

On the metric dimension of circulant graphs

Rui Gao, Yingqing Xiao, and Zhanqi Zhang

Abstract. In this note, we bound the metric dimension of the circulant graphs $C_n(1, 2, ..., t)$. We shall prove that if n = 2tk + t and if t is odd, then dim $(C_n(1, 2, ..., t)) = t + 1$, which confirms Conjecture 4.1.1 in Chau and Gosselin (2017, *Opuscula Mathematica* 37, 509–534). In Vetrík (2017, *Canadian Mathematical Bulletin* 60, 206–216; 2020, *Discussiones Mathematicae*. Graph Theory 40, 67–76), the author has shown that dim $(C_n(1, 2, ..., t)) \le t + \left\lfloor \frac{p}{2} \right\rfloor$ for n = 2tk + t + p, where $t \ge 4$ is even, $1 \le p \le t + 1$, and $k \ge 1$. Inspired by his work, we show that dim $(C_n(1, 2, ..., t)) \le t + \left\lfloor \frac{p}{2} \right\rfloor$ for n = 2tk + t + p, where $t \ge 5$ is odd, $2 \le p \le t + 1$, and $k \ge 2$.

1 Introduction

Let G = (V(G), E(G)) be a simple undirected connected graph. The distance d(u, v) between two vertices u and v in G is the length of a shortest path between these two vertices. For an ordered set $W = \{w_1, \ldots, w_k\}$ of k distinct vertices of G, we refer to the k-tuple $r(v|W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_k))$ as the metric representation of a vertex v with respect to W. The set W is called a *resolving set* of G if r(u|W) = r(v|W) implies that u = v for all $u, v \in V(G)$. A resolving set containing a minimum number of vertices is called a *metric basis* of G, and its cardinality the *metric dimension* of G, denoted by dim(G).

Motivated by the problem of uniquely determining the location of an intruder in a network, Slater introduced the notion of metric dimension of a graph in [9], where the resolving sets were referred to as locating sets. Harary and Melter also introduced the idea of the metric dimension of a graph in [5]. It was proved that the metric dimension is an NP-hard graph invariant [8] and has been widely investigated in the last 55 years and it also has applications in many diverse areas [6, 7].

This note is devoted to the study of the metric dimension of circulant graphs. Let *n*, *t*, and a_1, a_2, \ldots, a_t be positive integers so that $1 \le a_1 < a_2 < \cdots < a_t \le \lfloor \frac{n}{2} \rfloor$. The circulant graph $C_n(a_1, a_2, \ldots, a_t)$ consists of a vertex set $\{v_0, v_1, \ldots, v_{n-1}\}$ and an edge set $\{v_i v_{i+a_j} : 0 \le i \le n-1, 1 \le j \le t\}$, where the indices are taken modulo *n*. The numbers a_1, a_2, \ldots, a_t are called *generators*. We restrict our attention to special kinds of circulant graphs, i.e., the circulant graphs $C_n(1, 2, \ldots, t)$ with consecutive

Received by the editors February 28, 2023; revised September 18, 2023; accepted September 22, 2023. Published online on Cambridge Core September 28, 2023.

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2021QG036).

AMS subject classification: 05C35, 05C12.

Keywords: Metric dimension, resolving set, circulant graph, distance.

generators. In [1], Borchert and Gosselin studied the metric dimension of $C_n(1,2)$ and $C_n(1,2,3)$, and obtained that for $n \ge 6$,

$$\dim(C_n(1,2)) = \begin{cases} 4, & \text{for } n \equiv 1 \mod 4, \\ 3, & \text{otherwise,} \end{cases}$$

and that for $n \ge 8$,

$$\dim(C_n(1,2,3)) = \begin{cases} 5, & \text{for } n \equiv 1 \mod 6, \\ 4, & \text{otherwise.} \end{cases}$$

In [3, 11], the authors studied the metric dimension of $C_n(1, 2, 3, 4)$, and obtained that for $n \ge 20$,

$$\dim(C_n(1,2,3,4)) = \begin{cases} 6, & \text{for } n \equiv 0,1,7 \mod 8, \\ 5, & \text{for } n \equiv 2,3,5,6 \mod 8, \\ 4, & \text{for } n \equiv 4 \mod 8. \end{cases}$$

For the results concerning dim $(C_n(1, 2, ..., t))$ with arbitrary integers $t \ge 5$, the reader may refer to [2, 4, 10, 12].

We shall assume throughout this note that n = 2tk + r, where $t \ge 4$, $k \ge 2$, and $2 \le r \le 2t + 1$. When $t \le r \le 2t + 1$, we may also assume n = 2tk + t + p, where $0 \le p \le t + 1$. It is known that the distance between two vertices v_i and v_j in $C_n(1, 2, ..., t)$ is

(1.1)
$$d(v_i, v_j) = \min\left\{ \left\lceil \frac{|i-j|}{t} \right\rceil, \left\lceil \frac{n-|i-j|}{t} \right\rceil \right\}$$

and that the diameter of $C_n(1, 2, ..., t)$ is d := k + 1.

Here, we set forth our notation and terminology. Let W and V be subsets of vertices in $G = C_n(1, 2, ..., t)$, where V consists of at least two vertices. A vertex w is said to *resolve* a pair of vertices u and v if $d(u, w) \neq d(v, w)$. W is said to *distinguish* V if for any pair of distinct vertices u and v in V, there exists a vertex in W which can resolve u and v. It is easy to see that if W can distinguish V(G), then it is a resolving set of G. Vertices $v_{i+1}, v_{i+2}, \ldots, v_{i+s}$ with consecutive indices are called the *consecutive vertices*. The *outer cycle* of the circulant graph is a spanning subgraph of G in which the vertex v_i is adjacent to exactly the vertices v_{i+1} and v_{i-1} . When r = 2, the unique vertex that has distance k + 1 from w will be called the *opposite vertex* of w, and is denoted by w', and we can then define $W' := \{w' : w \in W\}$ for the vertex set W.

2 Lower bounds

This section deals with the lower bounds for dim $(C_n(1, 2, ..., t))$. In [2, 10], the authors have shown that when $3 \le r \le t$ and *n* is sufficiently large, dim $(C_n(1, 2, ..., t))$ has a lower bound of *t*.

Theorem 2.1 ([10, Theorem 2.3]) Let n = 2tk + r where $3 \le r \le t$, and $n \ge t^2 + 1$. Then $\dim(C_n(1, 2, ..., t)) \ge t$.

Theorem 2.3 improves their result. We begin with the following lemma.

Lemma 2.2 Suppose that r = t, and that $2 \le x \le t$. If a vertex set W can distinguish x consecutive vertices, then the cardinality of W is at least x - 1.

Proof Without loss of generality, assume that *W* can distinguish $V = \{v_1, v_2, \ldots, v_x\}$. Let W_1 be the intersection of *W* and *V*, and *p* the cardinality of W_1 . We can assume $p \le x - 2$, and then assume $V \setminus W_1 = \{v_{i_1}, \ldots, v_{i_{x-p}}\}$, where $i_1 < \cdots < i_{x-p}$. It follows that $W \setminus W_1$ can distinguish x - p - 1 pairs of vertices $(v_{i_1}, v_{i_2}), \ldots, (v_{i_{x-p-1}}, v_{i_{x-p}})$. Suppose $w_j \in W \setminus W_1$ can resolve $(v_{i_j}, v_{i_{j+1}})$ for each such *j*, then it can resolve two consecutive vertices in the $v_{i_j} - v_{i_{j+1}}$ path of the outer cycle, say $v_{i'_j}$ and $v_{i'_j+1}$. Since r = t, and since the distance between v_{i_1} and $v_{i'_j}$ on the outer cycle is no more than t - 2, it follows from equation (1.1) that $d(v_{i_1}, w_j) = d(v_{i_{1+1}}, w_j) = \cdots = d(v_{i'_j}, w_j)$, and thus none of the pairs $(v_{i_1}, v_{i_2}), \ldots, (v_{i_{j-1}}, v_{i_j})$ can be resolved by w_j . A similar argument shows that none of the pairs $(v_{i_{j+1}}, v_{i_{j+2}}), \ldots, (v_{i_{x-p-1}}, v_{i_{x-p}})$ can be resolved by w_j . Therefore, any vertex in $W \setminus W_1$ resolving one of the pairs $(v_{i_1}, v_{i_2}), \ldots, (v_{i_{x-p-1}}, v_{i_{x-p}})$ can be the ast x - p - 1 vertices, and so $\sharp(W) \ge x - 1$.

Theorem 2.3 Let n = 2tk + t where t is odd. Then $\dim(C_n(1, 2, ..., t)) \ge t + 1$.

Proof Let *W* be a resolving set of the graph $C_n(1, 2, ..., t)$. Suppose on the contrary that $\sharp(W) = t$. We can assume $v_0 \in W$.

Let us first show that $W \cap \{v_{i-tk}, v_{i+tk}\} \neq \emptyset$ holds for each vertex $v_i \in W$. Suppose on the contrary that there exists a vertex $v_j \in W$ with $W \cap \{v_{j-tk}, v_{j+tk}\} = \emptyset$, since the circulant graph $C_n(1, 2, ..., t)$ is vertex-transitive, and we may take j = 0. Let $p \ge 0$ be such that $v_{n-0}, v_{n-1}, ..., v_{n-p}$ all belong to W while $v_{n-p-1} \notin W$, and let $q \ge 0$ be such that $v_0, v_1, ..., v_q$ all belong to W while $v_{q+1} \notin W$. It is easy to see that $p + q \le t - 1$. Set $W_1 = \{v_{n-p}, v_{n-p+1}, ..., v_q\}$. Then there is a vertex $w \in W \setminus W_1$ that resolves v_{n-p-1} and v_{q+1} . If p + q = t - 1, then W consists of at least t + 1 vertices, leading to the contradiction. Suppose now that $p + q \le t - 2$. One can verify that there are two consecutive vertices v_i and v_{i+1} in the $v_{n-p-1} - v_{q+1}$ path of the outer cycle, which can be resolved by w. By symmetry, we can assume $n - t + 1 \le i \le n - 1$.

First, consider the case $n - t + 1 \le i \le n - 2$. Note that $\{v_{i+1}, v_{i+2}, \ldots, v_n\} \subset W_1$, and that $W \setminus (\{v_{i+1}, v_{i+2}, \ldots, v_n\} \cup \{w\})$ can distinguish $\{v_{n-t}, v_{n-t+1}, \ldots, v_i\}$, which consists of i + t + 1 - n vertices. It follows from Lemma 2.2 that $W \setminus (\{v_{i+1}, v_{i+2}, \ldots, v_n\} \cup \{w\})$ has at least i + t - n vertices, and therefore $\sharp(W) \ge t + 1$, a contradiction.

Next, consider the case where i = n - 1. Since $w \notin \{v_{n-1}, v_0, v_{kt}\}$, and since r = t, it follows from equation (1.1) that vertices $v_{n-t}, v_{n-t+1}, \ldots, v_{n-1}$ have equal distance to w. Hence, $W \setminus \{v_0, w\}$ can distinguish $\{v_{n-t}, v_{n-t+1}, \ldots, v_{n-1}\}$, and applying Lemma 2.2, $W \setminus \{v_0, w\}$ has at least t - 1 vertices, and therefore W consists of at least t + 1 vertices, which is a contradiction.

We have already verified that $W \cap \{v_{i-tk}, v_{i+tk}\} \neq \emptyset$ holds for each vertex $v_i \in W$. We now claim that $|W \cap \{v_{i-tk}, v_{i+tk}\}| = 1$ holds for each vertex $v_i \in W$. Suppose on the contrary that there is a vertex $v_j \in W$ with $\{v_{j-tk}, v_{j+tk}\} \subset W$, and we may also take j = 0. Then $W \setminus \{v_0, v_{kt}, v_{n-kt}\}$ can distinguish $\{v_{kt+1}, v_{kt+2}, \dots, v_{kt+t-1}\}$, and applying Lemma 2.2, $W \setminus \{v_0, v_{kt}, v_{n-kt}\}$ consists of at least t - 2 vertices, and so $\sharp(W) \ge t + 1$, a contradiction.

In conclusion, for each vertex $w \in W$, there exists exactly one vertex, say w_1 , in W such that w_1 has distance kt from w on the outer cycle, and we say $\{w, w_1\}$ form a "pair" in W. It is easy to see that these "pairs" in W are pairwise disjoint. Hence, the cardinality of W is even, which contradicts the assumption that $\sharp(W) = t$ is odd.

In what follows, we shall discuss the case where $r \in \{2\} \cup \{t + 1, t + 2, ..., 2t + 1\}$. The following lemma will be needed in the sequel.

Lemma 2.4 Suppose that $r \in \{2\} \cup \{t+1, t+2, ..., 2t+1\}$ and that $2 \le x \le t$. If a vertex set W can distinguish x vertices which come from a clique of x + 1 consecutive vertices, then the cardinality of W is at least x - 1.

Proof Suppose that v_{i_1}, \ldots, v_{i_x} come from a clique of x + 1 consecutive vertices, where $i_1 < i_2 < \cdots < i_x$, and suppose that *W* can distinguish them.

We first deal with the case where $r \in \{t + 1, t + 2, ..., 2t + 1\}$. Let $V = \{v_{i_1}, ..., v_{i_x}\}$, and let W_1 be the intersection of W and V, and p the cardinality of W_1 . We can assume $p \le x - 2$, and then assume $V \setminus W_1 = \{v_{j_1}, ..., v_{j_{x-p}}\}$, where $j_1 < \cdots < j_{x-p}$. It follows that $W \setminus W_1$ can distinguish x - p - 1 pairs of vertices $(v_{j_1}, v_{j_2}), ..., (v_{j_{x-p-1}}, v_{j_{x-p}})$.

We remark that since $t + 1 \le r \le 2t + 1$, if a vertex *w* can resolve two consecutive vertices v_i and v_{i+1} , and if $w \ne v_i$, v_{i+1} , then it follows from equation (1.1) that

$$d(w, v_{i-t+1}) = d(w, v_{i-t+2}) = \dots = d(w, v_i)$$

and

$$d(w, v_{i+1}) = d(w, v_{i+2}) = \cdots = d(w, v_{i+t}).$$

This remark shows that any vertex in $W \setminus W_1$ resolving one of the pairs of vertices $(v_{j_1}, v_{j_2}), \ldots, (v_{j_{x-p-1}}, v_{j_{x-p}})$ cannot resolve the other, implying $W \setminus W_1$ consists of at least x - p - 1 vertices, and therefore $\sharp(W) \ge x - 1$.

Let us turn to the case where r = 2. Let $V' = \{v'_{i_1}, \dots, v'_{i_x}\}$, and let W_2 be the intersection of W and V'. Denote by q the cardinality of W_2 . We can assume that $p + q \le x - 2$, and then assume $V \setminus (W_1 \cup W'_2) = \{v_{j_1}, \dots, v_{j_s}\}$, where $j_1 < \dots < j_s$ and $s \ge x - p - q$. It follows that $W \setminus (W_1 \cup W_2)$ can distinguish s - 1 pairs of vertices $(v_{j_1}, v_{j_2}), \dots, (v_{j_{s-1}}, v_{j_s})$. Similarly, any vertex in $W \setminus (W_1 \cup W_2)$ resolving one of these pairs cannot resolve the other, implying $W \setminus (W_1 \cup W_2)$ consists of at least s - 1 vertices, and therefore $\sharp(W) \ge x - 1$.

The authors showed in [2] that dim $(C_n(1, 2, ..., t))$ has a lower bound of t + 1 if $r \in \{2\} \cup \{t + 1, t + 2, ..., 2t\}$. We provide an alternate proof.

Theorem 2.5 ([2, Theorem 2.7]) Let n = 2tk + r where $r \in \{2\} \cup \{t + 1, t + 2, ..., 2t\}$. Then dim $(C_n(1, 2, ..., t)) \ge t + 1$.

Proof It is sufficient to show that any resolving set *W* of the graph $C_n(1, 2, ..., t)$ has at least t + 1 vertices. Without loss of generality, we assume $v_0 \in W$.

Let us first discuss the case where $r \in \{t + 1, t + 2, ..., 2t\}$. Let $p \ge 0$ be such that $v_{n-0}, v_{n-1}, ..., v_{n-p}$ all belong to W while $v_{n-p-1} \notin W$, and let $q \ge 0$ be such that $v_0, v_1, ..., v_q$ all belong to W while $v_{q+1} \notin W$. We can assume $p + q \le t - 1$. Set $W_1 = \{v_{n-p}, v_{n-p+1}, ..., v_q\}$. Then there is a vertex $w \in W \setminus W_1$ that resolves v_{n-p-1} and v_{q+1} , and therefore there exist two consecutive vertices v_i and v_{i+1} in the $v_{n-p-1} - v_{q+1}$ path of the outer cycle which can be resolved by w. By symmetry, assume $0 \le i \le q$. Since $r \ge t + 1$, it follows from equation (1.1) that $v_{i+1}, v_{i+2}, ..., v_t$ have equal distance to w. Hence, $W \setminus (W_1 \cup \{w\})$ can distinguish $\{v_{q+1}, ..., v_{t-p}\}$, which consists of t - p - q consecutive vertices. Applying Lemma 2.4, $W \setminus (W_1 \cup \{w\})$ has at least t - p - q - 1 vertices, and thus W has at least t + 1 vertices.

The proof for the case where r = 2 is analogous to that for the preceding case. We first note that the definitions of p and q are changed, that is, let $p \ge 0$ be such that $v_{n-0}, v_{n-1}, \ldots, v_{n-p}$ all belong to the union of W and W' while $v_{n-p-1} \notin W \cup W'$, and $q \ge 0$ such that v_0, v_1, \ldots, v_q all belong to the union of W and W' while $v_{q+1} \notin W \cup W'$. Set

$$W_{2} = \left(\left\{ v_{n-p}, v_{n-p+1}, \dots, v_{q} \right\} \cup \left\{ v_{n-p}^{'}, v_{n-p+1}^{'}, \dots, v_{q}^{'} \right\} \right) \cap W,$$

where $\#(W_2) \ge p + q + 1$. An entirely similar argument shows that there is a vertex $w \in W \setminus W_2$ that resolves v_{n-p-1} and v_{q+1} , and that $W \setminus (W_2 \cup \{w\})$ has at least t - p - q - 1 vertices, implying $\#(W) \ge t + 1$.

In [2], the authors have shown that when r = 2t + 1, dim $(C_n(1, 2, ..., t))$ has a lower bound of t + 2. We provide an alternate proof.

Theorem 2.6 ([2, Theorem 2.17]) Let n = 2tk + 2t + 1. Then $\dim(C_n(1, 2, ..., t)) \ge t + 2$.

Proof It is sufficient to show that any resolving set *W* for the graph $C_n(1, 2, ..., t)$ has at least t + 2 vertices. Without loss of generality, we assume $v_0 \in W$. The only vertices that can resolve v_{dt} and v_{dt+1} are

$$v_{n-t}, v_{n-2t}, \dots, v_{n-dt} = v_{dt+1}, v_{dt}, v_{dt-t}, \dots, v_t$$

By symmetry, we assume $v_{n-pt} \in W$, where $p \in \{1, 2, ..., d\}$. We shall consider two cases.

Case 1 ($p \le k$): The only vertices that can resolve v_{dt+1} and v_{dt+2} are

$$v_{n+1-t}, v_{n+1-2t}, \dots, v_{n+1-dt} = v_{dt+2}, v_{dt+1}, v_{dt+1-t}, \dots, v_{t+1}.$$

If $v_{qt+1} \in W$ for some $q \in \{1, ..., d\}$, one can easily verify that $\{v_0, v_{qt+1}, v_{n-pt}\}$ cannot distinguish any pair of vertices in $\{v_1, v_2, ..., v_t\}$. It follows from Lemma 2.4 that $W \setminus \{v_0, v_{qt+1}, v_{n-pt}\}$ has at least t-1 vertices, which confirms the assertion. If $v_{n+1-qt} \in W$ for some $q \in \{1, ..., d\}$, it is easy to see that $\{v_0, v_{n+1-qt}, v_{n-pt}\}$ cannot distinguish any pair of vertices in $\{v_{(d-q)t+1}, v_{(d-q)t+2}, ..., v_{(d-q+1)t}\}$, and according to Lemma 2.4, $W \setminus \{v_0, v_{n+1-qt}, v_{n-pt}\}$ has at least t-1 vertices, and therefore W has at least t+2 vertices.

Case 2 (p = d): The only vertices that can resolve v_{kt+1} and v_{kt+2} are

$$v_{n+1-2t}, \ldots, v_{n+1-dt}, v_{n+1-dt-t} = v_{kt+2}, v_{kt+1}, v_{kt+1-t}, \ldots, v_1.$$

If $v_{qt+1} \in W$ for some $q \in \{1, 2, ..., k\}$, one can verify that $\{v_0, v_{qt+1}, v_{n-dt}\}$ cannot distinguish any pair of vertices in $\{v_1, v_2, ..., v_t\}$. If $v_{n+1-qt} \in W$ for some $q \in \{2, 3, ..., d\}$, one can verify that $\{v_0, v_{n+1-qt}, v_{n-dt}\}$ cannot distinguish any pair of vertices in $\{v_{(d-q)t+1}, v_{(d-q)t+2}, ..., v_{(d-q+1)t}\}$. If $v_{kt+2} \in W$, then it is easy to see that $\{v_0, v_{kt+2}, v_{n-dt}\}$ cannot distinguish any pair of vertices in $\{v_{n-(t-1)}, ..., v_{n-2}, v_{n-1}, v_1\}$, which consists of t vertices coming from a clique of t + 1 consecutive vertices. If $v_1 \in W$, then $\{v_0, v_1, v_{n-dt}\}$ cannot distinguish any pair of vertices in $\{v_{dt}, v_{dt+2}, v_{dt+3}, ..., v_{dt+t}\}$. In both cases, it follows quickly from Lemma 2.4 that W has at least (t-1) + 3 = t + 2 vertices. The proof is complete.

3 Upper bounds

This section is devoted to the study of upper bounds for $\dim(C_n(1, 2, ..., t))$. The following three theorems provide a great deal of useful information about this topic.

Theorem 3.1 ([4, Theorem 2.9]) Let n = 2tk + r where $2 \le r \le t + 1$. Then dim $(C_n(1, 2, ..., t)) \le t + 1$.

Theorem 3.2 ([10, Theorem 2.1 and Theorem 2.2]) Let n = 2tk + t + p where t and p are both even, and $0 \le p \le t$. Then

$$\dim(C_n(1,2,\ldots,t)) \leq t + \frac{p}{2}$$

Theorem 3.3 ([12, Theorem 5]) Let n = 2tk + t + p where t is even, p is odd, and $1 \le p \le t + 1$. Then

$$\dim(C_n(1,2,\ldots,t)) \leq t + \frac{p+1}{2}$$

Motivated by the work of Vetrík, we provide an upper bound on the metric dimension of $C_n(1, 2, ..., t)$, where *t* is odd and $r \ge t + 2$.

Theorem 3.4 Let n = 2tk + t + p where t is odd, p is even, and $2 \le p \le t + 1$. Then

$$\dim(C_n(1,2,\ldots,t))\leq t+\frac{p}{2}.$$

Proof Let

$$W_1 = \{v_0, v_2, \dots, v_{t-1}\}$$
 and $W_2 = \{v_{kt}, v_{kt+2}, v_{kt+4}, \dots, v_{kt+t+p-3}\},\$

where $\sharp(W_1) = \frac{t+1}{2}$ and $\sharp(W_2) = \frac{t+p-1}{2}$. Let us show that $W = W_1 \cup W_2$ is a resolving set of the graph $C_n(1, 2, ..., t)$. Divide the vertex set of $C_n(1, 2, ..., t)$ into four disjoint sets:

$$V_1 = \{v_0, v_1, \dots, v_t\}, V_2 = \{v_{t+1}, v_{t+2}, \dots, v_{kt-1}, v_{kt}\}, V_3 = \{v_{kt+1}, v_{kt+2}, \dots, v_{kt+t+p-2}, v_{kt+t+p-1}\}, V_4 = \{v_{kt+t+p}, v_{kt+t+p+1}, \dots, v_{n-2}, v_{n-1}\}.$$

We claim that any pair of distinct vertices $u \in V_{r_1}$ and $v \in V_{r_2}$ have different metric representations with respect to W. We need only consider the following six cases, since in other cases, it is easy to check that v_0 can resolve u and v.

Case 1 $(r_1 = r_2 = 1)$: It suffices to prove that no two vertices in $V_1 \setminus W_1 = \{v_j : j = 1, 3, ..., t\}$ have the same metric representation with respect to $W_{21} := \{v_{kt+2}, v_{kt+4}, ..., v_{kt+t-1}\}$; W_{21} is obviously a subset of W_2 . We observe that for j = 1, 3, ..., t, $r(v_j | W_{21}) = (k, ..., k, k+1, ..., k+1)$, of which the first $\frac{j-1}{2}$ entries are equal to k, and the other $\frac{t-j}{2}$ entries are equal to k + 1, the desired result follows.

Case 2 ($r_1 = r_2 = 2$): For x = 1, ..., k - 1 and j = 1, 2, ..., t, the metric representation of $v_{tx+j} \in V_2$ with respect to W_1 is

$$r(v_{tx+j}|W_1) = (\underbrace{x+1,\ldots,x+1}_{\left\lceil \frac{j}{2} \right\rceil},\underbrace{x,\ldots,x}_{\frac{t+1}{2} - \left\lceil \frac{j}{2} \right\rceil}).$$

Hence, the only vertices in V_2 with the same metric representations with respect to W_1 are the pairs (v_{tx+j-1}, v_{tx+j}) , where j = 2, 4, ..., t - 1 and x = 1, 2, ..., k - 1. Since v_{kt+j} belongs to W_2 for each $j \in \{2, 4, ..., t - 1\}$, and since

$$d(v_{kt+i}, v_{tx+i-1}) = k - x + 1$$
 and $d(v_{kt+i}, v_{tx+i}) = k - x$,

it follows that W_2 can distinguish all these pairs.

Case 3 ($r_1 = r_2 = 3$): Note that

$$r(v_{kt+j}|W_1) = (\underbrace{k+1, \dots, k+1}_{j}, \underbrace{k, \dots, k}_{j}) \text{ for } j = 1, 2, \dots, t-1,$$

$$r(v_{kt+j}|W_1) = (k+1, \dots, k+1) \text{ for } j = t, t+1, \dots, t+p-1.$$

Write $u = v_{kt+j_1}$ and $v = v_{kt+j_2}$. We need only consider the following two subcases, since in other cases, $v_{t-1} \in W_1$ can already resolve *u* and *v*.

Case 3.1 ($j_1 < t$, $j_2 < t$): In this case, the only vertices with the same metric representations with respect to W_1 are the pairs (v_{kt+j-1}, v_{kt+j}), where j = 2, 4, ..., t - 1. Since W_2 contains v_{kt+j} for each $j \in \{2, 4, ..., t - 1\}$, it follows that W_2 can distinguish these pairs.

Case 3.2 $(j_1 \ge t, j_2 \ge t)$: Recalling the construction of W_2 , we need only show that no two vertices in $\{v_{kt+t+j} : j = 0, 2, ..., p-2\} \cup \{v_{kt+t+p-1}\}$ have the same metric representation with respect to $W_{22} := \{v_{kt}, v_{kt+2}, ..., v_{kt+p-2}\}$; W_{22} is obviously a subset of W_2 . We observe that $r(v_{kt+t+j}|W_{22}) = (2, ..., 2, 1, ..., 1), j = 0, 2, ..., p-2$, of which the first $\frac{j}{2}$ entries are equal to 2 and the other $\frac{p-j}{2}$ entries are equal to 1, and that all the distances from $v_{kt+t+p-1}$ to the vertices in W_{22} are 2; the desired result follows.

Case 4 $(r_1 = r_2 = 4)$: It is not difficult to see that for x = 1, 2, ..., k and j = 0, 1, ..., t - 1, the metric representation of $v_{n-tx+j} \in V_4$ with respect to W_1 is

$$r(v_{n-tx+j}|W_1) = (\underbrace{x, \dots, x}_{|\frac{j}{2}|+1}, \underbrace{x+1, \dots, x+1}_{\frac{t-1}{2}-|\frac{j}{2}|}).$$

Thus, the only vertices in V_4 with the same metric representations with respect to W_1 are the pairs $(v_{n-tx+j}, v_{n-tx+j+1})$, where j = 0, 2, ..., t-3 and x = 1, 2, ..., k. Since $v_{n-kt-t+j}$ belongs to W_2 for each $j \in \{0, 2, ..., t-3\}$, and since

$$d(v_{n-kt-t+j}, v_{n-tx+j}) = k+1-x$$
 and $d(v_{n-kt-t+j}, v_{n-tx+j+1}) = k+2-x$,

it follows that W_2 can distinguish these pairs.

Case 5 ($r_1 = 1$, $r_2 = 4$): The distances from the vertices in V_1 to v_{kt} are at most k, and the distances from the vertices in V_4 to v_{kt} are k + 1, and therefore v_{kt} can resolve u and v.

Case 6 ($r_1 = 2$, $r_2 = 4$): In this case, it is clear that the only vertices with the same metric representations with respect to W_1 are the pairs (v_{tx+t}, v_{n-tx-1}), where x = 1, 2, ..., k - 1. Since

$$d(v_{kt}, v_{tx+t}) = k - x - 1$$
 and $d(v_{kt}, v_{n-tx-1}) = k - x + 2$,

it follows that $v_{kt} \in W_2$ can resolve all these pairs.

Theorem 3.5 Let n = 2tk + t + p where t and p are both odd, and $3 \le p \le t$. Then

$$\dim(C_n(1,2,\ldots,t))\leq t+\frac{p-1}{2}.$$

Proof Let

$$W_1 = \{v_0, v_2, \dots, v_{t-1}\}, W_2 = \{v_{n-(t-1)}, v_{n-(t-3)}, \dots, v_{n-2}\}, W_3 = \{v_{kt+1}, v_{kt+3}, \dots, v_{kt+p-2}\},\$$

where $\sharp(W_1) = \frac{t+1}{2}$, $\sharp(W_2) = \frac{t-1}{2}$, and $\sharp(W_3) = \frac{p-1}{2}$. Let us show that $W = W_1 \cup W_2 \cup W_3$ is a resolving set of the graph $C_n(1, 2, ..., t)$. As before, divide the vertex set of $C_n(1, 2, ..., t)$ into four disjoint sets:

$$V_1 = \{v_0, v_1, \dots, v_t\}, V_2 = \{v_{t+1}, v_{t+2}, \dots, v_{kt-1}, v_{kt}\}, V_3 = \{v_{kt+1}, v_{kt+2}, \dots, v_{kt+t+p-2}, v_{kt+t+p-1}\}, V_4 = \{v_{kt+t+p}, v_{kt+t+p+1}, \dots, v_{n-2}, v_{n-1}\}.$$

We claim that any pair of distinct vertices $u \in V_{r_1}$ and $v \in V_{r_2}$ have different metric representations with respect to *W*, and only consider six cases.

Case 1 ($r_1 = r_2 = 1$): We need only show that no two vertices in $V_1 \setminus W_1 = \{v_j : j = 1, 3, ..., t\}$ have the same metric representation with respect to W_2 . Observe that for $j = 1, 3, ..., t, r(v_j | W_2) = (2, ..., 2, 1, ..., 1)$, of which the first $\frac{j-1}{2}$ entries are equal to 2, and the other $\frac{t-j}{2}$ entries are equal to 1, the desired result follows.

Case 2 ($r_1 = r_2 = 2$): It is easy to verify that, for x = 1, ..., k - 1 and j = 1, 2, ..., t, the metric representation of $v_{tx+j} \in V_2$ with respect to W_1 is

$$r(v_{tx+j}|W_1) = (\underbrace{x+1,\ldots,x+1}_{\left\lceil \frac{j}{2} \right\rceil},\underbrace{x,\ldots,x}_{\frac{t+1}{2} - \left\lceil \frac{j}{2} \right\rceil}).$$

Hence, the only vertices in V_2 with the same metric representations with respect to W_1 are the pairs (v_{tx+j}, v_{tx+j+1}) , where j = 1, 3, ..., t - 2 and x = 1, 2, ..., k - 1. Since

 v_{n-t+j} belongs to W_2 for each $j \in \{1, 3, \dots, t-2\}$, and since

$$d(v_{n-t+j}, v_{tx+j}) = x + 1$$
 and $d(v_{n-t+j}, v_{tx+j+1}) = x + 2$,

it follows that W_2 can distinguish these pairs.

Case 3 ($r_1 = r_2 = 3$): The metric representations of the vertices in V_3 with respect to W_1 and W_2 are the following:

$$r(v_{kt+j}|W_1) = (\overbrace{k+1,\ldots,k+1}^{\left\lceil \frac{j}{2} \right\rceil}, \overbrace{k+1}^{\frac{t+1}{2} - \left\lceil \frac{j}{2} \right\rceil}, for j = 1, 2, \ldots, t-1,$$

$$r(v_{kt+j}|W_1) = (k+1,\ldots,k+1) \quad for j = t, t+1, \ldots, t+p-1,$$

$$r(v_{kt+j}|W_2) = (k+1,\ldots,k+1) \quad for j = 1, 2, \ldots, p-1,$$

$$r(v_{kt+j}|W_2) = (\underbrace{k,\ldots,k}_{\left\lceil \frac{j-p}{2} \right\rceil}, \underbrace{k+1,\ldots,k+1}_{\frac{t-1}{2} - \left\lceil \frac{j-p}{2} \right\rceil}, for j = p, p+1, \ldots, t+p-1.$$

Write $u = v_{kt+j_1}$ and $v = v_{kt+j_2}$. There are two subcases to consider.

Case 3.1 ($j_1 < t$, $j_2 < t$): In this case, the only vertices with the same metric representations with respect to W_1 are the pairs (v_{kt+j}, v_{kt+j+1}), where j = 1, 3, ..., t - 2. If p = t, then W_3 can already distinguish all the pairs. Suppose now that $p \le t - 2$. In view of the definition of W_3 , it is sufficient to show that (v_{kt+j}, v_{kt+j+1}) can be distinguished by W_2 for j = p, p + 2, ..., t - 2. Noticing that $v_{2kt+j+1}$ belongs to W_2 for each $j \in \{p, p + 2, ..., t - 2\}$, and that

$$d(v_{2kt+i+1}, v_{kt+i}) = k+1$$
 and $d(v_{2kt+i+1}, v_{kt+i+1}) = k$,

the desired result follows.

Case 3.2 $(j_1 \ge t, j_2 \ge t)$: In this case, the only vertices with the same metric representations with respect to W_2 are the pairs $(v_{kt+t+j}, v_{kt+t+j+1})$, where j = 1, 3, ..., p-2. Since v_{kt+j} belongs to W_3 for each $j \in \{1, 3, ..., p-2\}$, and since

$$d(v_{kt+t+j}, v_{kt+j}) = 1$$
 and $d(v_{kt+t+j+1}, v_{kt+j}) = 2$,

it follows that W_3 can distinguish these pairs.

Case 4 ($r_1 = r_2 = 4$): For x = 1, 2, ..., k and j = 0, 1, ..., t - 1, the metric representation of $v_{n-tx+j} \in V_4$ with respect to W_1 is

$$r(v_{n-tx+j}|W_1) = (\underbrace{x, \ldots, x}_{\lfloor \frac{j}{2} \rfloor + 1}, \underbrace{x+1, \ldots, x+1}_{\frac{t-1}{2} - \lfloor \frac{j}{2} \rfloor}).$$

Hence, the only vertices in V_4 with the same metric representations with respect to W_1 are the pairs $(v_{n-tx+j-1}, v_{n-tx+j})$, where j = 1, 3, ..., t - 2 and x = 1, 2, ..., k. Since v_{n-t+j} belongs to W_2 for each $j \in \{1, 3, ..., t-2\}$, and since

$$d(v_{n-tx+j}, v_{n-t+j}) = x - 1$$
 and $d(v_{n-tx+j-1}, v_{n-t+j}) = x$,

it follows that W_2 can distinguish all these pairs.

Case 5 ($r_1 = 1$, $r_2 = 4$): In this case, the only vertices with the same metric representations with respect to W_1 are the pairs (v_{n-1}, v_j), where j = 1, 3, ..., t, which can be resolved by $v_{kt+1} \in W_3$.

336

337

Case 6 ($r_1 = 2$, $r_2 = 4$): In this case, the only vertices with the same metric representations with respect to W_1 are the pairs (v_{tx+t}, v_{n-tx-1}), where x = 1, 2, ..., k - 1. Note that v_{n-2} belongs to W_2 , and that

$$d(v_{tx+t}, v_{n-2}) = x + 2$$
 and $d(v_{n-tx-1}, v_{n-2}) = x$.

Therefore, W_2 can distinguish these pairs. This completes our proof.

References

- A. Borchert and S. Gosselin, *The metric dimension of circulant graphs and Cayley hypergraphs*. Util. Math. 106(2018), 125–147.
- [2] K. Chau and S. Gosselin, The metric dimension of circulant graphs and their Cartesian products. Opuscula Math. 37(2017), 509–534. https://doi.org/10.7494/OpMath.2017.37.4.509
- [3] C. Grigorious, T. Kalinowski, J. Ryan, and S. Stephen, *The metric dimension of the circulant graph* $C(n, \pm \{1, 2, 3, 4\})$. Australas, J. Combin. **69**(2017), 417–441.
- [4] C. Grigorious, P. Manuel, M. Miller, B. Rajan, and S. Stephen, On the metric dimension of circulant graphs and Harary graphs. Appl. Math. Comput. 248(2014), 47–54. https://doi.org/10.1016/j.amc.2014.09.045
- [5] F. Harary and R. A. Melter, On the metric dimension of a graph. Ars Combin. 2(1976), 191–195.
- [6] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 3(1993), no. 2, 203–236. https://doi.org/10.1080/10543409308835060
- [7] M. Johnson, Browsable structure-activity datasets. In: R. Carbó-Dorca and P. Mezey (eds.), Advances in molecular similarity, JAI Press Inc., Stamford, CT, 1998, pp. 153–170. https://doi.org/10.1016/s1873-9776(98)80014-x
- [8] S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs. Discret. Appl. Math. 70(1996), 217–229. https://doi.org/10.1016/0166-218x(95)00106-2
- [9] P. J. Slater, Leaves of trees. Congr. Numer. 14(1975), 549-559.
- [10] T. Vetrík, The metric dimension of circulant graphs. Can. Math. Bull. 60(2017), 206–216. https://doi.org/10.4153/cmb-2016-048-1
- T. Vetrík, On the metric dimension of circulant graphs with 4 generators. Contrib. Discrete Math. 12(2017), 104–114. https://doi.org/10.11575/cdm.v12i2.62479
- [12] T. Vetrík, On the metric dimension of directed and undirected circulant graphs. Discuss. Math. Graph Theory. 40(2020), 67–76. https://doi.org/10.7151/dmgt.2110

School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan, Shandong 250014, China

e-mail: rui2020@sdufe.edu.cn

School of Mathematics, Hunan University, Changsha, Hunan 410082, China e-mail: ouxyq@hnu.edu.cn

School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China

e-mail: rateriver@sina.com