
Canad. Math. Bull.Vol. 34 (1), 1991 pp. 74-82 

SMOOTH NORMS IN ORLICZ SPACES 

R. P. MALEEV AND S. L. TROYANSKI 

ABSTRACT. Equivalent norms with best order of Frechet and uniformly 
Frechet differentiability in Orlicz spaces are constructed. Classes of Orlicz 
which admit infinitely many times Frechet differentiable equivalent norm are 
found. 

1. Introduction. There are few examples of spaces for which the best order of 
Frechet differentiability of the usual or of some equivalent norm is known. Results in 
this field were obtained for the spaces lp,Lp,co in [BF], [S]. Our aim is to investigate 
this problem for general Orlicz spaces as well as for the most common Orlicz spaces: 
£M, LM when M satisfies the À2 -condition at 0, at oo respectively and the subspace of lM 
generated from the unit vector basis and the respective function space when M does not 
satisfy this condition. 

The results contained in this paper were exposed in talks given by the second named 
author at the International Conference on Geometry of Banach Spaces and Related 
Topics, Mons 1987, Belgium and at the CMS Annual Seminar on Banach Spaces and 
Geometry of Convex Bodies, Banff 1988, Canada. 

2. Preliminaries. We recall at first some definitions and results related to differ­
entiability of functions on Banach spaces, to Orlicz spaces and give some preliminary 
results. 

In the next X, Y are Banach spaces, N the naturals, R the reals. Everywhere differen­
tiability is understood as Frechet differentiability. 

We denote ff(X, Y) the space of all continuous symmetric y-linear forms T: X —> Y 
with the norm 

||r|| = sup{||r(*i,*2,...,*/)l|; INI = M = i,2,... j } . 
It is well known that (see e.g. [SS], p. 10) this norm is equivalent to the norm 

l l r l ^ sup ||r(jc,jc,...,jc)|| = sup Hn^)!!. 
11*11=1 11*11=1 

DEFINITION. The function/: X —•> Y is said to be k-times differentiable at x G X if 
there exist T{ e BÏ{X, Y),\<j<K such that 

(1) fix + ty) = fix) + Y, fW>) + ax(\ t\
k) 
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uniformly on y from the unit sphere S(X) of X. For an open V C X, f G F*(V, Y) means 
/ is &-times differentiable at every point of V. If (1) is fulfilled uniformly on x over a set 
W C V we shall say that / is &-times uniformly differentiable over W and shall write 
/ G UF*(W, Y). j\T{ is calledy-th derivative off at JC and is denoted D>f(x\ •) o r /P . If 
Y = R the corresponding classes are denoted Fk{V)x, UFk(W). 

DEFINITION. We shall say that X is F*-smooth if the norm in X is a function from 
Fk(X\ { 0} ) and UFk-smooth if this norm belongs to UF*{S(X)). The norm is said to be 
F00-smooth {UF°°-smooth) if it is F^-smooth (£//<*-smooth) for any k G N. 

We recall that an even convex continuous function M, nondecreasing in [0, oo) is 
called an Orlicz function if M(0) = 0, M(oo) = oo. Let (S,X,/x) be a measure space. 
Consider the space of all classes equivalent /x -measurable functions x on S with M(xj p ) 
< oo for some p > 0, where 

M « = jfM«s))J/x(s). 

This space can be normed in different modes (see e.g. [KR], p. 37). We shall use the so 
called Luxemburg's norm, introduced by the formula 

||*|| =inf{A > 0;M(x/X)< 1}. 

The space we obtain is a Banach space denoted LM(S, X, /x) and called the Orlicz space 
generated by M. The subspace of LM(S, Z? / I ) consisting of all JC G LM(S, £> /i) for which 
M(JC/ p) < oo for every p > 0, is denoted #M(S, 2, /x). 

Usually three types of Orlicz spaces are considered with respect to the measure space 
(S,Z,/i): 

(A) p,(S) = oo, /i is purely atomic, 0 < infa /i(aa) < supa p,{aa) < oo, for the 
atoms { aa } ; 

(B) p,(S) < oo, S is free of atoms; 
(C) /x(S) = oo, S contains a set of positive measure free of atoms. 
The most common examples of such Orlicz spaces are the sequence spaces /ZA/, £M for 

type (A) and the Orlicz function spaces HM(0, 1),LM(0, 1) and HM(0, OO),LM(0, oo) for 
types (B) and (C) respectively. Essential for £^ ,LM(0, 1) and LM(0, OO) is the behaviour 
of M near 0, oo and 0 and oo respectively. More precisely if two Orlicz functions M and 
Af are equivalent (M ~ N) at 0 (oo, 0 and oo), i.e., 

c~lM(c~lt) < N(t) < cM(cf), t G [0,1] (t G [1, oo), t G [0, oo)) 

for some positive constants c, then lN (LN(0,1), LN(0, oo)) is isomorphic to £M (LM(0, 1), 
LM(0, oo)). This allows to introduce equivalent norms in lM, LM(0, 1) and LM(0, oo) 
through Orlicz functions, equivalent to M at 0, at oo or at 0 and oo respectively. 

To every Orlicz function M the following numbers are associated (see [LT1, p. 143] 
and [LT2, p. 382]): 

(XM = sup{/?; sup{u~pM(u, v)/M(v); w, v G (0,1]} < oo}; 

(XM = sup{p;sup{upM(v)/M(u,v);u,v G [l,oo)} < oo}; 

aM = min(o£, aj£). 
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These numbers play a special role in the theory of isomorphic embedding of lp spaces 
into Orlicz spaces. A detailed study of this subject is contained in [LT1] and [LT2]. Here 
we mention only that always a^ > 1. 

Finally we recall that the Orlicz function M satisfies the A2-condition at 0 (and 00) if 
there is positive K such that 

M(2t) < KM(t\ t G [0,1] (t G [1,00)). 

In this case HM — £M(HM(0, 1) = £M(0, 1)). If M satisfies the A2-condition at 0 and 
00, HM(0, 00) = L M ( 0 , 0 0 ) . 

For a fixed k G N we shall investigate the class of all Orlicz functions M with the 
properties: 

(i) aM > k\ 
(ii) M{k) is absolutely continuous in every finite interval; 

(iii) /*+1 \M(k+l\t)\ < cM(ct) a.e. in [0,00) for some c > 0. 

This class is denoted ACk while AC00 = nj£i ACk. 

REMARK 1. We can assume without loss of generality that if M E ACk then for 
arbitrary fixed a G (£, a M) the function M satisfies also the inequalities: 

(iv) M(Xt) < c\hM(t), A e [0,1], t e (-00, +00) for every 0 < b < a and 
(v) f\M(i\t)\ < cM(ct\ t e [0,00), i= 1,2,...,/: for some c > 0 that may depend 

on a. 
Indeed, it is obvious that (i) implies for any fixed a G (k, a^) 

(2) M{\t) < ca\
aM(t\ A G [0,1], t G [0,00) 

and therefore also (iv). 

Using this inequality and the Taylor's formula at 0 one can prove inductively that 

M(0(0) = 0, / = 1,2,...,*. 

Now from (iii) and (2) we get for t G [0,00) 

f\M{k)(t)\ < t* £ \M(k+l\u)\ du < et J^M(cu)u-k-1 du 

< ctk~a J\t/ u)aua-k-lM(cu) du 

< cca^-aM{ct) J' ua'k~l du = ccaM(ct)/ (a - Jfc), 

i.e. (v). Analogous inequalities hold also for the preceding derivatives. 

We need for the sequel the following estimate which expresses the fc-times differen­
tiability of M G ACk. 
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LEMMA 2. Let M G ACk. Then for any ii, v, f € R 

k i 
(3) \M{u + tv) - J2 -(tty'M^iOl < (M(2cw) + M(v))4>(0, 

where <f> depends only on a, k, c, i.e., on M and <f>(t) = a(\t\k). 

PROOF. Let 0 < e < I/2c. We consider first the case \u\ < e\v\. The Taylor's 
formula, (iv) and (v) give for 11\ < e\ 

k (tyy 
M(u + tv) - J2 V-M°Xu) 

o J1 

\tvy 
k\ 

\M{k\u + 0tv)-M{kXu) 

<c 
k\ \ \ lev / ' ' V 2evJl ' 

< ^C H a , r /o_, . \ ^ ^ jx+ï^a-kKAki 

k\(2ey 
-M(2cev) < 

2a+l-

k\ 
-ca+ôea-K\t\KM{v). 

Let now \u\ > e \ v\. Using the integral form of the remainder in the Taylor's formula 
and (iii) we obtain for \t\ < (sj2)k+2: 

(tvy 1 rM 
M(u + tv)-Y, ^ / - M ^ w ) <^h ( ' * ' " sAMM(u + s)\ ds 

C [\tv\ (\tv\ - S)' c rim (tv -sr . . w 
k\ Jo \u + s\K+v 

2(k\y 

c 

t\k. 

Thus Lemma 2 is proved. 
To every function M G ACk we associate in X — HM(S, X, /x) the symmetric y-linear 

forms, j — 1,2,... ,k: 

Mj(x,yuy2, •.. ,yj) = JsM
(j\x(s))yl(s)y2(s).. .yj(s)dfi(s) 

LEMMA 3. Let M G ACk. Then Mj(x) G &(X)for every x G XJ = 1,2,..., k. 

PROOF. It is sufficient to show that 

sup[\Mj(x;y%\\y\\ < l / c ) < oo. 

Denote Sf = { s G S; 0 < |JC(J)| < |)<s)|} ,S" = S\ S'. 

https://doi.org/10.4153/CMB-1991-012-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-012-7


78 R. P. MALEEV AND S. L. TROYANSKI 

Now using (iv) and (v) we obtain 

|M;(Jt;3^)| < Js\M®(x(sj)\\y(s)\jdii(s) 

< c Jsf M(cx(s))\y(s)/x(s)\jd/x(s) + c J^M(cx(s))dfi(s) 

< c2 Ï M(cy(s))d^i(s) + c \ M{cx(s))dfi(s) 

< c2M(cy) + M(cx) < c(M(cx) + c). 

The next lemma gives information about the differentiability of M and Mj. 

LEMMA 4. Let M G ACk and Br(X) = {x G X; || JC|| <r}. Then M G UFk{Br(XJ), 

Mj G UFk~J[Br(X), Bj(X)) for every r G (0 ,1/ 2c) and 

(4) tiM = Mj, j = 1,2,...,k, D[Mj = Mi+j9 i+j< k. 

PROOF. Let y G Sr(X), 0 < r < I/2c. According to (3), Lemma 2 we obtain the 
estimate 

\M(x + ty) - £ ?-Mj(x;y®)\ <(M(2cx) + M(y))<l>(t) 
1 j=oJ- ' 

<2<f>(t) = a(\t\k\ 

which ensures the fc-times uniformly differentiability of M over Sr(X), 0 < r < 1/ 2c 
and shows that UM — Mj. 

The last equality implies Mj G UFk-j(Sr(X),B>(X)) and D * = M/+7. Lemma 4 is 
proved. 

REMARK 5. Obviously M G f*(X\ { 0} ), Mj G Fk~J(x\ { 0} , ff(X)). 

3. Main result. We are ready to prove the following : 

THEOREM 6. Let M G ACk. If (S, £, fi) is a measure space then HM(S, Z, /x) /s i**-
smooth. If in addition, M satisfies the ^-condition at 0 and oo £/ie/î LMC^, Z, JI) is UFk-
smooth. 

PROOF. Let n{x) = \\x\\,x G X = #M(S , S, /X). From the differentiability of M and 
the implicit function theorem applied to the equation 

(5) M(x/ n(x)) - 1 - 0 

it follows that the norm in X is differentiable. After a differentiation in (5) we obtain for 
J C ^ O : 

M'(x/n(x)',y/n(x) - (x/n2(x))n'x(y)) = 0 
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and from (4): 

, _ DM(x/n(xj) _ Mi(x/n(x)) 

< DM[x/ n(x)), x/ n(x) > M\ [x/ n(x)\ xj n{x)j 

Obviously n G F(X\ { 0} ) for some j9 1 < j < k, Remark 5 and (6) imply n'x G 
F(X\ { 0} , B(X))9 i.e., n G F+l(X\ { 0} ). In this way we obtain inductively that X is 
F^-smooth. 

If, in addition, M satisfies the À2 -condition at 0 and 00 it can be shown as in [MT1] 
that X = LA/(S,2,/ /) is uniformly smooth, i.e., n G UF(S(XJ). But in this case M G 
UFk(S(X)),Mj G UFk~j(S(X),ff(X)) and the same reasoning as above given now n G 
UF^(s(X)). Thus Theorem 6 is proved. 

REMARK 7. If M G AC00 then HM(S, I , \x ) is F^-smooth. 
From Theorem 6 directly follows for M(t) — f the well-known result of Bonic and 

Frampton and Sundaresan: 

COROLLARY 8 ([BF], [S]). The spaces LP(S, 2, //),/? > 1, are UFE{p)'-smooth, where 

f p — 1 if /? is integer 
1 [p] otherwise 

4. Smooth renormings in Orlicz spaces. It is clear that the usual norm in X = 
HM(S, Z, /i) is not differentiable over X\ { 0} even for measure spaces (S, 2, /x) of type 
(A), (B) or (C) if the function M is arbitrary. So the problem of equivalent renorming 
arises naturally. The simplest way to treat this problem is to consider equivalent norms 
generated from suitably chosen Orlicz functions equivalent to M at 0 and 00 (at 0 or at 00). 
A first result in this direction is due to Akimovich [A] and can be formulated as follows: 
if M satisfies the A2-condition at 0 (at 00, at 0 and 00) and aj^ > 1 (a^ > 1, aM > 1) 
then LM(S, 2, //), (S, 2, /x) of type (A), ((B) or (C)) admit an equivalent f/F-smooth norm. 

The crucial step to the construction of suitable Orlicz function generating equivalent 
smooth norm is the following 

LEMMA 9. Let Mi, M2 be Orlicz functions. There exists an Orlicz function N which 
is infinitely many times differentiable and satisfies 

(i) N ~ M\ at 0 and N ~ M2 at 00; 
(ii) /*| A^(0 | < ckN(ckt), t G [0,00), ck > 0, k = 1,2,.... 

PROOF. Without loss of generality we may assume that Mi(l) = M 2 ( l ) = l . Con­
sider the function 

AT f.\ fl AT t W U AT / X / Ml(U)/ U, U £ (0, 1] 

N\(t) = / No(u)duwhereNn(u) = {*,,', \ \ 
1 W h u w u w \M2(u)u, M G (l,oo) 
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N\ is an Orlicz function equivalent to M\ at 0 and to M2 at 00. This follows imme­
diately if we observe that from the convexity of Mi and M2 it follows that M\(t)/1 and 
M2(t)/1 and therefore also No are nondecreasing. Indeed, the inequalities 

Mi (t/ 2) < ! ' (Mi (u)/ U) du < f Mi (u) du/ u < Mx (t), t G [0,1 ] 

show that N\ ~ Mi at 0. N\ ~ M2 at 00 can be proved in the same manner. 
Put now 

r* N\(u) u r1 v 
N(t)= / — — exp du= / M(v0exp dv/v. 

Jo u u-t h v-\ ' 
(i) is verified as above. Using the first representation it is easy to prove inductively 

h u dtk v u-t 

= f Nx(u) J2 c # ) 0 - ty~2kuk~j-1 exp —— du, 
Jo j=0 u — t 

where Cj(k) G N J = 0 , 1 , . . . , k - 1. 
The substitution u — vt in the last integral led us to the following estimate for t G 

[0,00): 

t\rtk\t)\ <c(k)Nx{t), 

where c(k) = S0
l E ^ 1 Cj(k)(l - vy~2kvk'j-{ exp ^dv > 0. 

Now to obtain (ii) it is sufficent to use N\ ~ N at 0 and 00. Finally from the second 
representation of N it follows easily that N' is nondecreasing and therefore TV is an Orlicz 
function. Lemma 9 is proved. 

COROLLARY 10. Let 1 < k = E(a^){E(a^),E(aM)). Then in hM (HM(0,1), 
HM(0, 00)) there exists equivalent Fk-smooth norm. If M satisfies the ^-condition at 0 
(at 00, at 0 and 00) then in IM (^M(0, 1),LM(0, 00)J there exists equivalent UFk-smooth 
norm. Especially if a^ = 00 (ajfî = 00, % = 00) then in hj^ ( / /M(0, 1) , / /M(0, 00)j 
f/iere ^w?5 equivalent F°°-norm. 

PROOF. According to Theorem 6 it is sufficient to construct for the Orlicz function M 
we consider, Orlicz function N G ACk equivalent to M at 0 (at 00, at 0 and 00) with ot^ — 
(XM((XN = <*MI

 aN — &M)- This is always possible using Lemma 9 for the functions 
Mi = M,M2(t) = t<(Mx(t) = ta%,M2 = MorMi = M2 = M). 

To treat the case a^ = 00 (aj£ — 00, aM — 00) we have to use Lemma 9 for the 
functions Mx = M,M2(0 = er - 1 (Mi(0 = te~l/\M2 = M or Mi = M2 = M) to find 
Orlicz function N G AC00, equivalent to M at 0 (at 00, at 0 and 00) with aN = 00. 

REMARK 11. Obviously analogous results hold true for Orlicz spaces HM(S, Z, /i), 
LM(S, Z, ̂ ) over measure space (5, X, /x) of type (A), (B) or (C) and for general Orlicz 
spaces as well. 
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COROLLARY 12. If1 < k < a M then LM(S, Z, p) admits Fk-smooth partition of 
unity. 

The proof follows immediately from Corollary 10 and [GTWZ]. 

REMARK 13. It is well-known (see e.g. [SS], p. 20) that L2k G UF°°(S(L2*)), k G N. 
It turns out that for Orlicz functions M which are not equivalent at 0 to t2k, k G N the 
equivalent norms for hM and lM found in Corollary 10 are the best possible with respect 
to the order of smoothness. Moreover, the following stronger result is proved in [MT2]: 

THEOREM 14. Let k - 1 = E(a^). For k odd or k even but M / /* at0 in hM there 
is no k-smooth real valued function with bounded support. 

Let us give some examples. 

EXAMPLE 1. Let M be an Orlicz function such that near 0 and oo M(t) — f\\og t\q, 
p > 1. Let M be [p] -times differentiable in (0, oo). Obviously M satisfies the A2-condition 
at 0 and 00 and % = p. Therefore, according to Theorem 6 LM(0,1) G JJFE{p) and E(p) 
is the best order of smoothness under equivalent renorming for any q, except the case p 
even, q = 0. 

EXAMPLE 2. Let M(t) = texp(-l/1). Now M G AC°° and therefore hM is F°°-
smooth. 

REMARK 15. Important results connecting the existence of C°°-bump functions with 
the presence of subspaces isomorphic to cQ or to lp for some pair p have been recently 
shown by R. Deville (see [Dl] and [D2]). Related to this, Example 2 represents a space 
with symmetric basis, essentially different from cQ and £p, which possesses C°°-bump 
function. 
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