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Buoyant material such as microplastics accumulate near the ocean surface in regions with
convergent surface currents where they can be harmful to marine life. Here, we use large
eddy simulations to investigate the transport and accumulation of buoyant material in a
turbulent ocean mixed layer under combined wind and convection forcing. We model
non-inertial buoyant particles with a combination of buoyant tracers and Lagrangian
surface particles, which allows us to explore a wide range of particle buoyancies. Surface
cooling drives convection, and under this regime persistent convective vortices form
that trap buoyant particles, leading to large concentrations. Despite their small size, the
convective vortices exhibit a bias towards cyclonic vorticity that has not been reported
previously. Based on an analysis of Lagrangian trajectories, the average time that a
particle spends inside a convective vortex is long enough for planetary vorticity to become
important and further vortex stretching causes an exponential increase in vorticity. When
wind forcing is included, there is a transition from convective cells to longitudinal wind
rolls with three distinct flow patterns observed under weak, moderate and strong wind
forcing. For sufficiently weak winds, convective vortices survive but are less effective
at trapping buoyant material. Under strong wind forcing, convective vortices no longer
exist, but some clustering occurs in regions of high speed associated with longitudinal
wind rolls. We quantify the degree of clustering using the Gini coefficient and find that
clustering is strongly influenced by the relative size of the friction and convective velocities
and the particle buoyancy.
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1. Introduction

The distribution of buoyant material in the ocean, including microplastics, oil droplets,
phytoplankton cells, sargassum and debris, has important implications for marine life and
safety. Buoyant material is less dense than seawater and, hence, tends to remain close to
the surface of the ocean. Buoyant material can accumulate in localised regions due to
horizontally convergent surface currents associated with a variety of physical processes
(van Sebille et al. 2020).

Consider as an example the case of microplastics. Larger plastics that are deposited
into the ocean as waste are fragmented into microplastics through UV radiation,
chemical degradation and mechanical abrasion. Plastic is usually buoyant, with an average
material density of 965 kg m−3 compared with the average density of surface seawater,
1027 kg m−3 (Morét-Ferguson et al. 2010). It is estimated that there are up to 51 trillion
pieces of microplastic at the surface of the ocean, corresponding to a mass of up to 236
thousand metric tonnes (van Sebille et al. 2015). Plastics degrade very slowly and can be
ingested by marine life, often at the surface of the ocean (Wilcox et al. 2015; Compa et al.
2019).

Buoyant material that is small enough to be treated as a point particle (i.e. the shape does
not matter) can be referred to as a buoyant particle. When the concentration of buoyant
particles is sufficiently low, interactions between particles and their effect on the flow
can be neglected. In these cases, the concentration of buoyant particles is often modelled
using a continuum approximation. We use the term buoyant tracer to describe such a
concentration field, which has previously been used to model microplastics (Kukulka &
Brunner 2015), oil droplets (Yang, Chamecki & Meneveau 2014) and phytoplankton cells
(Smith, Hamlington & Fox-Kemper 2016).

Due to their low density, buoyant particles tend to remain in the ocean mixed layer
(OML). The OML is the uppermost part of the ocean where turbulence driven by
atmospheric forcing maintains weak density stratification. Here, buoyant particles are
subject to a variety of processes including convective plumes, Langmuir and wind-driven
turbulence, submesoscale eddies, Ekman flow and Stokes drift.

Buoyant particles accumulate due to convergent surface currents on a wide range
of scales. On a global scale, convergent wind-driven currents cause microplastics to
accumulate in mid-ocean gyres (Cole et al. 2011; Eriksen, Thiel & Lebreton 2017). On
the submesoscale (1–10 km), strongly convergent flow causes oil and surface particles
to accumulate in narrow (10–100 m) density fronts (D’Asaro et al. 2018; Taylor 2018).
On smaller scales, wind- and buoyancy-driven turbulence cause buoyant particles to
accumulate in ephemeral patches and streaks. Here, our focus is on these small scales
that will be reviewed briefly below.

When wind and surface waves align, Langmuir circulation or Langmuir turbulence
can arise, consisting of longitudinal circulation cells aligned with the wind and waves
(Leibovich 1983; Thorpe 2004). These circulation cells are often visible through lines
of buoyant material that accumulate in regions of surface convergence (Langmuir
1938). Skyllingstad & Denbo (1995) used numerical simulations to study the horizontal
distribution of surface particles under a Langmuir turbulent regime and they, alongside a
number of other studies (McWilliams, Sullivan & Moeng 1997; McWilliams & Sullivan
2000), observed surface particles accumulating in narrow downwelling streaks. Yang et al.
(2014) expanded on this by investigating a buoyant tracer with a wide range of buoyancies
under Langmuir turbulence. They found that the degree of particle accumulation in the
windrows was impacted by the tracer buoyancy, with the more buoyant tracer being
more clustered. Kukulka & Brunner (2015) and Brunner et al. (2015) used numerical
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simulations and analytical models to show that Langmuir turbulence is not only important
in determining the horizontal distribution, but also in vertically transporting buoyant
particles deep into the OML.

In the absence of Stokes drift, the small-scale structure of the OML is often governed
by processes such as convection forced from night-time cooling and shear stress generated
by surface winds. Kukulka, Law & Proskurowski (2016) used observations and numerical
simulations to show that turbulence generated by convection can deeply submerge buoyant
particles, whilst Kukulka et al. (2012) used observations and a one-dimensional column
model to study wind-driven vertical mixing of plastic debris. Skyllingstad & Denbo
(1995) showed that under a combination of wind and convective forcing, the horizontal
distribution of particles at the ocean surface coincides with regions of convergence.
Mensa et al. (2015) used a relatively low-resolution model to demonstrate that under pure
convection, tracer accumulates in convergent regions of Rayleigh–Bénard cells. With the
additional presence of weak wind forcing, they found that convection cells were distorted
but tracer continued to accumulate in downwelling regions. Chor et al. (2018a) expanded
on this using higher resolution numerical simulations in a purely convective regime
and a range of buoyancies for the tracer field. They found that, in addition to buoyant
particles accumulating in convergent regions of the Rayleigh–Bénard cells, the presence of
convective vortices in the vertices between some cells acted to additionally cluster the most
buoyant particles. It remains unclear to what extent convective vortices and the associated
accumulation of buoyant particles persist in the presence of wind forcing.

Here, we extend previous work by studying the formation and persistence of convective
vortices under the combined effects of wind and convective forcing and their influence
on buoyant material. In the atmosphere it has been noted that the number and strength of
convective vortices (e.g. dust devils) that form depend strongly on wind conditions (Raasch
& Franke 2011). In the context of the ocean, Heitmann & Backhaus (2005) found that there
is a transition from convective cells to longitudinal wind rolls as wind forcing is added to
convection, with three distinct flow patterns being observed under weak, moderate and
strong wind forcing.

We study these processes using a series of large eddy simulations (LES) under idealised
conditions where turbulence is generated by imposing a constant surface heat flux and
shear stress. Large eddy simulation is a useful tool for studying the accumulation of
buoyant particles because they resolve the largest turbulent motions responsible for particle
accumulation and vertical transport. Large eddy simulation has also been used to study
convective vortices in the atmosphere (Raasch & Franke 2011) and the ocean (Chor et al.
2018a).

We model buoyant material using a combination of tracers and Lagrangian particles
advected with the surface velocity (also commonly known as surface drifters). The
concentration of buoyant particles can be represented with a tracer field with additional
advection by a slip velocity that depends on the modelled particle size and density. The
upwards slip velocity causes buoyant tracers to concentrate near the surface of the ocean
and is opposed by turbulence and diffusion that transports the tracer downwards. For a
buoyant tracer to be effectively trapped at the surface, the slip velocity must exceed the
maximum vertical velocity of the fluid. Due to numerical constraints, there is a limit to
the slip velocity that can be added to a tracer field. Here, we additionally use Lagrangian
particles at the surface that allows us to investigate the limit where the slip velocity is much
larger than the fluid vertical velocity.

Whilst Chor et al. (2018a) provides an extensive study of convective vortices in a
purely convective regime, we focus on the extent to which convective vortices persist
in the presence of a surface wind stress, and how this affects particle clustering inside
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convective vortices. Unlike our simulations, Chor et al. (2018a) did not include the Coriolis
acceleration due to the Earth’s rotation and, hence, they did not observe the bias towards
cyclonic convective vortices that we observe. Additionally, Chor et al. (2018a) only used
a tracer field to investigate clustering of buoyant material and did not look at the limit of
extremely buoyant material with Lagrangian particles.

Below, in § 2, we introduce the problem configuration and numerical methods. In § 3
we present our results. Section 3.1 includes a qualitative description of the flow and the
buoyant particles, § 3.2 describes convective vortices with and without wind forcing, and
§ 3.3 includes a quantification of the accumulation of buoyant particles. A summary of the
study and discussion of the key results is given in § 4.

2. Set-up and numerical methods

Here, we use LES to solve a low-pass filtered version of the non-hydrostatic incompressible
Boussinesq Navier–Stokes equations (2.1) and (2.2) in terms of the low-pass filtered
velocity u = (u, v, w), low-pass filtered pressure p and buoyancy b,

∂u
∂t

+ u · ∇u + f × u = − 1
ρ0

∇p + ν∇2u − ∇ · τ + bk, (2.1)

∂b
∂t

+ u · ∇b = κb∇2b − ∇ · λ. (2.2)

The buoyancy is treated as a single scalar variable under the assumption of a linear
equation of state and neglecting double diffusive effects. In the momentum equation (2.1),
f = (0, 0, f ) is the Coriolis parameter, ρ0 is the reference density, k is the unit vector in
the vertical direction and τ is the subgrid scale stress tensor. In the buoyancy equation
(2.2), λ is the subgrid scale scalar flux. Both τ and λ are calculated using the anisotropic
minimum dissipation model (Abkar, Bae & Moin 2016; Vreugdenhil & Taylor 2018),
which is described below.

The computational domain is 500 m in each horizontal direction and 120 m in the
vertical direction. A constant buoyancy loss (equivalent to cooling the surface of the
ocean) is applied at the surface to drive convection. Various values of the imposed
surface buoyancy flux are used, ranging from 0 to −4.24 × 10−8 m2 s−3, but the surface
buoyancy flux is constant in each simulation. Using a thermal expansion coefficient of
α = 1.65 × 10−4 ◦C−1 and a heat capacity of 4 × 10−3 J kg ◦C−1, a surface buoyancy
flux of −4.24 × 10−8 m2 s−3 corresponds to a heat loss of about 100 Wm−2. Wind is
applied using a shear stress at z = 0 that is aligned with the x axis without loss of
generality. Various values of the wind stress are considered, ranging from 0 to 0.1 Nm−2,
but again this value is constant for each simulation. At the bottom of the computational
domain, a no stress boundary condition is applied in both horizontal directions and a
sponge layer is applied to prevent reflections. Planetary rotation is included with a Coriolis
parameter of f = 10−4 s−1. At t = 0, the buoyancy is initialised with a mixed layer with
depth 80 m overlying a region with stable stratification. Specifically, ∂b/∂z = 0 s−2 for
−80 m< z < 0 and ∂b/∂z = 9 × 10−6 s−2 for z < −80 m. This stratification is in the
range of values observed by Brainerd & Gregg (1993) in the diurnal thermocline and is
equivalent to a potential temperature gradient of ∂θ/∂z = 0.01 ◦C m−1 for z < −80 m.

The vertical velocity is set to zero at the top and bottom of the domain. We also do not
include the Craik–Leibovich vortex force, and hence, we neglect the influence of surface
waves and Langmuir circulation. Hence, although we run simulations for about 24 hours to
allow wind and convective turbulence to fully develop, we do not consider the development
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of surface waves or Langmuir circulation. This can be viewed as an approximation to calm
conditions (e.g. at the start of a wind event before waves have had time develop), but
our primary motivation is to simplify the physical processes and isolate the influence of
wind-driven shear on convective vortices. Periodic boundary conditions are applied in both
horizontal directions. The velocity is initialised as random white noise with an amplitude
of 10−4 m s−1. The molecular viscosity is ν = 10−6 m2 s−1 and the molecular diffusivity
is κb = 10−6 m2 s−1, although both are small compared with the subgrid scale terms and
do not directly influence the model results.

The resolved fields are discretised on a grid with 512 points in each horizontal direction
and 65 points in the vertical direction. This gives a horizontal grid spacing of 0.98 m
and a variable vertical grid spacing between 0.95 m and 2.57 m with higher resolution
near z = 0. Derivatives in the horizontal directions are calculated using a pseudospectral
method, whilst vertical derivatives are approximated using second-order finite differences.
The equations are time stepped using an implicit Crank–Nicolson method for the viscous
and diffusive terms and a third-order Runge–Kutta method for all other terms. Further
details of the numerics can be found in Taylor (2008).

The subgrid scale terms are modelled with the anisotropic minimum dissipation (AMD)
model (Rozema et al. 2015; Abkar et al. 2016; Vreugdenhil & Taylor 2018). In developing
our simulations, we also tested the constant Smagorinsky model but found that the AMD
model converged more rapidly as the resolution was increased. With the AMD model,
the dynamics under pure convection are relatively insensitive to grid spacing. In the
wind-forced case, the root-mean-square (r.m.s.) vertical velocity and pressure near the
surface increase as the resolution increases. This is likely due to an additional small-scale
turbulence near z = 0 being resolved in higher resolution runs. However, at a depth of
−30 m, close to the depth where the r.m.s. vertical velocity reaches its maximum, the
vertical velocity is only weakly dependent on the resolution under both convection and
wind forcing. A detailed discussion of the resolution convergence can be found in the
appendix.

Buoyant material is modelled using two approaches: an Eulerian tracer concentration
field and Lagrangian surface particles. The set-up for the Eulerian tracer concentration
field is similar to Taylor (2018) and Chor et al. (2018a). The tracer is modelled as a
continuous concentration of non-interacting particles. Each particle moves with the local
fluid velocity plus a constant upwards slip velocity. This is equivalent to considering
small, buoyant particles of a fixed size and density. We assume low tracer concentrations,
so although the tracers themselves are buoyant, they do not affect fluid buoyancy. The
equation for the concentration of buoyant material is given by

∂c
∂t

+ u · ∇c + ws
∂c
∂z

= ∇ · ((κSGS + κc)∇c), (2.3)

where ws is the constant slip velocity and κSGS is the subgrid scale diffusivity. We set
κc = κb = 10−6 m2 s−1, although this value is very small compared with κSGS and does
not influence the tracer concentration. The buoyant tracer concentration is updated using
the same numerical method as the main LES code. A small number of negative values of
the tracer concentration occur due to Gibbs ringing at the grid scale, but the total tracer
concentration is conserved by the numerical scheme. The initial condition of the tracer is
exponential in depth, specifically c(x, y, z, t = 0) = ez/10 m. In this study, three tracers are
considered with slip velocities of ws = 0.001, 0.005, 0.01 m s−1. Experiments on a sample
of microplastics from the North Atlantic subtropical gyre estimate the slip velocity to be
between 0.005 and 0.025 m s−1 (Kooi et al. 2016), which coincides with the two most

954 A27-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

96
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.969


J. Dingwall, T. Chor and J.R. Taylor

buoyant tracers in our simulations. Above a value of 0.01 m s−1 the continuous tracer
field exhibits significant numerical noise that prevents us from further increasing the slip
velocity.

To investigate buoyant material with higher slip velocities, we turn to Lagrangian
particles. The particles are one way coupled; they do not affect the surrounding flow.
We also neglect interactions between particles. The movement of small inertial spherical
particles is described by the Maxey–Riley equation (Maxey & Riley 1983). We begin
with a simplified version of the full equation which is the starting point for most studies
of inertial particles in turbulent flows (Balkovsky, Falkovich & Fouxon 2001; Chamecki
et al. 2019). In this equation, the Faxen correction, Basset history force and lift force are
neglected on the basis that the radius of the particle is much smaller than the scales over
which the fluid velocity changes. Brownian motion is neglected on the basis that molecular
viscosity is very small (ν = 10−6 m2 s−1 in our simulations), but some random motion is
accounted for in a subgrid scale model discussed below. Under these assumptions, the
particle velocity, vp, satisfies the equation

dvp

dt
= −vp − u

τp
+ ws

τp
e3 +

(
1 + ws

τpg

)
Du
Dt

, (2.4)

where u is the fluid velocity, τp is the particle response time and ws is the terminal slip
velocity. When Rep � 1 (where Rep = |vp − u|dp/ν is the particle Reynolds number),
particles are described as being in the Stokes regime and the particle response time and
terminal slip velocity are defined as

τp = (ρp + ρf /2)d2
p

18μf
, (2.5)

ws = (ρp − ρf )gd2
p

18μf
, (2.6)

where the terminal slip velocity is a balance between the Stokes drag and buoyancy force
only. Here, ρp is the particle density, dp is the particle diameter, ρf is the fluid density and
μf is the dynamic viscosity of the fluid.

Further simplifications of (2.4) can be made by looking at the Stokes number that
characterises the tendency of a particle to move with the fluid velocity. The Stokes number
is defined as the ratio between the particle response time and the turbulence time scale,
St = τp/τt. A very small Stokes number indicates that the particle motion is strongly
influenced by the fluid flow whilst a large Stokes number indicates that the particle moves
independently of the fluid. The Stokes number for microplastics has been estimated to be
between O(10−3) and O(10−2) at the surface (Kukulka et al. 2012; Chamecki et al. 2019),
which corresponds to microplastics of about 1 cm or less (Poulain et al. 2018). In the limit
where St � 1, (2.4) can be approximated as (Ferry & Balachandar 2001; Yang et al. 2016)

vp = u + wse3 + ws

g
Du
Dt

. (2.7)

The last term on the right-hand side is the leading-order inertial effect and, similarly to
Chor et al. (2018a), we are interested in flows for which g−1Du/Dt � 1. This reduces our
particle motion equation to

vp = u + wse3. (2.8)
This describes particles for which inertial effects are negligible compared with flow
advection and buoyancy effects. In this study we use the Lagrangian approach to
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investigate the limit of extremely buoyant particles and implement a two-dimensional
(2-D) particle model at the surface of the domain, which can be interpreted as the limit
where ws � |w|. To model the influence of unresolved turbulence on particle motion, a
random displacement is included following the approach in Liang et al. (2018). This gives
the equations for the motion of 2-D non-inertial particles as

xp(t + dt) = xp(t) + u(xp, t) dt + xsgs(xp, t), (2.9)

xsgs,i = ∂νsgs

∂xi
(xp, t) dt + (2(νsgs(xp, t))+)1/2 dξi. (2.10)

In (2.9), u is the resolved velocity interpolated at the particle position and xsgs is the
displacement due to subgrid scale motion. In (2.10) the subscript i indicates the spatial
dimension, νsgs is the subgrid scale viscosity interpolated at the particle position, dξi is
Gaussian white noise with variance dt and (·)+ = max(·, 0).

Interpolated quantities are calculated using cubic B splines following van Hinsberg et al.
(2012). This method was chosen due to its low computational cost and high accuracy. The
particle evolution equations are time stepped using the third-order Runge–Kutta method
alongside the main LES code. We simulate the motion of 4000 particles that are initially
randomly distributed. In the appendix we discuss the sensitivity of particle clustering to the
resolution of the LES and find that in the cases with pure convective forcing, the results are
not very sensitive to resolution. In the wind-forced case increasing the resolution slightly
reduces the tendency for the particles to cluster.

Here, we report seven simulations with different values of the surface buoyancy flux
and wind stress. The parameter space can be interpreted in terms of the friction velocity
u∗ and the convective velocity w∗ (Deardorff 1970) that characterise the velocity scales of
wind-driven turbulence and convection, respectively. These are defined as

u∗ =
(

τ

ρ0

)1/2

, (2.11)

w∗ = (B0h)1/3. (2.12)

Here, τ is the surface wind stress, ρ0 is the constant reference seawater density, B0 is the
surface buoyancy flux and h is the initial mixed layer depth. The ratio between u∗ and w∗
measures the relative importance of wind and convection.

There is some disagreement in the literature as to the ratio of u∗ and w∗ that marks
a transition from convective turbulence to stress-driven turbulence. For example, early
numerical studies using LES estimated that a value of u∗/w∗ = 0.65 marks the change
from convective cells to convective rolls in the atmospheric boundary layer (Moeng &
Sullivan 1994), whilst for convection between flat plates, the estimated transitional value
is u∗/w∗ = 0.35 (Sykes & Henn 1989). In the ocean, Heitmann & Backhaus (2005) found
a change in flow behaviour for u∗/w∗ = 0.4 − 0.7. Regardless of the transition value, we
expect wind-driven turbulence to dominate when u∗/w∗ � 1 and convection to dominate
when u∗/w∗ � 1. For intermediate values, both wind and convective forcing likely both
influence the dynamics to some degree. In the context of vertical mixing of buoyant
materials, Chor et al. (2018b) introduced a generalized turbulence velocity scale, W, and
in the absence of Langmuir turbulence this is given by

W3 = u∗3κ3 + A3
cw∗3, (2.13)

where κ = 0.41 is the von Kármán constant and Ac represents the contribution of
convective turbulence to W that Chor et al. (2018b) estimated to be Ac = 1.170.
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Figure 1. The u∗ and w∗ parameter space for simulations. Cases I, II and III are labelled for reference.

Simulation name B0 × 108 (m2 s−3) τ (Nm−2) w∗ (m s−1) u∗ (m s−1)
u∗

w∗

I −4.24 0 0.015 0 0
−4.24 0.01 0.015 0.003 0.21
−4.24 0.05 0.015 0.007 0.46

II −4.24 0.1 0.015 0.01 0.66
−0.424 0.1 0.0070 0.01 1.41
−0.0424 0.1 0.0032 0.01 3.05

III 0 0.1 0 0.01 ∞
Table 1. Simulation parameters.

The larger convective coefficient suggests that vertical mixing is influenced more strongly
by convective turbulence than wind shear when u∗ = w∗. The Monin–Obukhov length
scale also characterises the importance of convective forcing and wind forcing, and is
defined as

L = −u∗3

κB0
, (2.14)

where κ is the von Kármán constant as above and B0 is the surface buoyancy flux. In case
II defined below (u∗ = w∗), we find that L = 58 m, which predicts that wind forcing is
important throughout the upper part of the mixed layer.

Our simulations can be arranged into two series, each independently varying the strength
of the wind or the convective forcing. This includes one simulation with pure convection
and one simulation with pure wind forcing, which act as control simulations. The first
series is run with a surface buoyancy flux held constant at −4.24 × 10−8 m2 s−3 and the
wind stress varying between 0 and 0.1 Nm−2, which is equivalent to wind velocities at
10 m ranging between 0 and 8.1 m s−1 (calculated using a drag coefficient CD = 0.0013).
The second series is run with wind stress held constant at 0.1 Nm−2 and the surface
buoyancy flux varying between 0 and −4.24 × 10−8 m2 s−3. This allows us to see the
effect of increasing wind and convection independently and ensures that we cover a wide
range of flow behaviour without applying unrealistic wind or convection forcing. Each
simulation has a different value of u∗/w∗. The parameters of the simulations are listed in
table 1, and the parameter space can be visualised in figure 1.
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3. Results

Here, we primarily focus on three simulations that illustrate the three main flow regimes:
pure convection (case I), combined wind and convection (case II) and pure wind forcing
(case III). In case I, w∗ = 0.01 m s−1 and u∗ = 0; in case II, w∗ = u∗ = 0.01 m s−1; and
in case III, w∗ = 0 and u = 0.01 m s−1. This allows us to directly examine convection and
wind forcing of similar strengths. The remaining simulations exhibit qualitative features
that are represented in one of these three cases. In all analyses below, we neglect transient
effects by considering horizontal slices at t = 12 hours and calculate time averages over
one inertial period from 6–23.5 hours. This ensures that the simulated flow has reached
a fully developed turbulent condition before the start of the time average. In cases I and
II, quasi-steady convection is established by approximately 4 hours. This suggests that
our results might be consistent with at least part of the diurnal cycle when night-time
convection becomes fully developed.

The results are organised into three subsections: in § 3.1 we present a qualitative
description of the flow, buoyant tracers and surface particles; in § 3.2 we investigate the
formation of convective vortices and the influence of wind forcing on the vortices; in § 3.3
we look at the accumulation of the buoyant tracer and surface particles.

3.1. Qualitative description of the flow and the distribution of buoyant material
In this section we start by describing the qualitative features of the turbulence and the
distribution of buoyant tracers and particles in cases I, II and III. Figure 2 shows horizontal
slices of the vertical velocity, tracer concentration and surface particle positions. The
vertical velocity field is shown 5 m below the surface. The tracer concentration and
particles are shown at the surface (z = 0). We show the tracer with ws = 0.005 m s−1,
which is the intermediate buoyancy used in our simulations. A smaller value of ws gives
a more uniformly distributed tracer field, whilst a larger value of ws gives a more strongly
clustered tracer field (shown below). In all of the cases, the average vertical fluid velocity
is zero due to the boundary conditions at the surface. The regions of downwelling appear
to occupy a smaller area (particularly in cases I and II) but are larger in magnitude.

In case I distinct convection cells are visible. Convective cells are characterised by
large areas of weak upwelling surrounded by narrow regions of strong downwelling. The
downwelling regions between neighbouring convective cells meet at convective ‘nodes’.
As in Chor et al. (2018a), the horizontal scale of the convective cells is typically about 1–2
times the depth of the mixed layer (recall that the mixed layer depth is 80 m). The buoyant
tracer concentration is elevated in locations of downwelling between convective cells with
the highest concentrations in the nodes. The particles, which unlike the tracer are confined
to the surface, have a more extreme distribution and are located almost exclusively in the
nodes.

In case II with convective and wind forcing, the convection cells are replaced by distinct
larger-scale downwelling streaks. The tracer accumulates in the streaks with the strongest
downwelling. This is mirrored in the distribution of surface particles. In case III with
pure wind forcing, the vertical velocity exhibits horizontal streaks on a smaller scale
compared with case II and the tracer concentration also exhibits streaks. In § 3.3 we show
that the tracer accumulates in streaks of high speed. The average tracer concentration is
noticeably higher at the surface for the same buoyancy (discussed below). The surface
particles appear to be less organised than the tracer in this case, although this might
be due to the small size of the wind-driven turbulent streaks and the limited number
of particles. Inherent differences between Eulerian and Lagrangian dynamics and statistics
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Figure 2. Horizontal cross-sections of the vertical velocity at z = −5 m (a)–(c), tracer concentration with
slip velocity 0.005 m s−1 at z = 0 (d)–( f ) and particle position at z = 0 (h)–(j).

is interesting, but we are not able to comment on this directly since the tracers and particles
sample different depths in our simulations. Still, some areas exhibit elevated particle
concentrations and the particles are not uniformly distributed.

As the slip velocity of the tracer increases, the surface tracer concentration increases
and the tracer becomes more clustered. Figure 3 shows the tracer distribution at the surface
with increasing slip velocity (left to right) in case II. The least buoyant tracer concentration
(left) exhibits horizontal streaks but with smaller variations (note the difference in colour
axis scale for the three horizontal slices). The most buoyant tracer (right) is more strongly
clustered; it has wide expanses of low concentration as well as a few large-scale horizontal
streaks with a very high tracer concentration, up to 50 times higher than the least buoyant
tracer. The distribution of surface particles (see figure 2i) exhibits the same patterns as the
most buoyant tracer. Note that the mean surface tracer concentration is also significantly
higher for the more buoyant tracers, and this is discussed further below.

The influence of the slip velocity on the tracer distribution can be explained in terms of
the ability of the vertical fluid velocity to overcome the slip velocity. For all three tracers,
the slip velocity is smaller than the maximum vertical velocity (approximately 0.02 m s−1).
Tracer accumulates in regions of horizontal flow convergence, and at the surface this
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Figure 3. Horizontal cross-section at z = 0 of the tracer with ws = 0.001 m s−1 (a), ws = 0.005 m s−1

(b), ws = 0.01 m s−1 (c) in case II.
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Figure 4. Vertical profile of mean tracer concentrations.

coincides with downwelling regions of the flow where tracer can be transported below
the surface. A less buoyant tracer is more easily submerged and may then resurface in
an upwelling (horizontally divergent) region giving a more uniform distribution. Very
buoyant tracers are only subducted in regions of strong downwelling and the tracer then
quickly rises back to the surface. As a result, very buoyant tracers remain close to regions
of strong horizontal convergence and downwelling. It is worth noting, however, that not all
downwelling regions exhibit high tracer concentrations. In case I the buoyant tracer and
surface particles are strongly clustered in a subset of the convective nodes. As we will see
in the next section, these regions are occupied by convective vortices.

Figure 4 shows vertical profiles of the mean tracer concentration (horizontally and time
averaged) under different wind and convection forcing conditions. In all cases, the mean
tracer concentration is surface intensified and the concentration at z = 0 is highest for
the most buoyant tracer. As noted from visualisations of the buoyant tracer (figure 2), the
mean tracer concentration is noticeably higher at the surface in case III compared with
cases I and II. This is confirmed in figure 4, which shows that in case III the vertical
distribution of the mean tracer concentration is significantly different from cases I and II.
For all slip velocities in case III, the tracer concentration at the bottom of the mixed layer
(z = −80 m) is small compared with the surface concentration (z = 0). In comparison,
the mean tracer concentration profiles in cases I and II are quite similar. In both cases
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Figure 5. Horizontal cross-section at z = −30 m of the buoyant tracer concentration (ws = 0.005 m s−1).

the weakly buoyant tracers are relatively homogeneous in the middle of the mixed layer
(i.e. −60 m < z < −20 m). These vertical profiles closely resemble those in Chor et al.
(2018b) and suggest that vertical mixing by convection is fast enough to overcome the
effects of tracer buoyancy with or without wind forcing. The turbulence velocity scale, W
(see (2.13)), predicts that convective forcing contributes to vertical mixing more than wind
shear when u∗ = w∗, and explains why the vertical distribution of the buoyant tracers in
case II is more similar to case I than case III.

Although the mean tracer concentration is relatively constant in the vertical direction
in cases I and II, the tracer concentration within the mixed layer is not uniform. Figure 5
shows the tracer concentration on horizontal slices at z = −30 m. By comparing with
figure 2, it is evident that regions with high tracer concentration at z = −30 m generally
coincide with regions with high concentration at z = 0. This suggests that regions with
elevated tracer concentration are vertically coherent in cases I and II. There are also
small areas of very high concentration, particularly visible in case I. These are generally
co-located with the surface particles and in the next section we will show that these
correspond to convective vortices. In case III there are a few small spots with an elevated
tracer concentration, but the concentration is generally quite small at this depth.

3.2. Convective vortices
In this section we examine the convective vortices in more detail, focusing in particular
on the influence of wind forcing on the convective vortices. There are several ways to
identify convective vortices. Chor et al. (2018a) characterised convective vortices using
the 2-D Okubo parameter. Here, we apply a similar method as developed in Raasch &
Franke (2011) who identified dust devils in a convective boundary layer using pressure and
vorticity. Whilst vorticity is an obvious measure, small-scale turbulence also contributes to
vorticity, making it difficult to identify coherent convective vortices. We eliminate some of
this small-scale noise by applying a Gaussian filter to the vorticity field before using it to
identify convective vortices. In addition, structures such as regions of high shear can have
large values of vorticity, and so we use the pressure field in conjunction with vorticity to
exclude such structures. The physical reasoning behind using the pressure field is that the
centrifugal force created by the fluid rotating inside the vortex causes the pressure to be
lower than the surrounding fluid (Hussain & Jeong 1995). We have verified that pressure
and the Okubo parameter yield qualitatively similar results (see Appendix B).

Vortices are identified using the local minima of the departure from the hydrostatic
pressure and local maxima of the filtered absolute vorticity field, where local
minimum/maximum means that the values are smaller/larger than the adjacent 224 grid
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points (forming a 15 × 15 grid). This grid size has been determined empirically to avoid
detection of multiple vortex centres within one convective vortex. We use the pressure
and vorticity fields evaluated at z = −1 m to match the depth of the surface particles. We
require the pressure minimum to be located within two horizontal grid points of the filtered
absolute vorticity maximum, which we define as the vortex centre. We use a threshold
value of five times the standard deviation of filtered absolute vorticity (5σζ ) and five times
the standard deviation of perturbation pressure (5σp) at z = −1 m, which is similar to
the applied thresholds in other vortex detection algorithms (Nishizawa et al. 2016; Giersch
et al. 2019). This threshold aims to eliminate as much non-coherent turbulence as possible,
whilst still capturing sufficient information for analysis. The magnitude of the threshold
value depends on the strength of wind forcing and convective forcing of each simulation.

More convective vortices are identified under strong convective conditions, and the
number of convective vortices decreases with increasing wind strength. To quantify this in
all simulations, we count the number of vortices detected using our criterion at each time
step and average over one inertial period. Figure 6 shows that the total number of vortices
decreases as u∗/w∗ increases. In case I there are approximately two vortices per 100 m2

(40 vortices in the 500 m2 domain). When u∗ � w∗ (case II), the number decreases by
about two orders of magnitude compared with when u∗ = 0 (case I). For higher values
of u∗/w∗, less than one vortex is detected in the domain at any given time. Note that the
number of convective vortices is not exactly equal to zero when w∗ = 0. We interpret
this as rare regions of intense turbulence that happen to meet our criterion rather than as
convective vortices.

To visualise the convective vortices in cases I, II and III, we use the pressure field.
Figure 7 shows pressure isosurfaces in the upper panel and pressure contours at z = 0
(black) and particle position (red) in the lower panel. In cases I and II we observe coherent
convective vortices that typically occur in the regions of strong downwelling and extend
down from the surface into the mixed layer. Note, however, by comparison with figure 2,
that not all locations with strong downwelling contain a convective vortex. In case I the
convective vortices occur in the nodes where downwelling regions join together and there
is coincident particle clustering inside the convective vortices. In case II the convective
vortices preferentially occur in the coherent downwelling streaks and are tilted in the
direction of wind forcing. Surface particles cluster in the larger downwelling streaks and
are less confined to convective vortices than in case I. In case III coherent vortices are not
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Figure 7. (a)–(c) Spanwise view of pressure isosurfaces where the departure from the hydrostatic pressure
is δ = 5 × σp Pa, taken at t = 12 hours. All regions with δp < 5 × σp Pa are visible in this view. (d)–( f )
Horizontal cross-section of the pressure contour at z = −1 m (black) with surface particle position
superimposed (red), taken at t = 12 hours.

visible and there is relatively little particle clustering. In all cases, the convective vortices
detected have a relatively small diameter of a few metres. This implies that simulations
need a high resolution for convective vortices to be visible and observations in the ocean
would require measurements at small scales.

To further characterise the surface flow, we look at the relationship between vertical
velocity and pressure. This allows us to identify regions of downwelling and convective
vortices, both of which have a role in clustering buoyant material. The joint probability
distribution function of vertical velocity and pressure is shown in figure 8 under different
wind and convective forcing at z = −1 m. In all cases, points that have values of vertical
velocity and pressure near zero are much more common than points with extreme values.
In case I the distribution of points is highly skewed, with a long tail of values with negative
pressure. The contour at probability density level 10−4 demonstrates that there are more
points with negative pressure and negative vertical velocity. This indicates that convective
vortices experience a bias towards downwelling circulation, which is consistent with the
visualisations (figure 7d).

With wind forcing (cases II and III), the shape of the joint probability density function
(PDF) becomes more isotropic, in particular in the distribution of pressure points between
positive and negative values. The range in vertical velocity is larger in case II and III
compared with case I (note the change in axis limits). Case II has more points with low
pressure than case III, consistent with the visualisation showing well-defined convective
vortices in case II but not case III, and the very small number of vortices detected
(figure 6).
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We can analyse the mean structure of the convective vortices by superposing many
convective vortices and averaging their properties. For each time step, we identify
convective vortices using the detection method described above and average the field
centred at the vortex centre over all of the vortex centres found during one inertial period.

Figure 9 shows horizontal (a) and vertical (b) slices of the vertical velocity for the
averaged convective vortex in case I. The horizontal cross-sections are taken at z =
−1 m whilst the vertical cross-sections are taken through the centre of the averaged
convective vortex. The threshold pressure contour (red) is included along with the vectors
of horizontal velocity (black).

The averaged convective vortex is symmetric about its centre. Although the mean vortex
diameter is about 5 m based on the pressure threshold, enhanced subduction extends about
15 m from the vortex centre. Since the vortex diameter is only several times larger than the
model grid spacing, it is possible that the vortex diameter would be even smaller in higher
resolution simulations. The mean flow spirals inwards to the centre of the convective
vortex with cyclonic (counterclockwise) rotation. The peak vertical velocity occurs on
the periphery of the convective vortex and encircles a local minimum in the centre.
This is consistent with simulations of dust devils in the atmosphere (Raasch & Franke
2011; Giersch & Raasch 2021), which speculate that the decrease in vertical velocity in
the central core of an averaged vortex could indicate stagnation points or flow reversal
inside dust devils, shown schematically in Balme & Greeley (2006). Such features may be
observable in instantaneous data with higher resolution, but this is outside the scope of the
current study. Below 30 m the downwelling broadens and becomes weaker in the bottom
half of the mixed layer.

The convective vortices are maintained by vortex stretching. The vertical component
of the vortex stretching term is ω · ∇w, where ω = ∇ × u is the vorticity and w is
the vertical velocity. Figure 9(c–e) shows the vertical component of vorticity, ζ, ∂w/∂z,
and ζ × ∂w/∂z all averaged over the ensemble of convective vortices. The term ω · ∇w
is dominated by stretching of vertical vorticity (ζ × ∂w/∂z), whilst the vortex twisting
term (ζx∂w/∂x + ζy∂w/∂y) is one order of magnitude smaller and shows little coherence.
The ensemble mean is characterised by large vertical vorticity near the surface that
decreases with depth. Interestingly, the average vorticity is positive, which indicates a
bias towards cyclonic rotation as explored further below. The vertical component of the
vortex stretching term is positive in the core of the mean vortex, indicating a source of
positive vertical vorticity. Below 30 m, ∂w/∂z changes sign and there is little coherence

954 A27-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

96
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.969


J. Dingwall, T. Chor and J.R. Taylor

10

5

–5

–10

–20

0

–40

–60

–80

–20

0

–40

–60

–80

–20

0

–40

–60

–80

–20

0

–40

–60

–80

–10 –5 0 5 10

–10 –5 0 5 10 –10 –5 0 5 10 –10 –5 0 5 10

–10 –5 0 5 10

0

1.0

0.015

0.010

0.005

–0.005

–0.010

–0.015

0

0.015 2

1

1.0

0.5

–0.5

–1.0

00

–1

–2

0.010

0.005

–0.005

–0.010

–0.015

0

0.5

–0.5

–1.0

0

y 
d
is

ta
n
ce

 f
ro

m
 c

en
tr

e 
(m

)

x distance from centre (m)

x distance from centre (m) x distance from centre (m) x distance from centre (m)

x distance from centre (m)

V
er

ti
ca

l 
v
el

o
ci

ty
 (

m
 s

–
1
)

V
er

ti
ca

l 
v
o
rt

ic
it

y
 (

s–
1
)

V
er

ti
ca

l 
v
el

o
ci

ty
 (

m
 s

–
1
)

V
o
rt

ex
 s

tr
et

ch
in

g
 (

s–
2
)

d
w

/d
z (

s–
1
)

z (
m

)

z (
m

)
(×10–3)

(×10–3) (×10–5)

(a) (b)

(c) (d ) (e)

Figure 9. Horizontal cross-section of the vertical velocity at z = −1 m (a) and vertical cross-sections of the
vertical velocity (b), vertical vorticity (c), ∂w/∂z (d) and vertical vortex stretching (e) for the averaged vortex
in case I with vectors of horizontal velocity (black) and the threshold pressure contour (red).

in the vortex stretching field. The relatively small positive vorticity below 30 m is likely
maintained by advection or diffusion.

The structure of the convective vortex changes as the wind stress increases. Figure 10
shows horizontal (a–d) and vertical (e–h) cross-sections of the vertical vorticity averaged
over the ensemble of convective vortices for τ = 0 (case I), 0.01, 0.05, 0.1 Nm−2

(case II), with the buoyancy flux remaining constant (B0 = −4.24 × 10−8 m2 s−3). The
remaining simulations do not have a large enough number of convective vortices to provide
a robust average (see figure 6) and are not shown. As wind forcing increases, the horizontal
vortex structure becomes less symmetric and we observe a streak of increased vorticity
that extends from the vortex centre in the direction of wind forcing. Under these higher
wind strengths, the vortex tilts and is confined to shallower depths that is consistent with
the shearing of the convective vortices seen in figure 7. Interestingly, the magnitude of
vorticity inside the convective vortex is not strongly dependent on the strength of the wind
forcing, and the bias towards positive vorticity also persists.

Despite their small size, the convective vortices in our simulations exhibit a strong
bias towards cyclonic (counterclockwise in the northern hemisphere) rotation, suggesting
an influence from the Coriolis acceleration. The relative importance of the Coriolis
acceleration is typically quantified using the Rossby number, Ro ≡ U/( fL) ∼ ζ/f . It
is generally assumed that the planetary rotation is unimportant for processes that are
characterised by Ro � 1. Here, ζ/f > 100 within the convective vortices in case I, and
hence, the bias towards cyclonic rotation is surprising. Although there has been some
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Figure 10. Horizontal (a–d) and vertical (e–h) cross-sections of the vertical vorticity for the averaged vortex
for τ = 0, 0.01, 0.05, 0.1 Nm−2 with vectors of horizontal velocity superimposed.

debate, observations and simulations of dust devils in the atmosphere appear to indicate
that cyclonic and anticyclonic vortices form in roughly equal number (Sinclair 1965;
Balme & Greeley 2006). In the oceanic case, Chor et al. (2018a) set f = 0 and, hence,
did not explore the possibility of a cyclone/anticyclone asymmetry. Similar observations
of a rotational bias within a high Rossby regime have been recorded in experiments and
simulations of convective plumes in a rotating environment (Frank et al. 2017; Sutherland
et al. 2021).

Figure 11 shows the PDF of the vertical vorticity at z = 0 for points associated with
convective vortices (left) and for all points in the domain (right) over one inertial period.
To remove turbulent fluctuations, the vorticity at each point is averaged over a box
measuring approximately 5 m×5 m, which is a similar length scale to the diameter of
a convective vortex. In addition to cases I (τ = 0 Nm−2) and II (τ = 0.1 Nm−2), we
show the vorticity distribution for the two simulations with intermediate wind stress
τ = 0.01 Nm−2 and τ = 0.05 Nm−2, with the buoyancy flux remaining the same (B0 =
−4.24 × 10−8 m2 s−3).

In case I the PDF shows a distinct peak at ζ � ±0.015 that agrees with the ensemble
mean shown in figure 10. All cases show a bias towards cyclonic vorticity, and for
τ = 0 Nm−2 and τ = 0.01 Nm−2, there is a noticeable bias in the distribution of vorticity
for all points in the domain. As the wind stress increases, the peak in vorticity has a larger
magnitude. This is likely due to the increased standard deviation of filtered vorticity in
the stronger wind cases, leading to a larger threshold value used to identify convective
vortices.

To explain the cyclonic bias, it is useful to examine the evolution of vorticity along the
trajectory of surface particles. In the absence of friction, the vertical component of the
vorticity evaluated along the paths of Lagrangian particles at z = 0 satisfies

dζ

dt
= (ζ + f )

∂w
∂z

, (3.1)
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Figure 11. Probability density function of the vertical vorticity at z = 0 for points identified as convective
vortices (a) and all points in the domain (b).

where ζ is the vertical component of the vorticity vector and f is the constant Coriolis
parameter.

We can obtain a useful approximation if we use a constant value for ∂w/∂z
to characterise the flow within a convective vortex. In the limit when |ζ | � |f |
(corresponding to early times when particle vorticity is very small), (3.1) then yields

ζ = ζ0 + f
∂w
∂z

t, (3.2)

where ζ0 can be interpreted as the vorticity when the particle first encounters the
convective vortex.

Sutherland et al. (2021) used a similar argument, along with a scaling for ∂w/∂z, to
explain the unexpected influence of rotation on high-Rossby-number plumes in a rotating
environment observed in lab experiments reported earlier in Frank et al. (2017). Following
their arguments, we can estimate the time scale needed for a particle that initially has no
vorticity to reach a state with ζ � |f |. Using ∂w/∂z � 2 × 10−3 s−1 (figure 9d) gives a
time scale of about 8 minutes. In § 3.3 we quantify the time a particle spends inside a
convective vortex using particle statistics and find that in case I particles remain within
a convective vortex for an average of 47 mins. This suggests that particles spend enough
time within convective vortices for the planetary rotation to become important even if a
particle enters a vortex with no relative vorticity.

The argument above holds when |ζ | � |f |. However, the mean vorticity within
convective vortices greatly exceeds f (figure 10). Returning to (3.1) and taking |ζ | � f
while again using a constant value for ∂w/∂z yields solutions with exponentially increasing
vorticity,

ζ = ζ0 e(∂w/∂z)t. (3.3)

To examine the applicability of the linear and exponential solutions for vorticity, we
evaluate the vorticity along trajectories of surface particles. For each particle, the pressure
and vertical vorticity are interpolated at every time step using cubic B splines. We identify
the time when each particle enters a convective vortex as the time when the particle
pressure falls below 5σp and the particle filtered vorticity falls below 5σζ (the same
criterion as used to identify convective vortices) and remains below this threshold for
30 mins when τ = 0 Nm−2 (case I) and 10 mins when τ = 0.05 Nm−2. We then average
the vorticity sampled along each particle path as a function of time referenced to the time
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Figure 12. Average trajectory of ζ along a surface particle path against the time spent inside a convective
vortex (blue) with the exponential (red) and linear (yellow) vorticity solutions superimposed. Time t = 0
corresponds to the time at which the particle enters a convective vortex.

when the particle entered the convective vortex (labelled t = 0). Figure 12 shows the time
series of the average vorticity sampled along the surface particle paths for τ = 0 Nm−2

and τ = 0.05 Nm−2, where we also show the linear and exponential growth solutions
using ∂w/∂z = 2 × 10−3 s−1. We have verified that, for τ = 0.01 Nm−2, the time series
of the average vorticity is similar to case I, whilst for τ = 0.1 Nm−2, the particles do not
enter enough convective vortices to provide a meaningful average.

In both cases, the sudden increase in vertical vorticity just before the particle enters a
convective vortex is consistent with an exponential increase in vorticity at a rate set by the
value of ∂w/∂z given above. Even before entering a convective vortex, particles are biased
towards cyclonic vorticity from vortex stretching acting on the planetary vorticity (3.2).
During each vortex encounter, the vorticity sampled along particle paths exponentially
increases due to vortex stretching. Shortly after the particles enter the convective vortices,
the vertical vorticity saturates. It is likely that frictional dissipation (which we neglected in
(3.1)) competes with vortex stretching to prevent the relative vorticity from increasing
further. A full exploration of the dynamics of convective vortices including frictional
effects is left for a future study.

3.3. Clustering of buoyant material
In this section we analyse the influence of convective vortices on the accumulation of
buoyant material. We start by looking at the distribution of a buoyant tracer in the flow
and then analyse the trajectories of surface particles. Finally, we introduce a measure to
quantify buoyant material clustering and give an overview of clustering for all simulations.

Figure 13 shows the horizontal and vertical slices of the tracer concentration averaged
over the ensemble of convective vortices for τ = 0, 0.01, 0.05, 0.1 Nm−2. In case I the
concentration of the buoyant tracer is highest at the surface and inside the convective
vortex, and the tracer concentration decreases with distance from the vortex centre.
Interestingly, the maximum buoyant tracer concentration does not coincide with the region
of maximum downwelling (figure 9a,b) but with the maximum vorticity. The reason for
this is not clear, but we explore the relation between vertical velocity, pressure and tracer
concentration further below. Under strong wind forcing, the maximum tracer concentration
occurs upstream of the vortex centre and tracer accumulates in a horizontal streak oriented
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Figure 13. Horizontal (a–d) and vertical (e–h) cross-sections of the tracer concentration (ws = 0.005 m s−1)
for the averaged vortex for τ = 0, 0.01, 0.05, 0.1 Nm−2 with vectors showing velocity in the x–z plane
superimposed.

in the direction of wind forcing. We observe vertical shearing of the vortex similar to the
vorticity field (figure 10) and there is less tracer at depth under stronger wind forcing.

The cyclonic convective vortices are more effective at accumulating buoyant particles
than the anticyclonic vortices. To quantify this, we count the number of particles inside
each convective vortex identified using our vortex detection criterion, where a particle is
counted as being inside a vortex if it is located within a 15 × 15 grid (corresponding to
14.25 m × 14.25 m grid) centred at the vortex centre. We find that in case I the average
number of particles inside a cyclonic vortex is 23, whilst the average number of particles
inside an anticyclonic vortex is 6. This bias continues up to τ = 0.01 Nm−2 with the
buoyancy flux remaining constant (B0 = −4.24 × 10−8 m2 s−3). Beyond this, we do not
observe enough particles accumulating inside the convective vortex to give a statistically
significant result. We see a similar pattern with the tracer field. Although the average tracer
concentration (ws = 0.005 m s−1) is qualitatively similar in cyclonic and anticyclonic
convective vortices, the tracer concentration is much higher inside the cyclonic vortices
(maximum surface tracer concentration in the averaged cyclonic vortex is three times
higher than in the averaged anticyclonic vortex for case I).

In convective dominated simulations we observe buoyant material accumulating inside
convective vortices rather than downwelling regions (figures 2d and 13). Figure 14 shows
the concentration of the buoyant tracer with ws = 0.005 m s−1 at z = 0 m, averaged in
bins based on the vertical velocity and pressure at z = −1 m. In case I the buoyant tracer
has a strong tendency to accumulate in regions with negative pressure that characterise
convective vortices. This effect is dominant over the preference for particles to accumulate
in regions with negative vertical velocity. This result is in line with the findings from Chor
et al. (2018a). The large variability of tracer concentration at the edge of the distribution
is associated with averaging over a small number of points (see figure 8). Outside the
convective vortices the regions with positive vertical velocity (above 0.002 m s−1) have a
very low tracer concentration, which is consistent with the visualisation in figure 2(d).
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Figure 14. Concentration of the buoyant tracer (ws = 0.005 m s−1) at z = 0 conditioned to pairs of vertical
velocity and pressure perturbation (δp) at z = −1 m.

When wind forcing is present (cases II and III), the tracer is more uniformly
distributed across pressure and vertical velocity and there are fewer extremes in the tracer
concentration (note the difference in colour axis for these panels). In both cases there is
a distinct minimum in the tracer concentration in regions with positive vertical velocity.
When convection and wind are both present (case II), the tracer concentration is large
in regions of strong downwelling and low pressure. The notable difference in the tracer
distribution in cases I and II shows that although convective vortices are present in case
II, they are not as effective at accumulating buoyant tracers compared with the convective
vortices in case I.

Although the buoyant tracer does not accumulate as effectively inside the convective
vortices under strong wind forcing, we see accumulation inside streaks of high speed.
Figure 15(a–c) shows the concentration of the buoyant tracer with ws = 0.005 m s−1 at z =
0 m, averaged in bins based on the vertical velocity and squared horizontal speed (u2 + v2)
at z = −1 m. In case III the concentration of the buoyant tracer is highest in regions of high
speed, even when the vertical velocity is positive. In case II the tracer is more uniformly
distributed (note change in colour axis) but there are still elevated concentrations in regions
of high speed. This is consistent with the close resemblance of horizontal distribution of
speed (figure 15d–f ) and buoyant tracer (figure 2e, f ), both of which show clear streaks
with elevated speed/tracer concentration.

When wind forcing is removed (case I), there is a clear difference in tracer
distribution amongst speed and vertical velocity points. We see a distinct minimum tracer
concentration when vertical velocity is positive (similar to figure 14a). There is a small
set of points that have a high tracer concentration and large values of speed, and from
figure 15(d) we see that these correspond to convective vortices that have high speed on
the periphery.

We can use the surface particles to describe the statistics of particle encounters with
convective vortices. We calculate the time that a particle spends inside a convective vortex
based on the time that the pressure sampled along the particle path is below the threshold
value (5σp) and the filtered absolute vorticity sampled along the particle path is above the
threshold value (5σζ ). We repeat this for 4000 particles over one inertial period. We also
measure the distance that each particle is transported by the convective vortices. This is
done by calculating the Euclidean distance between the point where the particle first falls
below the pressure threshold value and the last point where the particle pressure is below
the threshold value before increasing. In a similar way, we calculate the time spent and
distance travelled by a particle outside of a convective vortex. This is the period after a
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Figure 15. Buoyant tracer concentration (ws = 0.005 m s−1) conditioned to pairs of vertical velocity and
squared horizontal speed (u2 + v2) at z = −1 m (a–c). Horizontal cross-sections of squared horizontal speed
at z = −1 m at t = 12 hours (d–f ).

Case I Case II Case III

Number of times 4000 particles enter a vortex 44 424 231 5
Mean time spent in a vortex (mins) 47 3 2
Upper centile time spent in a vortex (mins) 118 5 3
Mean distance travelled in a vortex (m) 9 2 1
Upper centile distance travelled in a vortex (m) 17 6 3

Number of times 4000 particles are outside vortex 41 984 4555 4022
Mean time spent outside a vortex (mins) 44 951 1070
Upper centile time spent outside a vortex (mins) 115 1084 1080
Mean distance travelled outside a vortex (m) 11 199 225
Upper centile distance travelled outside a vortex (m) 28 301 312

Table 2. Statistics from individual surface particle trajectories for time and distance travelled inside (upper
half) and outside (lower half) a convective vortex.

particle has just been expelled from a convective vortex (pressure or filtered vorticity are
below/above threshold values) until it next enters another convective vortex. Some key
statistics from these calculations are given in table 2 for each of the three cases.

In case I particles enter and exit convective vortices frequently. On average, particles
enter a convective vortex more than 10 times during one inertial period and particles
spend a similar amount of time inside and outside convective vortices. This latter statistic
is remarkable considering the relatively small area occupied by convective vortices (see
figure 2h). The time that particles spend in a convective vortex can be compared with
the convective time scale. This is defined as tc = h/w∗ and provides a characteristic
time scale for the mean circulation within convective cells. In case I, tc � 88 mins,
which is comparable to the average time that particles spend inside a convective vortex.
This suggests that, in this case, convective vortices trap particles for a period of time that is
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significant compared with the convective time scale. In addition, the average distance that
particles travel during periods inside and outside of convective vortices is small compared
with the 50–150 m size of convective cells (see figure 2). This suggests that convective
vortices do not travel long distances sweeping up particles as suggested in Chor et al.
(2018a), but rather that particles remain close to the convective vortices in the convective
nodes.

The addition of wind disrupts the effectiveness of convective vortices at trapping
particles, which can be seen by the contrast in statistics in cases II and III. Most particles
do not enter a convective vortex at all, and upon entering, particles spend just 2–3 mins
on average inside the convective vortices. This is much smaller than both the average time
spent outside convective vortices and the convective time scale, which is also 88 mins
for case II. In cases II and III particles travel much further outside convective vortices
than inside the vortices, and the distance travelled outside is comparable to the scale of
the wind streaks. This suggests that the dynamics outside the convective vortex are much
more important in determining particle distribution compared with case I.

A physical explanation for the clustering of surface particles inside convective vortices is
as follows. Convective vortices preferentially occur in the ‘nodes’ linking the downwelling
regions of neighbouring convection cells. Particles that are brought into the convection
nodes by convergent surface currents are pulled into the centre of the convective vortex
by the inwards spiralling flow. In pure convection and under additional weak wind forcing,
convective vortices are able to collect many neighbouring particles that, on average, remain
trapped inside the vortex for a relatively long time compared with the convective time scale
and only travel a short distance inside the vortex. When a convective vortex eventually
breaks up, it leaves behind a cluster of particles inside the convective nodes that tend to
stay close together since their local flow field is the same. The cluster may then fall into
another nearby convective vortex, which attracts additional particles and further increases
clustering.

The degree of clustering for buoyant tracers and surface particles can be quantified using
the Gini coefficient (Gini 1912). For a sample of size n where observed values yi(i =
1, . . . , n) are in non-decreasing order (yi ≤ yi+1), the Gini coefficient is defined as

G = 1
n

⎛
⎜⎜⎜⎜⎝n + 1 − 2

⎛
⎜⎜⎜⎜⎝

n∑
i=1

(n + 1 − i) yi

n∑
i=1

yi

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ . (3.4)

A Gini coefficient close to 0 indicates a uniform distribution, while a value close
to 1 indicates strong clustering. For the surface particles, we calculate the Gini
coefficient using the number of particles within boxes formed of 32 × 32 grid points
(or 31.25 m × 31.25 m) at each time step, and we average the Gini coefficient over one
inertial period. This box size has been chosen because it characterises clustering at a scale
that captures the two most extreme behaviours of our simulation: under strong convective
forcing, 31.25 m is small enough to distinguish clustering in different vortices, while under
strong wind forcing, it captures the larger-scale behaviour when there is less clustering.

Figure 16(a) shows that the Gini coefficient for surface particles decreases as the ratio
u∗/w∗ increases. The limited number of particles in our simulations implies that the
particles will not be evenly distributed between the boxes even if the particle distribution
is purely random. To quantify this and provide a baseline for comparison, we calculate
the Gini coefficient for a set of particles that have been randomly distributed. To do
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Figure 16. Ratio of u∗ and w∗ against the Gini coefficient averaged over one inertial period for surface particles
(a) and the buoyant tracer (b). The dashed line indicates the Gini coefficient for a random distribution. The
arrow indicates the Gini coefficient for case III where the ratio is infinite. (c) Parameter space coloured by Gini
coefficient for surface particles.

this, we randomly distribute 4000 particles throughout the domain and calculate the Gini
coefficient using (3.4). We repeat this process 500 times and the dashed line in figure 16(a)
indicates the average of the resulting Gini coefficients for random distributions. The
particles in the wind dominated regime (III) exhibit more clustering than would be seen
for a random distribution of the same number of particles (dashed line), suggesting that
some clustering still occurs in the wind-forced case. The ratio of u∗ and w∗ against the
Gini coefficient closely resembles the ratio of u∗ and w∗ against the instantaneous number
of vortices (figure 6) and suggests that fewer convective vortices leads to less particle
clustering.

For the buoyant tracer, we apply the Gini coefficient to the total tracer concentration
within boxes composed of 32 × 32 grid points (same clustering scale as above) at each
time step and average over one inertial period. For comparison with a random distribution
of tracer, we generate a uniformly random concentration at each grid point on the 512 ×
512 grid and calculate the Gini coefficient using (3.4), averaged over 500 samples. The slip
velocity has a significant impact on tracer clustering as can be seen in figure 16(b). Under
all forcing conditions, the strongly buoyant tracer (red) is more clustered than the weakly
buoyant tracer (blue). For the strongly buoyant tracer, the Gini coefficient trend is very
similar to that for surface particles: the Gini coefficient decreases as the wind to convection
ratio increases. The Gini coefficient for the weakly buoyant tracer is not strongly affected
by the strength of wind or convection, but the distribution is still distinct from a random
distribution of tracer (dashed line). Even in case I (u∗/w∗ = 0) the convective vortices that
effectively trap surface particles do not cause strong accumulation for the weakly buoyant
tracer.

Figure 16(c) shows the particle Gini coefficient as a function of u∗ and w∗. This enables
us to separate out the behaviour for increasing wind strength and increasing convective
forcing. Recall that the simulations are initialised with the same reference density and
mixed layer depth, and hence, changes in u∗ and w∗ (calculated with constant h = 80 m)
reflect changes in the surface wind stress and the surface buoyancy flux, respectively.

In the series of simulations with constant wind stress (vertical line of points in
figure 16c), increasing the magnitude of surface cooling leads to more clustering and a
larger Gini coefficient, while increasing the wind stress for a fixed level of convective
forcing (horizontal line of points) results in a decrease in the Gini coefficient. Although it
is tempting to draw conclusions about the value of the Gini coefficient on lines of constant
u∗/w∗, only a small section of the parameter space has been covered by our simulations.
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It remains unclear whether the Gini coefficient can be described purely as a function of
u∗/w∗.

4. Conclusions

In this study we used idealised LES to investigate the distribution of buoyant material
in the ocean under combined wind and convection forcing. Convective turbulence was
generated using a constant buoyancy flux at the surface and wind forcing was generated
using a constant shear stress boundary condition applied at the surface (z = 0). A series of
simulations were conducted with different strengths of wind and convective forcing. We
used two approaches to model buoyant particles: a continuous Eulerian tracer field with an
upwards slip velocity and Lagrangian particles that were confined to the surface. The tracer
field allowed us to look at the distribution of particles with vertical motion included, whilst
the surface particles allowed us to look at the limit where the slip velocity exceeds the
maximum flow speed. The flow dynamics and subsequent clustering of buoyant material
depend on wind and convection forcing, which we characterised with the ratio of the
frictional velocity and convective velocity u∗/w∗.

The horizontal distribution of buoyant material depends strongly on the slip velocity.
Weakly buoyant tracers are relatively uniformly distributed at the surface and are advected
deeper in the turbulent mixed layer. We used the Gini coefficient to characterise clustering
and found that clustering decreases with increasing wind strength, while it increases with
increasing convection strength. On the other hand, weakly buoyant tracers remain nearly
uniformly distributed regardless of the strength of wind or convection forcing.

In the simulations with strong convection, convective vortices form in the ‘nodes’ that
join regions of downwelling in neighbouring convective cells. In the absence of wind
forcing, convective vortices are highly effective at accumulating surface particles and
strongly buoyant tracers. Convective vortices also act to transport the buoyant tracer deep
into the mixed layer. This is consistent with the findings from Chor et al. (2018a) who
considered simulations of buoyant tracers in convection without wind forcing.

Although convective vortices survive under strong wind forcing, they become less
effective at clustering buoyant material as the wind stress increases. As wind forcing is
increased under a convective regime, we observe fewer convective vortices and a transition
from clustering inside convective vortices to clustering inside streaks of high speed. When
convective forcing is removed, the buoyant tracers remain close to the surface and some
clustering occurs due to accumulation in regions of high speed and downwelling regions.

Surprisingly, the convective vortices exhibit a bias towards cyclonic vorticity despite
their small size and the fact that they are characterised by very large Rossby numbers.
The vorticity sampled along particle paths increases exponentially as the particles enter
convective vortices. This is consistent with a simple theory for the vorticity amplification
using the vertical divergence (∂w/∂z) measured near the convective vortices. A similar
argument was put forward by Frank et al. (2017) and Sutherland et al. (2021) to explain
rotational effects on buoyant plumes from a fixed source. This might help explain how a
cyclonic bias first develops, but their assumption that |ζ | � f (small Rossby number) and
the predicted linear increase in vorticity are not consistent with our simulations.

The picture that emerges is that surface particles that accumulate in the nodes between
convection cells frequently encounter convective vortices. The first time that a particle
encounters a convective vortex, the planetary vorticity is amplified, leading to a bias
towards cyclonic vorticity. With each subsequent encounter, the relative vorticity is
‘ratcheted’ up. Eventually this increase is balanced by the removal of vorticity through
viscosity, although we have not investigated this balance and we leave this for future work.
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It is important to keep in mind potential limitations of the current study. In our
simulations, we held the surface forcing constant. In the ocean, the surface heat flux and
wind stress are often highly variable, and this variability could impact the distribution
of buoyant material. Here, we also focused solely on the effects of convection and
wind-driven turbulence and neglected many other processes that are active in the upper
ocean, notably surface waves and Langmuir circulation, mesoscale and submesoscale
eddies, and density fronts. Future work could examine the relative importance of
convective vortices in the presence of these processes.
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Appendix A

We examine the influence of horizontal grid resolution on the flow dynamics for two
simulations: pure convection (case I) and pure wind (case III). The horizontal resolution
is varied from 0.5–2 m, whilst all other parameters in the simulations, including vertical
resolution, are kept the same. To reach a 0.5 m resolution without the simulation being too
computationally expensive, we reduce the domain size to 250 m and use a 512 × 512 point
grid. Since convective cells are approximately 50–150 m in diameter and wind streaks are
even smaller, this is still large enough to capture the flow dynamics. All quantities are
averaged over one inertial period.

Figure 17 shows the resolution dependence of the r.m.s. vertical velocity (a) and pressure
(c) at z = −1 m for pure wind (black) and pure convection (red). In case I the dependence
of the r.m.s. vertical velocity on resolution is small.

In case III, increasing the resolution causes a significant increase in the r.m.s. vertical
velocity and r.m.s. pressure. Our simulations do not have sufficiently high resolution to
capture all turbulent motions that develop close to the boundary at z = 0. For example,
near-wall streaks develop in shear-driven turbulent boundary layers with a characteristic
wavelength of λ � 100u∗/ν (Smith & Metzler 1983). For u∗ = 0.01 m s−1 and ν =
10−6 m2 s−1, this gives λ � 1 cm that is far too small to be resolved with our 1 m
grid spacing. As the resolution is increased, we anticipate that more of the near-wall
turbulent structures will be resolved in the simulations. Here however, we are interested in
accumulation at a much larger scale (in § 3.3 we quantify clustering on a 31.25 m scale).

Figure 17(b) shows the dependence of the r.m.s. vertical velocity at z = −30 m. In both
cases I and III, the r.m.s. vertical velocity is weakly dependent on grid spacing. This is
because the additional small-scale structures that feature under wind forcing only occur
near the surface.

The random displacement model that we add to the particle motion equations helps
compensate for the unresolved wind-driven turbulence. In § 3.3 we introduce the Gini
coefficient to quantify particle clustering and we use the same quantity to check particle
convergence, which can be seen in figure 17(d). In the case of the highest resolution,
our domain size is reduced to 250 m and for a comparable particle distribution, we tile
four 250 m domains together in a 500 m × 500 m square with 1000 particles on each tile.
We find that in case I the Gini coefficient is insensitive to grid spacing. In case III the
Gini coefficient decreases by 26 % for the highest resolution. This is due to either missing
larger-scale flow structures that are not present in the smaller domain size or additional
small-scale structures that are resolved only on the highest resolution grid.
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Appendix B

The 2-D Okubo parameter, Q, is defined as

Q =
[(

∂u
∂x

− ∂v

∂y

)2

+
(

∂u
∂y

+ ∂v

∂x

)2

−
(

∂v

∂x
− ∂u

∂y

)2
]

z=0

. (B1)

Regions with Q > 0 tend to be strain dominated, whilst regions with Q < 0 can be
understood as being vorticity dominated. Chor et al. (2018a) identified convective vortices
as regions with extreme negative Q. Figure 18 shows the joint PDF of the Okubo parameter
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and pressure. In all cases, points with the most negative values of the Okubo parameter also
have negative pressure. Under strong wind forcing, there are some points (figure 18b,c)
that have negative pressure but a near-zero Okubo parameter. These may characterise
horizontal vortices that form under wind shear and are not classified as vortices by the
2-D Okubo parameter.
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