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Abstract. In this note, we bound the metric dimension of the circulant graphs Cn(1, 2, . . . , t). We shall
prove that if n = 2tk + t and if t is odd, then dim(Cn(1, 2, . . . , t)) = t + 1, which confirms Conjecture
4.1.1 in Chau and Gosselin (2017, Opuscula Mathematica 37, 509–534). In Vetrík (2017, Canadian
Mathematical Bulletin 60, 206–216; 2020, Discussiones Mathematicae. Graph Theory 40, 67–76), the
author has shown that dim(Cn(1, 2, . . . , t)) ≤ t + ⌈ p

2 ⌉ for n = 2tk + t + p, where t ≥ 4 is even, 1 ≤ p ≤
t + 1, and k ≥ 1. Inspired by his work, we show that dim(Cn(1, 2, . . . , t)) ≤ t + ⌊ p

2 ⌋ for n = 2tk + t + p,
where t ≥ 5 is odd, 2 ≤ p ≤ t + 1, and k ≥ 2.

1 Introduction

Let G = (V (G), E(G)) be a simple undirected connected graph. The distance d(u, v)
between two vertices u and v in G is the length of a shortest path between these two
vertices. For an ordered set W = {w1 , . . . , wk } of k distinct vertices of G, we refer to the
k-tuple r(v∣W ) = (d(v , w1 ), d(v , w2 ), . . . , d(v , wk )) as the metric representation of a
vertex v with respect to W. The set W is called a resolving set of G if r(u∣W ) = r(v∣W )
implies that u = v for all u, v ∈ V (G). A resolving set containing a minimum number
of vertices is called a metric basis of G, and its cardinality the metric dimension of G,
denoted by dim(G).

Motivated by the problem of uniquely determining the location of an intruder in a
network, Slater introduced the notion of metric dimension of a graph in [9], where the
resolving sets were referred to as locating sets. Harary and Melter also introduced the
idea of the metric dimension of a graph in [5]. It was proved that the metric dimension
is an NP-hard graph invariant [8] and has been widely investigated in the last 55 years
and it also has applications in many diverse areas [6, 7].

This note is devoted to the study of the metric dimension of circulant graphs.
Let n, t, and a1 , a2 , . . . , at be positive integers so that 1 ≤ a1 < a2 < ⋅ ⋅ ⋅ < at ≤ ⌊ n

2 ⌋.
The circulant graph Cn (a1 , a2 , . . . , at ) consists of a vertex set {v0 , v1 , . . . , vn−1 } and
an edge set {v iv i+a j ∶ 0 ≤ i ≤ n − 1, 1 ≤ j ≤ t}, where the indices are taken modulo n.
The numbers a1 , a2 , . . . , at are called generators. We restrict our attention to special
kinds of circulant graphs, i.e., the circulant graphs Cn (1, 2, . . . , t) with consecutive
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generators. In [1], Borchert and Gosselin studied the metric dimension of Cn (1, 2)
and Cn (1, 2, 3), and obtained that for n ≥ 6,

dim(Cn (1, 2)) = {
4, for n ≡ 1 mod 4,
3, otherwise,

and that for n ≥ 8,

dim(Cn (1, 2, 3)) = {
5, for n ≡ 1 mod 6,
4, otherwise.

In [3, 11], the authors studied the metric dimension of Cn (1, 2, 3, 4), and obtained that
for n ≥ 20,

dim(Cn (1, 2, 3, 4)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

6, for n ≡ 0, 1, 7 mod 8,
5, for n ≡ 2, 3, 5, 6 mod 8,
4, for n ≡ 4 mod 8.

For the results concerning dim(Cn (1, 2, . . . , t)) with arbitrary integers t ≥ 5, the
reader may refer to [2, 4, 10, 12].

We shall assume throughout this note that n = 2tk + r, where t ≥ 4, k ≥ 2, and
2 ≤ r ≤ 2t + 1. When t ≤ r ≤ 2t + 1, we may also assume n = 2tk + t + p, where 0 ≤ p ≤
t + 1. It is known that the distance between two vertices v i and v j in Cn (1, 2, . . . , t) is

d(v i , v j ) = min {⌈ ∣i − j∣
t

⌉ , ⌈ n − ∣i − j∣
t

⌉} ,(1.1)

and that the diameter of Cn (1, 2, . . . , t) is d ∶= k + 1.
Here, we set forth our notation and terminology. Let W and V be subsets of vertices

in G = Cn (1, 2, . . . , t), where V consists of at least two vertices. A vertex w is said to
resolve a pair of vertices u and v if d(u, w) ≠ d(v , w). W is said to distinguish V if for
any pair of distinct vertices u and v in V, there exists a vertex in W which can resolve
u and v. It is easy to see that if W can distinguish V (G), then it is a resolving set of G.
Vertices v i+1 , v i+2 , . . . , v i+s with consecutive indices are called the consecutive vertices.
The outer cycle of the circulant graph is a spanning subgraph of G in which the vertex
v i is adjacent to exactly the vertices v i+1 and v i−1. When r = 2, the unique vertex that
has distance k + 1 from w will be called the opposite vertex of w, and is denoted by w

′

,
and we can then define W

′ ∶= {w
′ ∶ w ∈ W } for the vertex set W.

2 Lower bounds

This section deals with the lower bounds for dim(Cn (1, 2, . . . , t)). In [2, 10], the
authors have shown that when 3 ≤ r ≤ t and n is sufficiently large, dim(Cn (1, 2, . . . , t))
has a lower bound of t.

Theorem 2.1 ([10, Theorem 2.3]) Let n = 2tk + r where 3 ≤ r ≤ t, and n ≥ t2 + 1. Then
dim(Cn (1, 2, . . . , t)) ≥ t.

Theorem 2.3 improves their result. We begin with the following lemma.
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Lemma 2.2 Suppose that r = t, and that 2 ≤ x ≤ t. If a vertex set W can distinguish x
consecutive vertices, then the cardinality of W is at least x − 1.

Proof Without loss of generality, assume that W can distinguish V = {v1 , v2 , . . . , vx }.
Let W1 be the intersection of W and V, and p the cardinality of W1. We can assume
p ≤ x − 2, and then assume V /W1 = {v i1 , . . . , v ix−p }, where i1 < ⋯ < ix−p . It follows
that W /W1 can distinguish x − p − 1 pairs of vertices (v i1 , v i2 ), . . . , (v ix−p−1 , v ix−p ).
Suppose w j ∈ W /W1 can resolve (v i j , v i j+1 ) for each such j, then it can resolve two
consecutive vertices in the v i j − v i j+1 path of the outer cycle, say v i′j

and v i′j+1. Since
r = t, and since the distance between v i1 and v i′j

on the outer cycle is no more than
t − 2, it follows from equation (1.1) that d(v i1 , w j ) = d(v i1+1 , w j ) = ⋯ = d(v i′j

, w j ),
and thus none of the pairs (v i1 , v i2 ), . . . , (v i j−1 , v i j ) can be resolved by w j . A
similar argument shows that none of the pairs (v i j+1 , v i j+2 ), . . . , (v ix−p−1 , v ix−p ) can
be resolved by w j . Therefore, any vertex in W /W1 resolving one of the pairs
(v i1 , v i2 ), . . . , (v ix−p−1 , v ix−p ) cannot resolve the other, implying that W /W1 consists of
at least x − p − 1 vertices, and so ♯(W ) ≥ x − 1. ∎

Theorem 2.3 Let n = 2tk + t where t is odd. Then dim(Cn (1, 2, . . . , t)) ≥ t + 1.

Proof Let W be a resolving set of the graph Cn (1, 2, . . . , t). Suppose on the contrary
that ♯(W ) = t. We can assume v0 ∈ W .

Let us first show that W ∩ {v i−tk , v i+tk } ≠ ∅ holds for each vertex v i ∈ W . Suppose
on the contrary that there exists a vertex v j ∈ W with W ∩ {v j−tk , v j+tk } = ∅, since the
circulant graph Cn (1, 2, . . . , t) is vertex-transitive, and we may take j = 0. Let p ≥ 0
be such that vn−0 , vn−1 , . . . , vn−p all belong to W while vn−p−1 ∉ W , and let q ≥ 0 be
such that v0 , v1 , . . . , vq all belong to W while vq+1 ∉ W . It is easy to see that p + q ≤
t − 1. Set W1 = {vn−p , vn−p+1 , . . . , vq }. Then there is a vertex w ∈ W /W1 that resolves
vn−p−1 and vq+1. If p + q = t − 1, then W consists of at least t + 1 vertices, leading to
the contradiction. Suppose now that p + q ≤ t − 2. One can verify that there are two
consecutive vertices v i and v i+1 in the vn−p−1 − vq+1 path of the outer cycle, which can
be resolved by w. By symmetry, we can assume n − t + 1 ≤ i ≤ n − 1.

First, consider the case n − t + 1 ≤ i ≤ n − 2. Note that {v i+1 , v i+2 , . . . , vn } ⊂ W1,
and that W /({v i+1 , v i+2 , . . . , vn } ∪ {w}) can distinguish {vn−t , vn−t+1 , . . . , v i },
which consists of i + t + 1 − n vertices. It follows from Lemma 2.2 that W /
({v i+1 , v i+2 , . . . , vn } ∪ {w}) has at least i + t − n vertices, and therefore ♯(W ) ≥ t + 1,
a contradiction.

Next, consider the case where i = n − 1. Since w ∉ {vn−1 , v0 , vkt }, and since
r = t, it follows from equation (1.1) that vertices vn−t , vn−t+1 , . . . , vn−1 have equal
distance to w. Hence, W /{v0 , w} can distinguish {vn−t , vn−t+1 , . . . , vn−1 }, and
applying Lemma 2.2, W /{v0 , w} has at least t − 1 vertices, and therefore W consists
of at least t + 1 vertices, which is a contradiction.

We have already verified that W ∩ {v i−tk , v i+tk } ≠ ∅ holds for each vertex v i ∈ W .
We now claim that ∣W ∩ {v i−tk , v i+tk }∣ = 1 holds for each vertex v i ∈ W . Suppose
on the contrary that there is a vertex v j ∈ W with {v j−tk , v j+tk } ⊂ W , and we may
also take j = 0. Then W /{v0 , vkt , vn−kt } can distinguish {vkt+1 , vkt+2 , . . . , vkt+t−1 },
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and applying Lemma 2.2, W /{v0 , vkt , vn−kt } consists of at least t − 2 vertices, and
so ♯(W ) ≥ t + 1, a contradiction.

In conclusion, for each vertex w ∈ W , there exists exactly one vertex, say w1, in W
such that w1 has distance kt from w on the outer cycle, and we say {w , w1 } form a
“pair” in W. It is easy to see that these “pairs” in W are pairwise disjoint. Hence, the
cardinality of W is even, which contradicts the assumption that ♯(W ) = t is odd. ∎

In what follows, we shall discuss the case where r ∈ {2} ∪ {t + 1, t + 2, . . . , 2t + 1}.
The following lemma will be needed in the sequel.

Lemma 2.4 Suppose that r ∈ {2} ∪ {t + 1, t + 2, . . . , 2t + 1} and that 2 ≤ x ≤ t. If a
vertex set W can distinguish x vertices which come from a clique of x + 1 consecutive
vertices, then the cardinality of W is at least x − 1.

Proof Suppose that v i1 , . . . , v ix come from a clique of x + 1 consecutive vertices,
where i1 < i2 < ⋯ < ix , and suppose that W can distinguish them.

We first deal with the case where r ∈ {t + 1, t + 2, . . . , 2t + 1}. Let V = {v i1 , . . . , v ix },
and let W1 be the intersection of W and V, and p the cardinality of W1. We can assume
p ≤ x − 2, and then assume V /W1 = {v j1 , . . . , v jx−p }, where j1 < ⋯ < jx−p . It follows
that W /W1 can distinguish x − p − 1 pairs of vertices (v j1 , v j2 ), . . . , (v jx−p−1 , v jx−p ).

We remark that since t + 1 ≤ r ≤ 2t + 1, if a vertex w can resolve two consecutive
vertices v i and v i+1, and if w ≠ v i , v i+1, then it follows from equation (1.1) that

d(w , v i−t+1 ) = d(w , v i−t+2 ) = ⋯ = d(w , v i )

and

d(w , v i+1 ) = d(w , v i+2 ) = ⋯ = d(w , v i+t ).

This remark shows that any vertex in W /W1 resolving one of the pairs of vertices
(v j1 , v j2 ), . . . , (v jx−p−1 , v jx−p ) cannot resolve the other, implying W /W1 consists of at
least x − p − 1 vertices, and therefore ♯(W ) ≥ x − 1.

Let us turn to the case where r = 2. Let V
′ = {v

′

i1
, . . . , v

′

ix
}, and let W2 be the

intersection of W and V
′

. Denote by q the cardinality of W2. We can assume that
p + q ≤ x − 2, and then assume V /(W1 ∪ W

′

2 ) = {v j1 , . . . , v js }, where j1 < ⋯ < js and
s ≥ x − p − q. It follows that W /(W1 ∪ W2 ) can distinguish s − 1 pairs of vertices
(v j1 , v j2 ), . . . , (v js−1 , v js ). Similarly, any vertex in W /(W1 ∪ W2 ) resolving one of
these pairs cannot resolve the other, implying W /(W1 ∪ W2 ) consists of at least s − 1
vertices, and therefore ♯(W ) ≥ x − 1. ∎

The authors showed in [2] that dim(Cn (1, 2, . . . , t)) has a lower bound of t + 1 if
r ∈ {2} ∪ {t + 1, t + 2, . . . , 2t}. We provide an alternate proof.

Theorem 2.5 ([2, Theorem 2.7]) Let n = 2tk + r where r ∈ {2} ∪ {t + 1, t + 2, . . . , 2t}.
Then dim(Cn (1, 2, . . . , t)) ≥ t + 1.

Proof It is sufficient to show that any resolving set W of the graph Cn (1, 2, . . . , t)
has at least t + 1 vertices. Without loss of generality, we assume v0 ∈ W .
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Let us first discuss the case where r ∈ {t + 1, t + 2, . . . , 2t}. Let p ≥ 0 be such that
vn−0 , vn−1 , . . . , vn−p all belong to W while vn−p−1 ∉ W , and let q ≥ 0 be such that
v0 , v1 , . . . , vq all belong to W while vq+1 ∉ W . We can assume p + q ≤ t − 1. Set W1 =
{vn−p , vn−p+1 , . . . , vq }. Then there is a vertex w ∈ W /W1 that resolves vn−p−1 and vq+1,
and therefore there exist two consecutive vertices v i and v i+1 in the vn−p−1 − vq+1 path
of the outer cycle which can be resolved by w. By symmetry, assume 0 ≤ i ≤ q. Since
r ≥ t + 1, it follows from equation (1.1) that v i+1 , v i+2 , . . . , vt have equal distance to w.
Hence, W /(W1 ∪ {w}) can distinguish {vq+1 , . . . , vt−p }, which consists of t − p − q
consecutive vertices. Applying Lemma 2.4, W /(W1 ∪ {w}) has at least t − p − q − 1
vertices, and thus W has at least t + 1 vertices.

The proof for the case where r = 2 is analogous to that for the preceding case. We
first note that the definitions of p and q are changed, that is, let p ≥ 0 be such that
vn−0 , vn−1 , . . . , vn−p all belong to the union of W and W

′

while vn−p−1 ∉ W ∪ W
′

,
and q ≥ 0 such that v0 , v1 , . . . , vq all belong to the union of W and W

′

while vq+1 ∉
W ∪ W

′

. Set

W2 = ({vn−p , vn−p+1 , . . . , vq } ∪ {v
′

n−p , v
′

n−p+1 , . . . , v
′

q }) ∩ W ,

where ♯(W2 ) ≥ p + q + 1. An entirely similar argument shows that there is a ver-
tex w ∈ W /W2 that resolves vn−p−1 and vq+1, and that W /(W2 ∪ {w}) has at least
t − p − q − 1 vertices, implying ♯(W ) ≥ t + 1. ∎

In [2], the authors have shown that when r = 2t + 1, dim(Cn (1, 2, . . . , t)) has a
lower bound of t + 2. We provide an alternate proof.

Theorem 2.6 ([2, Theorem 2.17]) Let n = 2tk + 2t + 1. Then dim(Cn (1, 2, . . . , t)) ≥
t + 2.

Proof It is sufficient to show that any resolving set W for the graph Cn (1, 2, . . . , t)
has at least t + 2 vertices. Without loss of generality, we assume v0 ∈ W . The only
vertices that can resolve vd t and vd t+1 are

vn−t , vn−2t , . . . , vn−d t = vd t+1 , vd t , vd t−t , . . . , vt .

By symmetry, we assume vn−pt ∈ W , where p ∈ {1, 2, . . . , d}. We shall consider two
cases.

Case 1 (p ≤ k): The only vertices that can resolve vd t+1 and vd t+2 are

vn+1−t , vn+1−2t , . . . , vn+1−d t = vd t+2 , vd t+1 , vd t+1−t , . . . , vt+1 .

If vqt+1 ∈ W for some q ∈ {1, . . . , d}, one can easily verify that {v0 , vqt+1 , vn−pt } cannot
distinguish any pair of vertices in {v1 , v2 , . . . , vt }. It follows from Lemma 2.4 that
W /{v0 , vqt+1 , vn−pt } has at least t − 1 vertices, which confirms the assertion. If
vn+1−qt ∈ W for some q ∈ {1, . . . , d}, it is easy to see that {v0 , vn+1−qt , vn−pt } cannot
distinguish any pair of vertices in {v(d−q)t+1 , v(d−q)t+2 , . . . , v(d−q+1)t }, and according
to Lemma 2.4, W /{v0 , vn+1−qt , vn−pt } has at least t − 1 vertices, and therefore W has
at least t + 2 vertices.
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Case 2 (p = d): The only vertices that can resolve vkt+1 and vkt+2 are

vn+1−2t , . . . , vn+1−d t , vn+1−d t−t = vkt+2 , vkt+1 , vkt+1−t , . . . , v1 .

If vqt+1 ∈ W for some q ∈ {1, 2, . . . , k}, one can verify that {v0 , vqt+1 , vn−d t }
cannot distinguish any pair of vertices in {v1 , v2 , . . . , vt }. If vn+1−qt ∈ W for
some q ∈ {2, 3, . . . , d}, one can verify that {v0 , vn+1−qt , vn−d t } cannot distinguish
any pair of vertices in {v(d−q)t+1 , v(d−q)t+2 , . . . , v(d−q+1)t }. If vkt+2 ∈ W , then it
is easy to see that {v0 , vkt+2 , vn−d t } cannot distinguish any pair of vertices in
{vn−(t−1) , . . . , vn−2 , vn−1 , v1 }, which consists of t vertices coming from a clique of
t + 1 consecutive vertices. If v1 ∈ W , then {v0 , v1 , vn−d t } cannot distinguish any pair
of vertices in {vd t , vd t+2 , vd t+3 , . . . , vd t+t }. In both cases, it follows quickly from
Lemma 2.4 that W has at least (t − 1) + 3 = t + 2 vertices. The proof is complete. ∎

3 Upper bounds

This section is devoted to the study of upper bounds for dim(Cn (1, 2, . . . , t)). The
following three theorems provide a great deal of useful information about this topic.

Theorem 3.1 ([4, Theorem 2.9]) Let n = 2tk + r where 2 ≤ r ≤ t + 1. Then
dim(Cn (1, 2, . . . , t)) ≤ t + 1.

Theorem 3.2 ([10, Theorem 2.1 and Theorem 2.2]) Let n = 2tk + t + p where t and p
are both even, and 0 ≤ p ≤ t. Then

dim(Cn (1, 2, . . . , t)) ≤ t + p
2

.

Theorem 3.3 ([12, Theorem 5]) Let n = 2tk + t + p where t is even, p is odd, and
1 ≤ p ≤ t + 1. Then

dim(Cn (1, 2, . . . , t)) ≤ t + p + 1
2

.

Motivated by the work of Vetrík, we provide an upper bound on the metric
dimension of Cn (1, 2, . . . , t), where t is odd and r ≥ t + 2.

Theorem 3.4 Let n = 2tk + t + p where t is odd, p is even, and 2 ≤ p ≤ t + 1. Then

dim(Cn (1, 2, . . . , t)) ≤ t + p
2

.

Proof Let

W1 = {v0 , v2 , . . . , vt−1 } and W2 = {vkt , vkt+2 , vkt+4 , . . . , vkt+t+p−3 },

where ♯(W1 ) = t+1
2 and ♯(W2 ) = t+p−1

2 . Let us show that W = W1 ∪ W2 is a resolving
set of the graph Cn (1, 2, . . . , t). Divide the vertex set of Cn (1, 2, . . . , t) into four
disjoint sets:

V1 = {v0 , v1 , . . . , vt }, V2 = {vt+1 , vt+2 , . . . , vkt−1 , vkt },
V3 = {vkt+1 , vkt+2 , . . . , vkt+t+p−2 , vkt+t+p−1 }, V4 = {vkt+t+p , vkt+t+p+1 , . . . , vn−2 , vn−1 }.
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We claim that any pair of distinct vertices u ∈ Vr1 and v ∈ Vr2 have different metric
representations with respect to W. We need only consider the following six cases,
since in other cases, it is easy to check that v0 can resolve u and v.

Case 1 (r1 = r2 = 1): It suffices to prove that no two vertices in V1 /W1 =
{v j ∶ j = 1, 3, . . . , t} have the same metric representation with respect to W21 ∶=
{vkt+2 , vkt+4 , . . . , vkt+t−1 }; W21 is obviously a subset of W2. We observe that for
j = 1, 3, . . . , t, r(v j ∣W21 ) = (k, . . . , k, k + 1, . . . , k + 1), of which the first j−1

2 entries
are equal to k, and the other t− j

2 entries are equal to k + 1, the desired result follows.
Case 2 (r1 = r2 = 2): For x = 1, . . . , k − 1 and j = 1, 2, . . . , t, the metric representa-

tion of vtx+ j ∈ V2 with respect to W1 is

r(vtx+ j ∣W1 ) = (x + 1, . . . , x + 1
�                                  !                                  "

⌈ j
2 ⌉

, x , . . . , x
�          !          "

t+1
2 −⌈

j
2 ⌉

).

Hence, the only vertices in V2 with the same metric representations with respect to
W1 are the pairs (vtx+ j−1 , vtx+ j ), where j = 2, 4, . . . , t − 1 and x = 1, 2, . . . , k − 1. Since
vkt+ j belongs to W2 for each j ∈ {2, 4, . . . , t − 1}, and since

d(vkt+ j , vtx+ j−1 ) = k − x + 1 and d(vkt+ j , vtx+ j ) = k − x ,

it follows that W2 can distinguish all these pairs.
Case 3 (r1 = r2 = 3): Note that

r(vkt+ j ∣W1 ) = (

⌈ j
2 ⌉

#                                  $                                 %
k + 1, . . . , k + 1,

t+1
2 −⌈

j
2 ⌉

#          $         %
k, . . . , k) for j = 1, 2, . . . , t − 1,

r(vkt+ j ∣W1 ) = (k + 1, . . . , k + 1) for j = t, t + 1, . . . , t + p − 1.

Write u = vkt+ j1 and v = vkt+ j2 . We need only consider the following two subcases,
since in other cases, vt−1 ∈ W1 can already resolve u and v.

Case 3.1 ( j1 < t, j2 < t): In this case, the only vertices with the same metric rep-
resentations with respect to W1 are the pairs (vkt+ j−1 , vkt+ j ), where j = 2, 4, . . . , t − 1.
Since W2 contains vkt+ j for each j ∈ {2, 4, . . . , t − 1}, it follows that W2 can distinguish
these pairs.

Case 3.2 ( j1 ≥ t, j2 ≥ t): Recalling the construction of W2, we need only show that
no two vertices in {vkt+t+ j ∶ j = 0, 2, . . . , p − 2} ∪ {vkt+t+p−1 } have the same metric
representation with respect to W22 ∶= {vkt , vkt+2 , . . . , vkt+p−2 }; W22 is obviously a
subset of W2. We observe that r(vkt+t+ j ∣W22 ) = (2, . . . , 2, 1, . . . , 1), j = 0, 2, . . . , p − 2,
of which the first j

2 entries are equal to 2 and the other p− j
2 entries are equal to 1, and

that all the distances from vkt+t+p−1 to the vertices in W22 are 2; the desired result
follows.

Case 4 (r1 = r2 = 4): It is not difficult to see that for x = 1, 2, . . . , k and j =
0, 1, . . . , t − 1, the metric representation of vn−tx+ j ∈ V4 with respect to W1 is

r(vn−tx+ j ∣W1 ) = (x , . . . , x
�          !          "
⌊ j

2 ⌋+1

, x + 1, . . . , x + 1
�                                  !                                  "

t−1
2 −⌊

j
2 ⌋

).
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Thus, the only vertices in V4 with the same metric representations with respect to W1
are the pairs (vn−tx+ j , vn−tx+ j+1 ), where j = 0, 2, . . . , t − 3 and x = 1, 2, . . . , k. Since
vn−kt−t+ j belongs to W2 for each j ∈ {0, 2, . . . , t − 3}, and since

d(vn−kt−t+ j , vn−tx+ j ) = k + 1 − x and d(vn−kt−t+ j , vn−tx+ j+1 ) = k + 2 − x ,

it follows that W2 can distinguish these pairs.
Case 5 (r1 = 1, r2 = 4): The distances from the vertices in V1 to vkt are at most k,

and the distances from the vertices in V4 to vkt are k + 1, and therefore vkt can resolve
u and v.

Case 6 (r1 = 2, r2 = 4): In this case, it is clear that the only vertices with the
same metric representations with respect to W1 are the pairs (vtx+t , vn−tx−1 ), where
x = 1, 2, . . . , k − 1. Since

d(vkt , vtx+t ) = k − x − 1 and d(vkt , vn−tx−1 ) = k − x + 2,

it follows that vkt ∈ W2 can resolve all these pairs. ∎

Theorem 3.5 Let n = 2tk + t + p where t and p are both odd, and 3 ≤ p ≤ t. Then

dim(Cn (1, 2, . . . , t)) ≤ t + p − 1
2

.

Proof Let

W1 = {v0 , v2 , . . . , vt−1 }, W2 = {vn−(t−1), vn−(t−3) , . . . , vn−2 },
W3 = {vkt+1 , vkt+3 , . . . , vkt+p−2 },

where ♯(W1 ) = t+1
2 , ♯(W2 ) = t−1

2 , and ♯(W3 ) = p−1
2 . Let us show that W = W1 ∪ W2 ∪

W3 is a resolving set of the graph Cn (1, 2, . . . , t). As before, divide the vertex set of
Cn (1, 2, . . . , t) into four disjoint sets:

V1 = {v0 , v1 , . . . , vt }, V2 = {vt+1 , vt+2 , . . . , vkt−1 , vkt },
V3 = {vkt+1 , vkt+2 , . . . , vkt+t+p−2 , vkt+t+p−1 }, V4 = {vkt+t+p , vkt+t+p+1 , . . . , vn−2 , vn−1 }.

We claim that any pair of distinct vertices u ∈ Vr1 and v ∈ Vr2 have different metric
representations with respect to W, and only consider six cases.

Case 1 (r1 = r2 = 1): We need only show that no two vertices in V1 /W1 = {v j ∶ j =
1, 3, . . . , t} have the same metric representation with respect to W2. Observe that for
j = 1, 3, . . . , t, r(v j ∣W2 ) = (2, . . . , 2, 1, . . . , 1), of which the first j−1

2 entries are equal to
2, and the other t− j

2 entries are equal to 1, the desired result follows.
Case 2 (r1 = r2 = 2): It is easy to verify that, for x = 1, . . . , k − 1 and j = 1, 2, . . . , t,

the metric representation of vtx+ j ∈ V2 with respect to W1 is

r(vtx+ j ∣W1 ) = (x + 1, . . . , x + 1
�                                  !                                  "

⌈ j
2 ⌉

, x , . . . , x
�          !          "

t+1
2 −⌈

j
2 ⌉

).

Hence, the only vertices in V2 with the same metric representations with respect to
W1 are the pairs (vtx+ j , vtx+ j+1 ), where j = 1, 3, . . . , t − 2 and x = 1, 2, . . . , k − 1. Since
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vn−t+ j belongs to W2 for each j ∈ {1, 3, . . . , t − 2}, and since

d(vn−t+ j , vtx+ j ) = x + 1 and d(vn−t+ j , vtx+ j+1 ) = x + 2,

it follows that W2 can distinguish these pairs.
Case 3 (r1 = r2 = 3): The metric representations of the vertices in V3 with respect

to W1 and W2 are the following:

r(vkt+ j ∣W1 ) = (

⌈ j
2 ⌉

#                                  $                                 %
k + 1, . . . , k + 1,

t+1
2 −⌈

j
2 ⌉

#          $         %
k, . . . , k) for j = 1, 2, . . . , t − 1,

r(vkt+ j ∣W1 ) = (k + 1, . . . , k + 1) for j = t, t + 1, . . . , t + p − 1,
r(vkt+ j ∣W2 ) = (k + 1, . . . , k + 1) for j = 1, 2, . . . , p − 1,
r(vkt+ j ∣W2 ) = (k, . . . , k

�          !         "
⌈ j−p

2 ⌉

, k + 1, . . . , k + 1
�                                  !                                 "

t−1
2 −⌈

j−p
2 ⌉

) for j = p, p + 1, . . . , t + p − 1.

Write u = vkt+ j1 and v = vkt+ j2 . There are two subcases to consider.
Case 3.1 ( j1 < t, j2 < t): In this case, the only vertices with the same metric rep-

resentations with respect to W1 are the pairs (vkt+ j , vkt+ j+1 ), where j = 1, 3, . . . , t − 2.
If p = t, then W3 can already distinguish all the pairs. Suppose now that p ≤ t − 2.
In view of the definition of W3, it is sufficient to show that (vkt+ j , vkt+ j+1 ) can be
distinguished by W2 for j = p, p + 2, . . . , t − 2. Noticing that v2kt+ j+1 belongs to W2
for each j ∈ {p, p + 2, . . . , t − 2}, and that

d(v2kt+ j+1 , vkt+ j ) = k + 1 and d(v2kt+ j+1 , vkt+ j+1 ) = k,

the desired result follows.
Case 3.2 ( j1 ≥ t, j2 ≥ t): In this case, the only vertices with the same metric

representations with respect to W2 are the pairs (vkt+t+ j , vkt+t+ j+1 ), where j = 1, 3, . . . ,
p − 2. Since vkt+ j belongs to W3 for each j ∈ {1, 3, . . . , p − 2}, and since

d(vkt+t+ j , vkt+ j ) = 1 and d(vkt+t+ j+1 , vkt+ j ) = 2,

it follows that W3 can distinguish these pairs.
Case 4 (r1 = r2 = 4): For x = 1, 2, . . . , k and j = 0, 1, . . . , t − 1, the metric represen-

tation of vn−tx+ j ∈ V4 with respect to W1 is

r(vn−tx+ j ∣W1 ) = (x , . . . , x
�          !          "
⌊ j

2 ⌋+1

, x + 1, . . . , x + 1
�                                  !                                  "

t−1
2 −⌊

j
2 ⌋

).

Hence, the only vertices in V4 with the same metric representations with respect to
W1 are the pairs (vn−tx+ j−1 , vn−tx+ j ), where j = 1, 3, . . . , t − 2 and x = 1, 2, . . . , k. Since
vn−t+ j belongs to W2 for each j ∈ {1, 3, . . . , t − 2}, and since

d(vn−tx+ j , vn−t+ j ) = x − 1 and d(vn−tx+ j−1 , vn−t+ j ) = x ,

it follows that W2 can distinguish all these pairs.
Case 5 (r1 = 1, r2 = 4): In this case, the only vertices with the same metric repre-

sentations with respect to W1 are the pairs (vn−1 , v j ), where j = 1, 3, . . . , t, which can
be resolved by vkt+1 ∈ W3.
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Case 6 (r1 = 2, r2 = 4): In this case, the only vertices with the same metric
representations with respect to W1 are the pairs (vtx+t , vn−tx−1 ), where x =
1, 2, . . . , k − 1. Note that vn−2 belongs to W2, and that

d(vtx+t , vn−2 ) = x + 2 and d(vn−tx−1 , vn−2 ) = x .

Therefore, W2 can distinguish these pairs. This completes our proof. ∎
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