operator Λ. Then the
Taylor series of the metric tensor g and the connection matrix ω of ∇E in the
boundary normal coordinates (x1, . . . , xn−1, xn) and the boundary normal frame
{s̄�} at a point x on the boundary are determined by explicit formulae in terms of
the matrix-valued functions pj(x, ξ), where j � 1, and their derivatives at x.

Proposition 2.3 is an important initial ingredient in the proof of our main result,
theorem 1.1. In particular, it says that the symbol of the Dirichlet-to-Neumann
operator determines the metric and connection on the boundary. Moreover, if these
data are real-analytic, then the symbol determines them in a neighbourhood of the
boundary. It is worth noting that although, in general, the connection Laplacian
has a zero order term in a fixed frame, it does not have a natural conformal gauge
invariance property, similar to the one for the conformal Laplacian, see [4, 16]. This
can be seen from the explicit formula for the zero term in boundary normal coordi-
nates and boundary normal frame in [6]. In particular, the phenomenon described
in [4, Theorem 8.4] does not occur for the connection Laplacian, and the statement
of proposition 2.3 is indeed natural.

In dimension two, the formulae in [3, 6] do not allow us to determine the normal
derivatives of the metric tensor. However, the Taylor series of the connection matrix
can still be recovered from the Dirichlet-to-Neumann operator, assuming that the
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metric tensor together with all its derivatives is known. More precisely, the following
version of proposition 2.3 holds, see [6].

Proposition 2.4. Let (M, g, E) be a vector bundle over a compact Riemannian
surface with boundary, equipped with a connection ∇E, and let Σ ⊂ ∂M be an open
set that trivializes E|∂M . For a local coordinate x1 on Σ and a local frame {s�} of
E over Σ let pj(x, ξ), where j � 1, be a full symbol of the Dirichlet-to-Neumann
operator Λ. Then the Taylor series of the connection matrix ω of ∇E in the bound-
ary normal coordinates (x1, x2) and the boundary normal frame {s̄�} at a point x
on the boundary are determined by explicit formulae in terms of the matrix-valued
functions pj(x, ξ), where j � 1, the metric tensor g, and their derivatives at x.

Now let (Mi, Ei, ∇i), where i = 1, 2, be two vector bundles over compact Rie-
mannian manifolds with boundary (Mi, gi), equipped with connections ∇i. Suppose
that these data are gauge equivalent in the following sense: there exists a vector
bundle isomorphism Φ : E1 → E2 that covers an isometry Ψ : (M1, g1) → (M2, g2)
such that Φ∗∇2 = ∇1. Then, using relation (2.2) it is straightforward to conclude
that the corresponding Dirichlet-to-Neumann operators Λ1 and Λ2 intertwine, that
is

φ ◦ Λ1(s) ◦ ψ−1 = Λ2(φ ◦ s ◦ ψ−1)

for any smooth section s of E1|∂M1
, where ψ = Ψ|∂M1

and φ = Φ|∂M1
.

Analysing the formulae for the symbols of Λ1 and Λ2, see [7], one can show that
the converse holds on the boundary.

Proposition 2.5. Let (Mi, gi, Ei, ∇i), where i = 1, 2, be two Euclidean smooth
vector bundles defined over connected compact Riemannian manifolds with
boundary. Suppose that for some open subsets Σi ⊂ ∂Mi there exists a vector
bundle isomorphism φ : E1|Σ1

→ E2|Σ2
that intertwines with the corresponding

Dirichlet-to-Neumann operators ΛΣ1 and ΛΣ2 . Then the isomorphism φ is a gauge
equivalence, φ∗∇2 = ∇1, and covers an isometry ψ : (Σ1, g1) → (Σ2, g2).

The statement above can be viewed as the boundary version of theorem 1.1.
Note that there is no restriction on dimension of M in proposition 2.5. Similar
results continue to hold for the Dirichlet-to-Neumann operator associated with the
connection Laplacian with a symmetric real-analytic potential. We refer to [7] for
precise statements and a related discussion.

3. Immersions by Green kernels

3.1. The construction of immersions

Let E be a Euclidean real-analytic vector bundle over a connected compact real-
analytic manifold M with boundary, equipped with a real-analytic connection ∇E .
In this section we assume that n = dimM � 3, and describe how one can recon-
struct E from the Dirichlet-to-Neumann operator ΛΣ, where Σ ⊂ ∂M is an open
subset. Our argument develops the ideas from [14] to the setting of vector bundles,
and we aim to make the related technical details to be rather explicit.
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Fix a point p ∈ Σ. First, note that we may consider M as a subset of a larger
real-analytic manifold M̃ . More precisely, choosing boundary normal coordinates
(x1, . . . , xn) around p, we may identify a neighbourhood of p in M with the
Euclidean half-ball

B+(0, ρ) = {(x1, . . . , xn) ∈ Bn(0, ρ) : xn � 0},
where Bn(0, ρ) is an open Euclidean ball of radius ρ > 0 in R

n. Then, as the
manifold M̃ one can take the manifold obtained by gluing Bn(0, ρ) to M such
that points in B+(0, ρ) are identified with points in M by means of boundary
normal coordinates. Below by U we denote the open set M̃\M̄ . For the sequel it is
important to note that the set U does not really depend on M . In other words, if
there are two manifolds Mi of the same dimension and two points pi ∈ Σi ⊂ ∂Mi,
where i = 1, 2, then choosing a sufficiently small ρ > 0 we may assume that the
sets M̃1\M̄1 and M̃2\M̄2 coincide.

It is straightforward to see that a real-analytic metric g on M extends to a real-
analytic metric g̃ on M̃ , if ρ is sufficiently small. Similarly, the above construction
shows that a real-analytic vector bundle E over M extends to a real-analytic vector
bundle Ẽ over M̃ such that Ẽ

∣∣∣
U

is trivial. Making ρ > 0 smaller if necessary, we may
also assume that a real-analytic Euclidean structure and a real-analytic connection
∇ on E extend to an inner product and a connection ∇̃ on Ẽ. If the former were
compatible on E, then by unique continuation so are the latter on Ẽ. Below by G̃
we denote the Dirichlet Green kernel on Ẽ.

Denote by E the trivial vector bundle Ẽ
∣∣∣
U

. For a given integer � < 2 − n/2, where

n is the dimension of M , we define the map G : Ẽ →W �,2(E) by setting

Ẽx  vx �−→ 〈vx, G̃(x, ·)〉x,Ẽ ∈W �,2(E), (3.1)

where x ∈ M̃ . The condition on � guarantees that the space W 2−�,2
0 (E) embeds into

the Hölder space C0,α(E) for some α > 0, and hence, the dual space W �−2,2(E)
contains the delta function. Then, by elliptic regularity we conclude that G̃(x, ·)
lies in W �,2(E). In addition, it is straightforward to show that∣∣∣G̃(x1, ·) − G̃(x2, ·)

∣∣∣
W �,2

� C1 dist(x1, x2)α

for some constant C1 > 0, where for simplicity we may assume that the points x1

and x2 ∈ M̃ lie in the same chart. Thus, we conclude that the map G is continuous.
Similarly, we have the following statement.

Lemma 3.1. Let � be an integer such that � < 1 − n/2. Then the map G : Ẽ →
W �,2(E) defined by (3.1) is C1-smooth.

For the sake of completeness we prove lemma 3.1 in § 5. It allows us to study the
map G from a viewpoint of differential geometry. As we shall see below, the map G
is a linear embedding on each fibre Ẽx for x /∈ ∂M̃ , and collapses the fibre to the
origin for x ∈ ∂M̃ . Further, it maps the base manifold M̃ , viewed as the image of
the zero section, to zero in W �,2(E). To avoid these degeneracies we often restrict
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it to the open set Ẽ0 obtained by considering Ẽ on the interior of M̃ and removing
the zero section. The following statement shows that the map G is well-behaved
on Ẽ0.

Lemma 3.2. Let � be an integer such that � < 1 − n/2. Then the map G : Ẽ →
W �,2(E) defined by (3.1) is a linear embedding on each fibre Ẽx, where x /∈ ∂M̃ .
Moreover, it is an injective immersion on the set Ẽ0, obtained by removing the
image of the zero section from Ẽ over the interior of M̃ .

Note that the image of the total space Ẽ under G can be viewed as the cone
whose link is the image of the subset S1Ẽ that is formed by vectors of unit length.
Then the image of G(Ẽ0) is precisely the set obtained by removing the origin from
this cone. By lemmas 3.1 and 3.2 it is straightforward to see that the set G(Ẽ0) is a
C1-smooth submanifold of W �,2(E). The main idea behind the proof of theorem 1.1
is to recover the topology and geometry of Ẽ from this image.

We end this discussion with a lemma that describes another property of the image
of G.

Lemma 3.3. For given two distinct points q1 and q2 in the interior of M̃ let W be
the direct sum G((Ẽ)q1) ⊕ G((Ẽ)q2), viewed as a subspace of W �,2(E). Suppose that
for some point x ∈ M̃ the intersection G((Ẽ)x) ∩W is non-trivial. Then the point
x has to coincide with one of the points q1 or q2.

Proofs of lemmas 3.2 and 3.3 appear in § 5. We continue with a discussion of the
main result, theorem 1.1.

3.2. The main result

Now let Ei be two real-analytic vector bundles over real-analytic manifolds Mi,
where i = 1, 2, and suppose that for some open sets Σi ⊂ ∂Mi there exists a
vector bundle isomorphism φ : E1|Σ1

→ E2|Σ2
that intertwines with the Dirichlet-

to-Neumann operators ΛΣ1 and ΛΣ2 . Suppose that φ covers a diffeomorphism
ψ : Σ1 → Σ2, that is π2 ◦ φ = ψ ◦ π1. For a fixed point p1 ∈ Σ1 we set p2 = ψ(p1),
and choose local coordinates on the Σi’s around these points that are related by ψ.
Note that by proposition 2.3 the metrics gi coincide in such coordinates. Thus, mak-
ing the Σi’s smaller if necessary, we see that the map ψ : Σ1 → Σ2 is an isometry.
Since the metrics are real-analytic, by proposition 2.3 we also conclude that their
extensions g̃i coincide in neighbourhoods of the points pi in M̃i. In other words, the
isometry ψ : Σ1 → Σ2 extends to a real-analytic isometry Ψ : W1 →W2, defined by
identifying boundary normal coordinates, where Wi is a neighbourhood of the point
pi in M̃i. In the sequel, we also identify the sets W1\M̄1 and W2\M̄2, and denote
them by U .

Similarly, choosing orthonormal frames related by φ, we may identify the trivial-
izations of E1|Σ1

and E2|Σ2
around the points p1 and p2 = ψ(p1). They extend to

trivial vector bundles, which we may assume are defined over W1 and W2. Following
the discussion above, we obtain vector bundles Ẽ1 and Ẽ2, defined over M̃1 and M̃2

respectively, and equipped with inner products that are extensions of the original
ones on E1 and E2. Making W1 and W2 smaller, if necessary, we may also assume

https://doi.org/10.1017/prm.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.127


12 R. Gabdurakhmanov and G. Kokarev

that boundary normal frames of Ẽ1 and Ẽ2 are defined on W1 and W2 respectively.
Then, the isomorphism φ extends to the Euclidean isomorphism

Φ : Ẽ1

∣∣∣
W1

→ Ẽ2

∣∣∣
W2

,

defined by identifying the corresponding boundary normal frames. Note that Φ
covers the isometry Ψ : W1 →W2. By proposition 2.3 the real-analytic connection
matrices of ∇1 and ∇2 coincide in such frames, and we conclude that the isomor-
phism Φ is a gauge equivalence, that is Φ∗∇̃2 = ∇̃1. We continue to use the notation
E for the vector bundles Ẽi

∣∣∣
U

.

Below by Ẽ0
i we denote the vector bundles Ẽi with removed zero sections over the

interiors of M̃i , where i = 1, 2. By the hypotheses of theorem 1.1 the dimensions
of the base manifolds Mi coincide; we denote this integer by n. Theorem 1.1 is a
consequence of the following statement.

Theorem 3.4. Under the hypotheses of theorem 1.1, consider the maps Gi : Ẽi →
W �,2(E) defined by (3.1), where i = 1, 2, and � is an integer such that � < 1 − n/2.
Suppose that the vector bundle isomorphism Φ : E → E, described above, intertwines
with the Gi’s, that is

G2 ◦ Φ = Φ ◦ G1 on E . (3.2)

Then the images G2(Ẽ0
2) and Φ ◦ G1(Ẽ0

1) coincide as subsets in W �,2(E), and the
map G−1

2 ◦ Φ ◦ G1 : Ẽ0
1 → Ẽ0

2 extends to a real-analytic vector bundle isomorphism
J : Ẽ1 → Ẽ2 that covers an isometry j : M̃1 → M̃2 such that J∗∇̃2 = ∇̃1.

Now we show how theorem 3.4 implies theorem 1.1.

Proof of theorem 1.1. First, since the vector bundle isomorphism φ : E1|Σ1
→

E2|Σ2
preserves inner products on E1 and E2, then so does its extension Φ : E → E .

This statement follows directly from the definition of Φ as an isomorphism that
identifies boundary normal frames. Now we claim that the conclusion of theorem
3.4 implies theorem 1.1. Indeed, by relation (3.2), we see that the vector bundle
isomorphism J : Ẽ1 → Ẽ2 coincides with Φ on the set Ẽ1

∣∣∣U , and the isometry

j : M̃1 → M̃2 coincides with Ψ on U . Thus, they are genuine extensions of the iso-
morphism φ and the isometry ψ from the boundary, and satisfy the conclusions of
theorem 1.1. Since Φ preserves the inner products, we conclude that the products
〈·, ·〉Ẽ1

and J∗〈·, ·〉Ẽ2
coincide on Ẽ1

∣∣∣U , and hence, by unique continuation coin-

cide everywhere on Ẽ1. Thus, the isomorphism J preserves inner products, and its
restriction to E1 satisfies all conclusions of theorem 1.1.

For a proof of theorem 1.1 we need to prove relation (3.2), that is the vector bun-
dle isomorhism Φ : E → E intertwines with the immersions Gi’s. Since Φ preserves
Euclidean structures, for the latter it is sufficient to show that

G̃2(Ψ(x),Ψ(y)) = Φ�G̃1(x, y) for all (x, y) ∈ U × U.
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Choosing coordinates on W1 and W2 related by Ψ, we may assume that Ψ : W1 →
W2 is the identity. Similarly, choosing local trivializations of the Ẽi

∣∣∣
Wi

� E related

by Φ, we assume that so is Φ. Thus, it remains to show that the Green matrices G̃1

and G̃2, viewed as sections of the trivial bundle E � E , coincide. For classical Green
functions, that is when the rank of E equals one, this statement is well known, see
[14, Lemma 2.1]. It is a consequence of standard regularity theory together with
uniqueness of Dirichlet Green functions. Below we outline a version of this argument
in our setting.

First, since under our assumptions the isomorphism Φ is the identity on E , the
hypothesis in theorem 1.1 means that the Dirichlet-to-Neumann operators Λ1 and
Λ2 restricted to sections supported in W1 ∩ ∂M1 and W2 ∩ ∂M2 respectively, coin-
cide. Pick a point x ∈ U , and for a non-zero vector vx in the fibre Ex consider a
solution s to the Dirichlet problem

ΔE2s = 0, s|∂M2
= 〈vx, G̃1(x, ·)〉x,Ẽ1

,

on M2. We define a continuous section s̃ of Ẽ2 away from x by extending s as
〈vx, G̃1(x, ·)〉x,Ẽ1

on U\{x}. Note that the section 〈vx, G̃1(x, ·)〉x,Ẽ1
solves the

Dirichlet problem

ΔE1s = 0, s|∂M1
= 〈vx, G̃1(x, ·)〉x,Ẽ1

,

and since the Dirichlet-to-Neumann operators coincide, we conclude that so do the
normal derivatives of s and 〈vx, G̃1(x, ·)〉x,Ẽ1

on the boundary W2 ∩ ∂M2. Thus,
the section s̃ is C1-smooth, and the standard application of Green’s formulae shows
that s̃ is weakly harmonic on M̃2\{x}, and hence, is smooth. Since a vector vx ∈ Ex

is arbitrary, and the Euclidean structures agree, this construction yields a smooth
section H(x, y) ∈ (Ẽ2)x ⊗ (Ẽ2)y such that:

• ΔE2
y H(x, y) = 0 for y ∈M2;

• H(x, y) = G̃1(x, y) for y ∈ U , y 
= x;

• H(x, y) = 0 for y ∈ ∂M̃2.

In particular, we see that ΔE2
y H(x, ·) = δx on M̃2, and the standard argument used

to prove uniqueness of the Dirichlet Green kernel shows that H(x, y) coincides
with the Dirichlet Green kernel G̃2(x, y) for all y ∈ M̃2. Thus, the Green matrices
G̃1(x, ·) and G̃2(x, ·) indeed coincide on the set U\{x}, and we are done. �

3.3. Proof of theorem 3.4

We start with outlining the general strategy of a proof. Let B1 ⊂ M̃1 be the
largest connected open set containing the fixed point p1 ∈ Σ1 and such that for any
x ∈ B1 there exists a unique j(x) ∈ M̃2 such that the images of fibres Φ ◦ G1((Ẽ1)x)

https://doi.org/10.1017/prm.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.127


14 R. Gabdurakhmanov and G. Kokarev

and G2((Ẽ2)j(x)) coincide and the operator

Jx = G−1
2 ◦ Φ ◦ G1 : (Ẽ1)x −→ (Ẽ2)j(x) (3.3)

is an isometry with respect to the inner products on the fibres. Note that if the sub-
spaces Φ ◦ G1((Ẽ1)x) and G2((Ẽ2)j(x)) coincide, by lemma 3.2 the map Jx, defined
in (3.3), is automatically an isomorphism of the fibres, and defines a fibre preserving
map J : Ẽ1

∣∣∣
B1

→ Ẽ2.

First, we claim that the set B1 contains the neighbourhood W1 of p1 constructed
above. Indeed, since Φ intertwines with the maps G1 and G2 on E , we have

Φy〈vx, G̃1(x, y)〉x = 〈ΦΨ(x)vΨ(x), G̃2(Ψ(x),Ψ(y))〉x (3.4)

for all x, y ∈ U , and vx ∈ (Ẽ1)x. Choosing a real-analytic non-zero section v on
W1, since both sides in the relation above are real-analytic, we conclude that this
relation continues to hold for all x ∈W1, y ∈ U . Since vx may take arbitrary values,
it is straightforward to see that for any x ∈W1 we may choose Ψ(x) as the point
j(x) in the definition of the set B1. Indeed, relation (3.4) implies that for any
x ∈W1 the operator Jx coincides with Φ : (Ẽ1)x → (Ẽ2)Ψ(x), which is an isometry
by its own definition. By lemma 3.2 it is a unique point that satisfies this condition.
Thus, the set W1 indeed lies in B1.

Our main aim is to show that the set B1 coincides with M̃1. Once this statement
is proved, we shall show that the map J : Ẽ1 → Ẽ2, defined on each fibre by relation
(3.3), is a vector bundle isomorphism that satisfies the conclusions of the theorem.

Suppose the contrary, B1 
= M̃1. Then there exists a point x1 ∈ ∂B1 that lies
in the interior of M̃1, that is x1 /∈ ∂M̃1. Since W1 ⊂ B1, the point x1 lies in the
complement M̃1\W1, and in particular, we see that x1 /∈ Ū .

Step 1. First, we claim that the map J can be extended to the fibre (Ẽ1)x1 over x1.

Lemma 3.5. Let x1 ∈ ∂B1 be a point such that x1 /∈ ∂M̃1. Then there exists a unique
point x2 in the interior of M̃2 such that the images of fibres Φ ◦ G1((Ẽ1)x1) and
G2((Ẽ2)x2) coincide, and the corresponding operator Jx1 is an isometry. Moreover,
for any non-zero vector vx1 ∈ (Ẽ1)x1 there exists a unique non-zero vector wx2 ∈
(Ẽ2)x2 such that

Φ ◦ G1(vx1) = G2(wx2), |vx1 |Ẽ1
= |wx2 |Ẽ2

,

and for any converging sequence vpk
→ vx1 , where pk → x1, we have J(vpk

) → wx2

as k → +∞.

Proof. Let pk ∈ B1 be a sequence of points that converges to the point x1 ∈ ∂B1,
and qk the corresponding sequence of points such that the images of fibres
Φ ◦ G1((Ẽ1)pk

) and G2((Ẽ2)qk
) coincide. Since M̃2 is compact, then choosing a subse-

quence, which we denote by the same symbol qk, we may assume that qk → q0 ∈ M̃2

as k → +∞. For a non-zero vector vx1 ∈ (Ẽ1)x1 pick a sequence vk ∈ (Ẽ1)pk
that
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converges to vx1 , and let wk ∈ (Ẽ2)qk
be the corresponding sequence such that

Φ ◦ G1(vk) = G2(wk) and |vk|Ẽ1
= |wk|Ẽ2

.

Since the sequence wk is bounded, we may assume, again after choosing a sub-
sequence, that wk converges to some vector wq0 ∈ (Ẽ2)q0 as k → +∞. It is
straightforward to see that the norm of wq0 equals the one of vx1 . Now for a proof
of the lemma it remains to show that q0 /∈ ∂M̃2. If the latter holds, then we may
take q0 as x2, and the statement follows directly by continuity of Φ ◦ G1 and G2.
The uniqueness of the point x2 and the vector wx2 is a consequence of lemma 3.2.

Suppose the contrary, q0 ∈ ∂M̃2. Then by continuity we obtain

Φ ◦ G1(vx1) = lim Φ ◦ G1(vk) = limG2(wk) = G2(wq0).

Since the point x1 lies in the interior of M̃1, by lemma 3.2 the left-hand side above
is non-zero, while since q0 ∈ ∂M̃2, the right-hand side vanishes. Thus, we arrive at
a contradiction. �

Step 2. Now we analyse the images Ri of the maps Gi in W �,2(E), where i = 1, 2.
Take a non-zero vector vx1 ∈ (Ẽ1)x1 , and let x2 ∈ M̃2 and wx2 ∈ (Ẽ2)x2 be a point
and a vector respectively that satisfy the conclusions of lemma 3.5. In particular,
the vectors Φ ◦ G1(vx1) and G2(wx2) coincide in W �,2(E), and we denote this value
by u. By lemma 3.2 we see that locally the sets Φ(R1) and R2 are submanifolds
in W �,2(E), whose tangent spaces can be viewed as the images of the differentials
D(Φ ◦ G1) and DG2. Combining this with lemma 3.5, we conclude that the tangent
spaces TuΦ(R1) and TuR2 coincide as subspaces in W �,2(E). Using the inverse
function theorem we may view Φ(R1) and R2 locally near u as graphs of smooth
functions defined on an open subset in

V = TuΦ(R1) = TuR2.

In more detail, let Π be the orthogonal projection onto V in W �,2(E), and consider
the map

Π ◦ G2 : Ẽ2 → V, vx �−→ Π(〈vx, G̃2(x, ·)〉).
By lemma 3.2, its differential is an isomorphism near u, and hence, there exists
a C1-smooth inverse map H2 : O → Ẽ2, defined in the neighbourhood O of Π(u)
in V. Then, it is straightforward to see that near u the image R2 is the graph of
the map

F2 : O → V⊥, υ �−→ G2(H2(υ)) − υ,

where V⊥ is the orthogonal complement of V in W �,2(E). Similarly, one shows that
there exists a C1-smooth map H1 : O → Ẽ1, which we may assume is defined on
the same set O, such that near u the image Φ(R1) is the graph of the map

F1 : O → V⊥, υ �−→ Φ ◦ G1(H1(υ)) − υ.

From this construction we see that the vectors vx1 ∈ (Ẽ1)x1 and wx2 ∈ (Ẽ2)x2 are
precisely the images H1 ◦ Π(u) and H2 ◦ Π(u), and moreover, the isomorphism J
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has the form H2 ◦H−1
1 on the open subset

Ω1 = H1(O) ∩ π̃−1
1 (B1) ⊂ Ẽ1, (3.5)

where π̃1 : Ẽ1 → M̃1 is the vector bundle projection.
For the sequel we need the following lemma.

Lemma 3.6. The maps Hi : O → Ẽi constructed above, where i = 1, 2, are real-
analytic in a neighbourhood of Π(u) in V. In particular, there exists a neighbourhood
of vx1 in Ẽ1 such that the map H2 ◦H−1

1 is real-analytic on it.

Proof. Choosing an orthonormal basis (ϕi) in V, where i = 1, . . . , m, we may iden-
tify the vector space V with R

m. First, we claim that the map Π ◦ G2 : Ẽ2 → V � R
m

is real-analytic in a neighbourhood of wx2 , that is the coordinate functions, given
by products

(Π ◦ G2, ϕi)�,2 = (G2, ϕi)�,2, where i = 1, . . . ,m,

and (·, ·)�,2 stands for the scalar product in W �,2(E), are real-analytic. By definition
of G2 for the latter it is sufficient to show that the sections

x �−→ (G̃2(x, ·), ϕi)�,2 ∈ Ex where i = 1, . . . ,m,

are real-analytic in a neighbourhood of x2. Let fi ∈W−�,2
0 (E) be a vector dual to

ϕi, that is such that ϕi(s) = (s, fi)−�,2 for any s ∈W−�,2
0 (E). Since the canonical

map f �→ (·, f)−�,2 preserves scalar products, we conclude that

(G̃2(x, ·), ϕi)�,2 =
∫
U

〈G̃2(x, y), fi(y)〉y,Ẽ2
dVolg(y).

Recall that the point x1 does not lie in the closure Ū ⊂ M̃2. Then, by properties
of the Green kernel, it is straightforward to see that the integral on the right-
hand side above defines a harmonic section in any neighbourhood of x1 that is
disjoint with U . As was discussed in § 2, any harmonic section is real-analytic
under our hypotheses, and we conclude that so is the integral above. Thus, the
coordinate functions (G2, ϕi)�,2 are real-analytic in a neighbourhood of x1 for all
i = 1, . . . , m. Further, we conclude that the map H2, as the inverse map to Π ◦ G2,
is also real-analytic in a neighbourhood of Π(u).

A similar argument shows that the maps Π ◦ Φ ◦ G1 and H1 are real-analytic as
well. Hence, the map H2 ◦H−1

1 is real-analytic as the composition of real-analytic
maps. �

Step 3. Now we claim that the images of Φ(R1) and R2 coincide around the
point u. This is the consequence of the following lemma.

Lemma 3.7. The maps Fi : O → V⊥ constructed above, where i = 1, 2, coincide in
a neighbourhood of Π(u) in V.
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Proof. Fix an orthonormal basis (ϕj) in V⊥, where j = 1, 2, . . . , ∞. For a proof
of the lemma it is sufficient to show that the coordinate functions (F1, ϕj)�,2 and
(F2, ϕj)�,2 coincide for all j = 1, 2, . . . , ∞, where (·, ·)�,2 is the scalar product in
W �,2(E). Note that

(F2, ϕj)�,2(υ) = (G2, ϕj)�,2 ◦H2(υ) − (υ, ϕj)�,2 (3.6)

for any υ ∈ O. The argument used in the proof of lemma 3.6 shows that the function
(G2, ϕj)�,2 is real-analytic in some neighbourhood of vx1 , and by lemma 3.6 we also
know that the map H2 is real-analytic in a neighbourhood of Π(u). Since the second
term on the right-hand side of (3.6) is linear in υ, we conclude that the function
(F2, ϕj)�,2 is real-analytic in a neighbourhood of Π(u), which we may also denote
by O. This statement holds for all values j = 1, 2, . . . , ∞, with the same set O.

Similarly, one shows that all functions

(F1, ϕj)�,2(υ) = (Φ ◦ G1, ϕj)�,2 ◦H1(υ) − (υ, ϕj)�,2 (3.7)

are also real-analytic on the same set O. Without loss of generality, we may assume
that the open set O is connected. Now by the choice of the point x1, we know that
the maps Φ ◦ G1 and G2 ◦ J coincide on an open subset Ω1 ⊂ Ẽ1, defined in (3.5),
whose closure contains vx1 . Recall that the map J coincides with H2 ◦H−1

1 on Ω1,
and hence, the maps Φ ◦ G1 ◦H1 and G2 ◦H2 coincide on H−1

1 (Ω1) ⊂ O. Combining
the latter with relations (3.6) and (3.7), we conclude that the real-analytic functions
(F1, ϕj)�,2 and (F2, ϕj)�,2 coincide on an open subset H−1

1 (Ω1) ⊂ O, and hence, by
unique continuation coincide on O for all j = 1, 2, . . . , ∞. Thus, we are done. �

Due to conical structure of the images Φ(R1) and R2, from the above we conclude
that there are conical neighbourhoods of u, that is neighbourhoods invariant under
multiplication by t > 0, that coincide. In fact, as the following lemma shows, even
a stronger statement holds.

Lemma 3.8. There is a neighbourhood O1 of the point x1 ∈ M̃1 such that for any x ∈
O1 there exists z ∈ M̃2 such that the images of fibres Φ ◦ G1((Ẽ1)x) and G2((Ẽ2)z)
coincide.

Proof. Choose a neighbourhood O1 of x1 ∈ M̃1 such that O1 ⊂ π̃1 ◦H1(O), where
π̃1 : Ẽ1 → M̃1 is the vector bundle projection. We intend to show that for any
x ∈ O1 there exists z ∈ M̃2 such that the image Φ ◦ G1((Ẽ1)x) lies in G2((Ẽ2)z).
Since these images are vector spaces of the same dimension, the statement of the
lemma follows immediately.

First, for a given point x ∈ O1 and a vector vx ∈ (Ẽ1)x, the considerations above
show that the image Φ ◦ G1(vx) lies in the set G2(CH2(O)), where CH2(O) is a
conical open set,

CH2(O) = {tw ∈ Ẽ2 : t ∈ R, t > 0, and w ∈ H2(O)}.

Thus, there exists z ∈ M̃2 such that Φ ◦ G1(vx) lies in G2((Ẽ2)z). We claim that for
any wx ∈ (Ẽ1)x its image Φ ◦ G1(wx) lies in the same subspace G2((Ẽ2)z).
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Suppose the contrary, that is there exists a non-zero vector wx ∈ (Ẽ1)x such that
its image Φ ◦ G1(wx) lies in G2((Ẽ2)y), where z 
= y. Then, we see that

Φ ◦ G1(wx − vx) ∈ G2((Ẽ2)z) ⊕ G2((Ẽ2)y).

Since the vectors vx and wx are different, arguing as above, we may find another
point q ∈ M̃2 such that Φ ◦ G1(wx − vx) lies in G2((Ẽ2)q). Now by lemma 3.3 we
conclude that the point q coincides with either z or y, and in each case it is straight-
forward to arrive at a contradiction. For example, if q = z, we immediately conclude
that the vector

Φ ◦ G1(wx) = Φ ◦ G1(wx − vx) + Φ ◦ G1(vx)

lies in the image G2((Ẽ2)z), and by lemma 3.2, the points z and y coincide. �

The last lemma shows that the operator

Jx = G−1
2 ◦ Φ ◦ G1 : (Ẽ1)x −→ (Ẽ2)z

is defined for all x in a neighbourhood O1 of the point x1, and by the discussion
in Step 2, has to coincide with the map H2 ◦H−1

1 in a neighbourhood H1(O) ∩
π̃−1

1 (O1) of a given point vx1 ∈ (Ẽ1)x1 . Without loss of generality we may assume
that the last set is connected. Since the map H2 ◦H−1

1 is real-analytic, and is an
isometry on the open subset

Ω1 ∩H1(O) ∩ π̃−1
1 (O1),

where Ω1 is given by (3.5), by unique continuation we conclude that it is an isometry
on H1(O) ∩ π̃−1

1 (O1). Performing this argument for all points vx1 from the unit
sphere in the fibre (Ẽ1)x1 , we conclude that the operator Jx is an isometry for
all x in a neighbourhood of x1. This immediately yields a contradiction with the
assumption B1 
= M̃1, since the point x1 ∈ M̃1 has been chosen on the boundary
∂B1. Thus, we conclude that the set B1 coincides with the whole manifold M̃1.

Step 4. Now we collect final conclusions. First, relation (3.3) defines the fibre
preserving map J : Ẽ1 → Ẽ2. By the argument in Step 2 we see that locally it can
be written in the form H2 ◦H−1

1 , and hence, is smooth, and by lemma 3.6 is real-
analytic. Since by definition it is an isomorphism on each fibre, we conclude that it
is a real-analytic vector bundle isomorphism. In particular, it covers a real analytic
map j : M̃1 → M̃2. Since it is an isometry on each fibre, it is a Euclidean vector
bundle isomorphism.

Note that the isomorphism J coincides with the isomorphism Φ on fibres over
W1 ⊂ M̃1. Since the latter is a gauge equivalence, the connections J∗∇̃2 and ∇̃1

coincide on W1, and since they are real-analytic and M̃1 is connected, they coin-
cide on M̃1. Similarly, the map j : M̃1 → M̃2 coincides with the isometry Ψ on W1,
that is the real-analytic metrics j∗g̃2 and g̃1 coincide on W1, and hence, they coin-
cide everywhere on M̃1. Thus, the vector bundle isomorphism J is indeed a gauge
equivalence that covers an isometry. �
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4. Vector bundles over surfaces

4.1. Proof of theorem 1.2

First, note that we may choose a real-analytic metric g ∈ c. Indeed, viewing M as
a domain in a closed surface, by the uniformization theorem, it is straightforward to
see that there is a constant Gauss curvature metric g ∈ c. In isothermal coordinates
such a metric is real-analytic, and hence, is real-analytic with respect to the real-
analytic atlas determined by c. Throughout the rest of the section we always use
this metric on M ; first, to define the Dirichlet-to-Neumann operators, and second,
to describe the immersions by Green kernels. The construction below follows closely
the lines in § 3, but uses proposition 2.4 instead of proposition 2.3.

Fix a point p ∈ Σ ⊂ ∂M . We may view the surface M as a subset of the larger
surface M̃ , obtained by gluing the Euclidean disc D(0, ρ) to M such that the points
in the half-disc are identified with the points in M by means of boundary normal
coordinates centred at p. Since these coordinates, constructed using our metric g,
lie in the fixed real-analytic atlas, we conclude that this construction yields the real-
analytic structure on M̃ , extending the one on M . Making ρ smaller, if necessary,
we may assume that the metric g extends to a real-analytic metric g̃ on M̃ . Below
by W we denote the neighbourhood of p in M̃ that corresponds to the disc D(0, ρ).

Let E1 and E2 be two real-analytic vector bundles over M , and suppose that for
a given open set Σ ⊂ ∂M there exists a vector bundle isomorphism

φ : E1|Σ → E2|Σ
that covers the identity map of Σ and intertwines with the Dirichlet-to-Neumann
operators Λ1,Σ and Λ2,Σ. Making W smaller, if necessary, we can choose orthonor-
mal frames defined over W ∩ Σ that are related by φ. They identify trivializations
of E1|Σ and E2|Σ, and extending the latter as trivial vector bundles over W , we
obtain vector bundles Ẽ1 and Ẽ2 over M̃ . Further, identifying boundary normal
frames of Ẽ1 and Ẽ2, we extend φ to a Euclidean isomorphism

Φ : E1|W → E2|W . (4.1)

By proposition 2.4 the real-analytic connection matrices of ∇1 and ∇2 coincide in
such frames, and we conclude that Φ is a gauge equivalence.

As in the proof of theorem 1.1, by U we denote the open set M̃\M̄ , and by E
the trivial vector bundle over U , which coincides with both restrictions of Ẽ1 and
Ẽ2 to U . We use the same notation Ẽ0

i for the vector bundle Ẽi with the removed
zero section over the interior of M̃ . Let G̃i be the Dirichlet Green kernel for the
connection Laplacian on Ẽi with respect to the metric g̃ on M̃ . For each i = 1, 2
we define the map Gi : Ẽi →W−1,2(E) by setting

Ẽx  vx �−→ 〈vx, G̃i(x, ·)〉x,Ẽ ∈W−1,2(E), (4.2)

where x ∈ M̃ . It satisfies the conclusions in lemmas 3.1-3.3.
The repetition of the argument in § 3 shows that theorem 1.2 is a consequence

of the following statement.
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Theorem 4.1. Under the hypotheses of theorem 1.2, consider the maps Gi :
Ẽi →W−1,2(E) defined by (4.2), where i = 1, 2. Suppose that the vector bundle
isomorphism Φ : E → E, described above, intertwines with the Gi’s, that is

G2 ◦ Φ = Φ ◦ G1 on E .

Then the images G2(Ẽ0
2) and Φ ◦ G1(Ẽ0

1) coincide as subsets in W−1,2(E), and the
map G−1

2 ◦ Φ ◦ G1 : Ẽ0
1 → Ẽ0

2 extends to a real-analytic vector bundle isomorphism
J : Ẽ1 → Ẽ2 that covers the identity map of M and such that J∗∇̃2 = ∇̃1.

Assuming that the construction described above is the partial case of the setup in
§ 3, such that the extended isomorphism Φ in (4.1) covers the identity map, theorem
4.1 can actually be derived from theorem 3.4. More precisely, the only statement
that needs to be checked is that the isomorphism J in theorem 3.4 covers the
identity map of M . The latter is a consequence of the unique continuation property
of real-analytic maps, since J coincides with Φ over W and the latter covers the
identity map.

However, under the hypotheses of theorem 1.2, and consequently, of theorem 4.1,
the original argument in § 3 can be simplified, and for reader’s convenience we
prefer to outline this below, highlighting the differences.

4.2. Outline of the proof of Theorem 4.1

Let B ⊂ M̃ be the largest connected open set containing the fixed point p ∈ Σ
and such that for any x ∈ B the images of the fibres Φ ◦ G1((Ẽ1)x) and G2((Ẽ2)x)
coincide. Then, by lemma 3.2 the composition

Jx = G−1
2 ◦ Φ ◦ G1 : (Ẽ1)x −→ (Ẽ2)x (4.3)

is an isomorphism of the fibres, and defines a fibre preserving map J : Ẽ1

∣∣∣
B
→ Ẽ2.

Repeating the argument in § 3, we see that W ⊂ B. The aim is to show that B
coincides with the interior of M̃ . Note that unlike in the proof of theorem 3.4 we do
not ask Jx to be an isometry on the fibres. This is related to the fact that Step 1 of
the proof is trivial in this case, since we are not trying to determine the topology
of M .

Suppose the contrary, B 
= M̃ , and pick a point x̄ ∈ ∂B that lies in the interior of
M . By continuity of Φ ◦ G1 and G2, together with lemma 3.2, we conclude that the
map J extends to x̄. Then there exist non-zero vectors vx̄ ∈ (Ẽ1)x̄ and wx̄ ∈ (Ẽ2)x̄

such that the images Φ ◦ G1(vx̄) and G2(wx̄) coincide. Denoting this vector by u,
we can repeat the argument in the proof of theorem 3.4, see Step 2 and lemma 3.7
in Step 3, to conclude that the images of Φ ◦ G1 and G2 coincide around u. Then,
we have the following version of lemma 3.8.

Lemma 4.2. There is a connected neighbourhood O of the point x̄ ∈ M̃ such that
for any x ∈ O the images of fibres Φ ◦ G1((Ẽ1)x) and G2((Ẽ2)x) coincide.

Proof. Following the notation and the line of argument in § 3, we choose a
neighbourhood O ⊂ π̃1 ◦H1(O) of x̄ ∈ M̃ . For a given point x ∈ O and a vector
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vx ∈ H1(O) denote by wz the vector H2 ◦H−1
1 (vx). It satisfies the relation

Φ ◦ G1(vx) = G2(wz),

and we claim that the point z has to coincide with x. Indeed, this follows from the
fact that the map H2 ◦H−1

1 coincides with J on the open set O ∩ Ω1, where Ω1 is
defined by relation (3.5), and in our setup J covers the identity map on the base,
that is

π̃2 ◦H2 ◦H−1
1 = π̃1 on O ∩ Ω1. (4.4)

By lemma 3.6 the map H2 ◦H−1
1 is real-analytic, and so are the vector bundle

projections π̃1 and π̃2. Thus, by unique continuation we conclude that relation
(4.4) holds on O, and hence,

z = π̃2(wz) = π̃1(vx) = x.

Now by linearity, it is straightforward to see that the image of the fibre Φ ◦
G1((Ẽ1)x) lies in G2((Ẽ2)x). Since these images are vector subspaces of the same
dimension, we are done. �

The last lemma yields a contradiction, and we conclude that B = M̃ . Thus, rela-
tion (4.3) defines the fibre preserving map J : Ẽ1 → Ẽ2, which covers the identity
map of M . Other remaining properties of J are obtained by repeating the argument
at the end of § 3.

5. Proofs of auxiliary results

5.1. Proof of lemma 3.1

Since the map G : Ẽ →W �,2(E) is linear on each fibre, for a proof of the lemma it
is sufficient to show that the map that sends a point x ∈ M̃ to the function G̃(x, ·),
viewed as an element in the Sobolev space W �,2, is smooth. Below we assume that
x ranges in a chart on M̃ where the vector bundle Ẽ is trivial. First, we claim that
for any section ϕ ∈W−�,2

0 (E) the section

ψ̃(x) =
∫

M̃

〈G̃(x, y), ϕ̃(y)〉ydVol(y),

is differentiable, where ϕ̃ is an extension of ϕ by zero, and for any h ∈ R
n the linear

functional

ϕ �−→
∑

i

hi
∂

∂xi
ψ̃(x) =

∑
i

hi
∂

∂xi

∫
M̃

〈G̃(x, y), ϕ̃(y)〉ydVol(y) (5.1)

defines an element in W �,2(E). Indeed, by standard theory the section ψ̃ can be
viewed as the solution to the Dirichlet problem

ΔẼψ̃ = ϕ̃, ψ̃
∣∣∣
∂M̃

= 0,

in the Sobolev space W−�+2,2
0 , and since � < 1 − n/2, it lies in the Holder space

C1,α for some α > 0. To show that the functional defined by (5.1) lies in W �,2(E),

https://doi.org/10.1017/prm.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.127


22 R. Gabdurakhmanov and G. Kokarev

it is sufficient to show that∣∣∣∣∣
∑

i

hi
∂

∂xi
ψ̃(x)

∣∣∣∣∣ � C |h| |ϕ|−�,2

for some constant C > 0, where | · |−�,2 stands for the Sobolev norm. The latter

is a direct consequence of the inequality
∣∣∣ψ̃∣∣∣

−�+2,2
� C ′ |ϕ̃|−�,2, which follows from

standard theory, together with the Sobolev embedding theorem. Thus, we obtain
the linear operator

Lx : R
n  h �−→

∑
i

hi
∂

∂xi
G̃(x, ·) ∈W �,2(E),

and claim that it is the differential of the map x �→ G̃(x, ·). In other words, we
claim that for any ε > 0 the inequality∣∣∣G̃(x+ h, ·) − G̃(x, ·) − Lx(h)

∣∣∣
�,2

� ε |h|

holds, for any h ∈ R
n such that |h| < δ for an appropriate δ > 0. In the notation

above, for the latter it is sufficient to show that∣∣∣∣∣ψ̃(x+ h) − ψ̃(x) −
∑

i

hi
∂

∂xi
ψ̃(x)

∣∣∣∣∣ � C |h|1+α |ϕ|−�,2 (5.2)

for some positive constants C and α, and arbitrary h ∈ R
n. Recall the so-called

Hadamard formula for C1-smooth functions:

ψ̃(x+ h) − ψ̃(x) =
∑

i

γi(x)hi, where γi(x) =

1∫
0

∂ψ̃

∂xi
(x+ th)dt,

and we use a trivialization of Ẽ to view sections around x as vector functions. Using
this relation, we obtain
∣∣∣∣∣ψ̃(x+ h) − ψ̃(x) −

∑
i

hi
∂

∂xi
ψ̃(x)

∣∣∣∣∣ =

∣∣∣∣∣
∑

i

(γi(x) − ∂

∂xi
ψ̃(x))hi

∣∣∣∣∣
� |h|

(∫ 1

0

∣∣∣Dψ̃(x+ th) −Dψ̃(x))
∣∣∣2 dt

)1/2

�
∣∣∣ψ̃∣∣∣

C1,α
|h|1+α � C′′ ∣∣∣ψ̃∣∣∣−�+2,2

|h|1+α

� C′C′′ |ϕ̃|−�,2 |h|1+α � C |ϕ|−�,2 |h|1+α ,

where in the second inequality we estimate the integral via the Holder norm and
|h|α, and in the third we use the Sobolev embedding theorem. Thus, relation (5.2) is
demonstrated, and we conclude that the map x �→ G̃(x, ·) is differentiable. Finally,

https://doi.org/10.1017/prm.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.127


On Calderon’s problem for the connection Laplacian 23

for a proof that it is smooth, it remains to show that the map x �→ Lx is continuous.
The latter is a consequence of the inequality∣∣∣∣∣

∑
i

(
∂

∂xi
ψ̃(x1) − ∂

∂xi
ψ̃(x2))hi

∣∣∣∣∣ � C |h| |x1 − x2|α |ϕ|−�,2

for some positive constants C and α, which can be proved in a fashion similar to
the one above. Thus, we are done. �

5.2. Proof of lemma 3.2

First, we show that the map G is a linear embedding on each fibre Ẽx. For
otherwise, there exists a point x in the interior of M̃ and a non-zero vector vx ∈ Ẽx

such that the product 〈vx, G̃(x, ·)〉x equals zero in W �,2(E). The latter in particular
implies that

〈vx, G̃(x, y)〉x = 0 for all y ∈ U\{x}. (5.3)

Since the left-hand side above is real-analytic, we conclude that relation (5.3) con-
tinues to hold on M̃\{x}. Now let s ∈ D(Ẽ) be a compactly supported section such
that s(x) = vx. Then, we obtain

0 =
∫

M̃

〈〈vx, G̃(x, y)〉x,ΔẼs(y)〉ydVol(y) = 〈vx,

∫
M̃

〈G̃(x, y),ΔẼs(y)〉ydVol(y)〉x

= 〈vx, vx〉,

where we changed the order of operations in independent variables x and y in the
second relation, and used the definition of the Dirichlet Green kernel in the third.
Thus, we conclude that the vector vx has to vanish, and the kernel of a linear
operator given by (3.1) is trivial, that is the map G is indeed a linear embedding
on each fibre.

A similar argument shows that the map G is injective everywhere on Ẽ0. Indeed,
suppose that there exist two points x1 and x2 in the interior of M̃ and non-zero vec-
tors vx1 and vx2 in the fibres over them such that 〈vx1 , G̃(x1, ·)〉 and 〈vx2 , G̃(x2, ·)〉
coincide in W �,2(E). Then, it is straightforward to see that

〈vx1 , G̃(x1, y)〉x = 〈vx2 , G̃(x2, y)〉x for all y ∈ U\{x1, x2}. (5.4)

As above, by unique continuation we may assume that relation (5.4) holds for all
y ∈ M̃\{x1, x2}. In addition, since the map G is injective on fibres, we may assume
that x1 
= x2. Let s ∈ D(Ẽ) be a compactly supported section such that s(x1) = vx1

and s(x2) = 0. Then, we obtain

〈vx1 , vx1〉 = 〈vx1 ,

∫
M̃

〈G̃(x1, y),ΔẼs(y)〉ydVol(y)〉x

=
∫

M̃

〈〈vx1 , G̃(x1, y)〉x,ΔẼs(y)〉ydVol(y)
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=
∫

M̃

〈〈vx2 , G̃(x2, y)〉x,ΔẼs(y)〉ydVol(y)

= 〈vx2 ,

∫
M̃

〈G̃(x2, y),ΔẼs(y)〉ydVol(y)〉x

= 〈vx2 , s(x2)〉 = 〈vx2 , 0〉 = 0.

Thus, the vector vx1 vanishes, and we arrive at a contradiction.
Finally, to show that the map G is an immersion we analyse its differential

Dvx
: Tvx

Ẽ →W �,2(E). First, note that a connection on the vector bundle Ẽ defines
the decomposition of the tangent space Tvx

Ẽ as the direct sum Hvx
⊕ Ẽx, where

Hvx
is the so-called horizontal subspace, see [9]. Since the differential of the pro-

jection π̃ : Ẽ → M̃ establishes an isomorphism Dvx
π̃ : Hvx

→ TxM̃ , we may view
tangent vectors from Tvx

Ẽ as pairs (X, ξ), where X ∈ TxM , and ξ ∈ Ẽx. With
these identifications, it is straightforward to show that

Dvx
G(X, ξ) = 〈vx,∇XG̃(x, ·)〉x,Ẽ + 〈ξ, G̃(x, ·)〉x,Ẽ , (5.5)

where by the covariant derivative ∇XG̃(x, ·) we mean the derivative with respect to
the variable x on Ẽ � Ẽ, that is given by ∇X(ux ⊗ uy) = ∇Ẽ

Xux ⊗ uy. Now choosing
appropriate test-sections in the fashion similar to the one above, it is straightforward
to show that the differential Dvx

G is injective. In more detail, assume that the right-
hand side of relation (5.5) equals zero for some X ∈ TxM and ξ ∈ Ẽx. Then, by
unique continuation we may assume that

〈vx,∇XG̃(x, y)〉x,Ẽ + 〈ξ, G̃(x, y)〉x,Ẽ = 0 for all y ∈ M̃\{x}. (5.6)

Now choosing a compactly supported section s ∈ D(Ẽ) such that s(x) = ξ and
∇Ẽ

Xs
∣∣∣
x

= 0, we obtain

0 =
∫

M̃

〈〈vx,∇XG̃(x, y)〉x,ΔẼs(y)〉ydVol(y) +
∫

M̃

〈〈ξ, G̃(x, y)〉x,ΔẼs(y)〉ydVol(y)

= 〈vx,∇X

∫
M̃

〈G̃(x, y),ΔẼs(y)〉ydVol(y)〉x + 〈ξ,
∫

M̃

〈G̃(x, y),ΔẼs(y)〉ydVol(y)〉x

= 〈vx,∇Ẽ
Xs〉 + 〈ξ, ξ〉 = 0 + 〈ξ, ξ〉.

Thus, the vector ξ ∈ Ẽx vanishes, and by relation (5.6) we conclude that the term
〈vx, ∇XG̃(x, ·)〉x equals zero. Now choosing a test-section s ∈ D(Ẽ) such that
∇Xs|x = vx, it is straightforward to see that the vector vx equals zero as well.
Thus, the differential Dvx

G is indeed injective, and we are done. �

5.3. Proof of lemma 3.3

Suppose the contrary, the point x does not coincide neither with q1 nor with q2.
Then there exist non-zero vectors vx ∈ Ẽx, wq1 ∈ Ẽq1 , and wq2 ∈ Ẽq2 such that

〈vx, G̃(x, y)〉x,Ẽ = 〈wq1 , G̃(q1, y)〉q1,Ẽ + 〈wq2 , G̃(q2, y)〉q2,Ẽ (5.7)
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for any y ∈ U . Since both parts of this identity are real-analytic functions of y, we
conclude that it continues to hold for all y in the complement of the points x, q1,
and q2 in M̃ . Since x does not coincide neither with q1 nor with q2, there exists a
smooth section s ∈ D(Ẽ) whose support does not contain q1 and q2, and such that
s(x) = vx. Then, by definition of the Dirichlet Green kernel we obtain

〈vx, vx〉 = 〈vx,

∫
M̃

〈G̃(x, y),ΔẼs(y)〉ydVol(y)〉x

=
∫

M̃

〈〈vx, G̃(x, y)〉x,ΔẼs(y)〉ydVol(y)

=
∫

M̃

〈〈wq1 , G̃(q1, y)〉x,ΔẼs(y)〉ydVol(y)

+
∫

M̃

〈〈wq2 , G̃(q2, y)〉x,ΔẼs(y)〉ydVol(y)

= 〈wq1 ,

∫
M̃

〈G̃(q1, y),ΔẼs(y)〉ydVol(y)〉x

+
∫

M̃

〈wq2 , 〈G̃(q2, y),ΔẼs(y)〉ydVol(y)〉x

= 〈wq1 , s(q1)〉 + 〈wq2 , s(q2)〉 = 0,

where we used the relation s(x) = vx in the first equality, identity (5.7) in the third,
and the fact that the section s is chosen so that it vanishes at q1 and q2 in the last.
Thus, we conclude that vx equals zero and arrive at a contradiction. �
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