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Abstract

We apply two methods to estimate the 21-cm bispectrum from data taken within the Epoch of Reionisation (EoR) project of the Murchison
Widefield Array (MWA). Using data acquired with the Phase II compact array allows a direct bispectrum estimate to be undertaken on the
multiple redundantly spaced triangles of antenna tiles, as well as an estimate based on data gridded to the uv-plane. The direct and gridded
bispectrum estimators are applied to 21 h of high-band (167–197MHz; z = 6.2–7.5) data from the 2016 and 2017 observing seasons. Analytic
predictions for the bispectrum bias and variance for point-source foregrounds are derived. We compare the output of these approaches, the
foreground contribution to the signal, and future prospects for measuring the bispectra with redundant and non-redundant arrays. We find
that some triangle configurations yield bispectrum estimates that are consistent with the expected noise level after 10 h, while equilateral
configurations are strongly foreground-dominated. Careful choice of triangle configurations may be made to reduce foreground bias that
hinders power spectrum estimators, and the 21-cm bispectrummay be accessible in less time than the 21-cm power spectrum for some wave
modes, with detections in hundreds of hours.
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1. Introduction

Exploration of the growth of structure in the first billion years
of the Universe is a key observational driver for many experi-
ments. One tracer of the conditions within the early Universe
is the 21-cm spectral line of neutral hydrogen, which encodes
in its brightness temperature distribution details of the radiation
field and gas properties in the intergalactic medium permeating
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the cosmos (Furlanetto, Oh, & Briggs 2006; Pritchard & Loeb
2008). Redshifted to low frequencies, the 21-cm line is accessi-
ble with radio telescopes (ν < 300 MHz), including current and
future instruments. These include theMurchisonWidefield Array,
MWAa (Bowman et al. 2013; Tingay et al. 2013; Jacobs et al.
2016); the Precision Array for Probing the Epoch of Reionisation,
PAPERb (Parsons et al. 2010); the LOw-Frequency ARray, LOFARc

(van Haarlem et al. 2013; Patil et al. 2016); the Long Wavelength
Array, LWAd (Ellingson et al. 2009), and the future HERA
(DeBoer et al. 2016) and SKA-Low (Koopmans et al. 2015).

ahttp://www.mwatelescope.org
bhttp://eor.berkeley.edu
chttp://www.lofar.org
dhttp://lwa.unm.edu
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The weakness of the signal, combined with the expectation
that most of its information content is contained in the sec-
ond moment (Wyithe & Morales 2007), which is uncorrelated
across spatial Fourier wave mode, motivates the use of the power
spectrum as a statistical tool for detecting and characterising the
cosmological signal. Despite the ease with which the power spec-
trum can be computed from radio interferometric data, the pres-
ence of strong, spectrally structured residual foreground sources
(Trott, Wayth, & Tingay 2012; Datta, Bowman, & Carilli 2010;
Vedantham, Udaya Shankar, & Subrahmanyan 2012; Thyagarajan
et al. 2015), complex instrumentation (Trott & Wayth 2016), and
imperfect calibration (Patil et al. 2014; Barry et al. 2016), yield
power spectra that are dominated by systematics. Thus far, a detec-
tion of signal from the Epoch of Reionisation (EoR) has not been
achieved (Patil et al. 2016; Beardsley et al. 2016; Trott et al. 2016;
Cheng et al. 2018). These systematics, combined with the expec-
tation that non-Gaussian information can be extracted usefully
from cosmological data, lead the discussion for other statistics.
The bispectrum, as a measure of signal non-Gaussianity, is one
such statistic that contains cosmologically relevant information
(Bharadwaj & Pandey 2005; Majumdar et al. 2018; Watkinson
et al. 2018), while being relatively straightforward to compute with
interferometric data (Shimabukuro et al. 2017).

The bispectrum is the Fourier Transform of the three-
point correlation function, and extracts higher-order correlations
between different spatial scales. Its spatial and redshift evolution
can be used to place different constraints on the underlying pro-
cesses that set the 21-cm brightness temperature, and therefore it
provides complementary information to the power spectrum. In
an early paper exploring the use of the bispectrum for a model
EoR signal, and radio interferometers, Bharadwaj & Pandey (2005)
demonstrated that a strong non-Gaussian signal is produced by
the presence of ionised regions, and discussed the behaviour of the
power spectrum and bispectrum signals as a function of frequency
channel separation, although they only consider non-Gaussianity
due to the ionisation field modelled as non-overlapping randomly
placed spherical ionised regions. Some recent work has explored
the combination of bispectrum with other tracers (CII spectral
features) to extract clean cosmological information (Beane & Lidz
2018). The bispectrum has also been used in the single-frequency
(angular) case in the CMB community, where non-Gaussianities
can be contaminated by structured foregrounds (Jung, Racine, &
van Tent 2018).

Majumdar et al. (2018) explore the ability of the bispectrum
to discriminate fluctuations in the matter density distribution
from those of the hydrogen neutral fraction, reporting that for
some triangle configurations the sign of the bispectrum is a
marker for which of these processes is dominating the bispec-
trum. They show output bispectra for equilateral and isosceles
configurations over a range of wavemodes and redshifts, including
parameters of relevance to current low-frequency 21-cm exper-
iments (z < 9, 0.1< k< 1.0). For modes relevant to the MWA,
the bispectrum amplitude fluctuates in sign with wavenumber
and triangle geometry (stretched → equilateral → squeezed)
with a range spanning 103 − 109 mK3h−6 Mpc6. This range of
potential signs and amplitudes in measurable modes and redshifts
motivates us to study this signal in MWA data.

Watkinson et al. (2018) provide a useful tool for visualising
the correspondence of real-space structures and bispectrum.
They highlight that equilateral k-vector configurations probe
above-average signal concentrated in filaments with a circular
cross-section (their Figure 1). Stretched (flattened) k-vector

triangle configurations (with one k-mode larger than the other
two), by extension, probe above-average signal concentrated in
filaments with ellipsoidal cross-sections (at the extreme these
filaments tend towards planes). Finally, squeezed k-vector triangle
configurations (with one k-mode smaller than the other two)
correspond to a modulation of a large-scale mode over small-scale
plane-wave concentrations of above-average signal, and therefore
measure the correlation of the small-scale power spectrum with
large-scale modes. Notably, they introduce and explore other
bispectrum normalisations that are found to be more stable to
parameter fluctuations. In this work, we discuss the relative merits
of different bispectrum statistics for use with real data in the
presence of real systematics.

Crucially, the switch to positive bispectrum at the end of reion-
isation occurs as we reach regimes/scales at which the concentra-
tion of above-average signal drive the non-Gaussianity. This will
occur before the EoR (on scales where the density field is the domi-
nant driver of the temperature fluctuations, or, if the spin tempera-
ture is not yet saturated during this phase, when heated regions are
driving the non-Gaussianity) and towards the end of reionisation
(when islands of 21-cm signal drive the non-Gaussianity).

Conversely, a negative-valued bispectrum will be unique to
the phase when ionised regions drive the non-Gaussianity. In
general, foreground astrophysical processes are not expected to
produce a negative bispectrum, because they are associated with
overdensities in the brightness temperature distribution (Lewis
2011; Watkinson & Pritchard 2014). These factors may play a
future important role in discriminating real cosmological non-
Gaussianity from contaminants.

Despite some work studying the sensitivity of current and
future experiments for measuring the bispectrum (Shimabukuro
et al. 2017; Yoshiura et al. 2015), these have used idealised sce-
narios that omit any residual foreground signal and systematics
introduced by the instrument. Bharadwaj & Pandey (2005) discuss
foreground fitting tools using frequency separation to study the
bispectrum over visibility correlations across frequency, but this
method breaks down for large field-of-view instruments where
the interferometric response affects the foreground smoothness
(Morales et al. 2012). Further, no 21-cm interferometric data have
been used to estimate the bispectrum. In this work, we address
both of these by presenting bispectrum estimators that can use real
datasets, computing the expected impact of foregrounds measured
by the instrument, and applying the estimators to 21 h of MWA
EoR data.

2. MWA Phase II Array

TheMWA is a 256-tile low-frequency radio interferometer located
in the Western Australian desert, on the future site of the Square
Kilometre Array (SKA) (Tingay et al. 2013; Bowman et al. 2013).
The telescope operates from 80 to 300 MHz with antennas spread
over a 5-km diameter. Its primary science areas include explo-
ration of the EoR, radio transients, solar and heliospheric studies,
study of pulsars and fast transients, and the production of a full-
sky low-frequency extragalactic catalogue. In 2016 it underwent
an upgrade from 128 to 256 antenna tiles (Wayth et al. 2018).
At any time, 128 of the tiles can be connected to the signal
processing system. The array operates in a ‘compact’ configura-
tion, utilising redundant spacings and short baselines for EoR
science, or an ‘extended’ configuration, maximising angular reso-
lution and instantaneous uv-coverage. The compact configuration
is employed in this work.
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Figure 1. ZoomedMWA compact configuration layout showing the two hexagonal sub-
arrays of 36 tiles each, with redundant tile spacings. These short redundant baselines
are used in this work to form equilateral and isosceles triangle bispectra with high
sensitivity. Some of the longer baseline tiles of the MWA are not shown.

The compact configuration has a maximum baseline of 500 m
and is optimised for EoR science. Figure 1 shows the tile lay-
out, including the two 36-tile hexagonal subarrays of redundantly
spaced tiles. The minimum redundant spacing is 14 m. The pri-
mary motivations for the hexagons are twofold: (1) to increase
the sensitivity to angular scales of relevance for the EoR, allow-
ing coherent addition of measurements from redundant baselines,
and (2) enabling additional methods for calibrating the array
(redundant calibration, Li et al. 2018, Joseph et al. 2018). For the
bispectrum, there is an additional advantage of multiple, redun-
dant equilateral triangle baselines being formed from the short
spacings. These can be added coherently to study the bispectrum
signal on particular scales, and allows for a direct bispectrum
measurement (perfectly defined triangles formed from discrete
baselines). These direct bispectrum results can be compared to a
more general gridded bispectrum, whereby all baselines formed
by an irregularly spaced array (such as MWA Phase I, or the
non-hexagon tiles of Phase II compact) can be gridded onto
the Fourier (uv-) plane, using a gridding kernel that represents
the Fourier response function of the telescope (in this case, the
Fourier Transform of the primary beam response to the sky).
These estimators will both be explored in this work.

3. Power spectrum

We briefly review the power spectrum as the primary estimator for
studying the EoR with 21-cm observations. The power spectrum is
typically used to describe radio interferometer observations from
the EoR, and contains all of the Gaussian-distributed fluctuation
information. The power spectrum is the power spectral density of
the spatial fluctuations in the 21-cm brightness temperature field.
It is used because it encodes the fluctuation variance (where most
of the EoR signal is expected to reside), and sums signal from
across the observing volume to increase sensitivity. It is defined as

P(�k)= δD(�k− �k′)
1

�V
〈V∗(�k)V(�k′)〉, (1)

where V(�k)=V(u, v, η)=FT (V(u, v, ν)) is the measured
interferometric visibility (Jansky), Fourier transformed along
frequency (ν) to map frequency to line-of-sight spatial scales (Jy
Hz) at a given point in the Fourier (uv-) angular plane (u, v);
〈〉 encode an ensemble average over different realisations of the
Universe, and the δD-function ensures that we are expecting to
measure a Gaussian random field where the different modes are
uncorrelatede. Further assuming spatial isotropy allows us to
average incoherently in spherical shells, where �k= k. �V provides
the volume normalisation, where �V = (BW)� is the product of
the observing bandwidth and angular field of view. Converting
from measured to physical units maps Jy2 Hz2 to mK2 h−6Mpc6.
After volume normalisation this becomes, mK2 h−3Mpc3.

3.1. Power spectra with radio interferometric data

The power spectrum can be produced naturally with interfer-
ometric data. Unlike optical telescopes that produce images of
the sky, or single-dish radio telescopes that acquire a single sky
power, a radio interferometer visibility (Jy) directly measures
Fourier representations of the sky brightness distribution at the
projected baseline location (u= �x/λ; v= �y/λ). In the flat-sky
approximationf:

V(u, v, ν)=
∫

�

A(l,m, ν)S(l,m, ν) exp (− 2π i(ul+ vm))dldm,

(4)
where A(l,m, ν) is the instrument primary beam response to
the sky at position (l,m) from the phase centre and frequency
ν, S(l,m, ν) is the corresponding sky brightness (Jy/sr, which is
proportional to temperature), and the exponential encodes the
Fourier kernel. The physical correspondence of sky projected on
to the tile locations yields a fixed set of discrete but incomplete
Fourier modes to be measured. This incompleteness leads to parts
of the Fourier plane where there is no information. The line-of-
sight spatial scales are obtained by Fourier Transform of visibilities
measured at different frequencies, along frequency to map ν to η:

V(η(k))=FT (V(ν))= �ν

Nch

Nch∑
j=1

V(ν) exp
(

−2π ijk
Nch

)
, (5)

where Nch is the number of spectral channels, �ν is the spectral
resolution, and j and k index frequency and spatial mode (Hz−1,
or seconds).

The attenuation of the sky due to the primary beam (and
general sky finiteness) alters the complete continuous Fourier
Transform to a windowed transform, whereby the primary beam
response leaks signal into adjacent Fourier modes, as can be seen
using the convolution theorem:

V(u, v, η)= Ã(u, v, η)� S̃(u, v, η), (6)

where the true sky brightness distribution is convolved with the
Fourier Transform of the primary beam response. This leakage
implies that the visibility measured by a discrete baseline actually

eThe mapping from observed to cosmological dimensions is given by

k⊥ = 2π |u|
DM(z)

, (2)

k‖ = 2πH0 f21E(z)
c(1+ z)2

η, (3)

where DM is the transverse comoving distance, and f21 is the rest frequency of the neutral
hydrogen emission.

fThis is appropriate for this work where the data used are all from zenith-pointed
snapshots, where the w-terms are small.
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contains signal from a region of the Fourier plane, as described by
the Fourier beam kernel, Ã(u, v, η).

In general, to compute the power spectrum from a large
amount of data, we aremotivated by the signal weakness to add the
data coherently; i.e., we sum complex visibilities directly that con-
tribute signal to the same point in the Fourier uv-plane. To do this,
the measurement from each baseline is convolved with the Fourier
beam kernel and ‘gridded’ (added with a weight) onto a common
two-dimensional plane. Signal will add coherently, while noise
adds as the square-root (because the thermal noise is uncorrelated
between measurements). The weights for each measurement are
also gridded with the kernel onto a similar plane. After addition of
all the data, the signal uv-plane is divided by the weights to yield
the optimal-weighted average signal at each point. The resulting
cube resides in (u, v, ν) space, and can be Fourier transformed
along frequency to obtain a cube in (u, v, η) space. The power spec-
trum can then be formed by squaring and normalising the cube,
and averaging incoherently (in power) in spherical shells:

P(|�k|)=

∑
i∈k

V∗
i (�k)Vi(�k)Wi(�k)
∑
i∈k

Wi(�k)
, (7)

whereW are the weights and |�k| = |(ku, kv, kη)| =
√
k2u + k2v + k2η.

As an intermediate step, the cylindrically averaged power spec-
trum can be formed (e.g., Datta et al. 2010):

P(k⊥, k‖)=

∑
i∈k⊥

V∗(�k)V(�k)W(�k)
∑
i∈k⊥

W(�k)
, (8)

and k⊥ = √
k2u + k2v , k‖ = kη. This is a useful estimator for dis-

criminating contaminating foregrounds (continuum sources with
power concentrated at small k‖) from 21-cm signal. Herein we will
refer to this power spectrum, and its bispectrum analog, as the
‘gridded power spectrum’ and ‘gridded bispectrum’, respectively.

Alternatively, one can take the baselines themselves, and
their visibilities measured along frequency, and take the Fourier
Transform directly along the frequency axis. This ‘delay spectrum’
approach is utilised by some experiments with short baselines
(Parsons et al. 2012; Ali et al. 2015; Thyagarajan et al. 2015),
both to increase sensitivity when there are redundant spacings,
and to work as a diagnostic. The frequency and η axes are not
parallel, except at zero-length baseline. Because an interferome-
ter is formed instantaneously from antennas with a fixed spatial
offset, the baseline length in Fourier space (e.g., u) evolves with
frequency as u= �xν/c, and this evolution is therefore increased
for larger bandwidths and for longer baselines. For the short spac-
ings of interest to the EoR, the correspondence is good, and the
delay transform can be used to mimic the direct k‖ transform of
gridded data (see Figure 1 of Morales et al. 2012, for a visual expla-
nation). In general, ‘imaging’ arrays with many non-redundant
spacings are suited to gridded power spectra, whereas redun-
dant arrays, with a lesser number of multiply-sampled modes, are
suited to delay power spectra. For the Phase II compact MWA,
the two hexagonal subarrays have these short-spaced redundant
baselines, and the ‘delay power spectrum’ and its bispectrum ana-
log can also be used effectively. In general, we would not suggest
use of the delay spectrum to undertake EoR science, because of
the limitations discussed, but it is the appropriate analogue for

the direct bispectrum estimator, and is therefore pertinent for the
normalised bispectrum analysis.

4. Bispectrum

The bispectrum is the Fourier Transform of the three-point cor-
relation function. Akin to the two-point correlation function
(the Fourier dual of which is the power spectrum), the three-
point correlation function measures the excess signal over that
of a Gaussian random field distribution measured at three spa-
tial locations, averaged over the volume. For a field with Fourier
Transform denoted by �(�k), the bispectrum is formed over closed
triangles of k vectors in Fourier space:

〈�(�k1)�(�k2)�(�k3)〉 = δD(�k1, �k2, �k3)B (k̃1, k̃2, k̃3). (9)

Here the δD-function ensures closure in Fourier space. It has units
of mK3 h−6Mpc6 after volume normalisation. The bispectrum is
often applied to matter density fields, where �(�k) is the Fourier
Transform of matter overdensity, δ(�x)= ρ(�x)

ρ
− 1. In radio inter-

ferometric measurements, the coherence of the wavefront (the
visibilities obtained by cross-correlating voltages from individual
antennas) represents the Fourier Transform of the sky brightness
temperature distribution, measured in Jansky.

As discussed earlier, this bispectrum estimator can be unstable,
with cosmological simulations showing rapid fluctuations between
positive and negative values as non-Gaussianity becomes negligi-
ble but the amplitude is still large. As such,Watkinson et al. (2018)
suggest the normalised bispectrum as a more stable statistic:

B(�k1, �k2, �k3)= B (k̃1, k̃2, k̃3)
√
k1k2k3√

P(�k1)P(�k2)P(�k3)
, (10)

where P(|�k|) is the three-dimensional power spectrum, which
describes the volume-normalised variance on a given spatial scale,
and is the Fourier Transform of the two-point correlation func-
tion (Eggemeier & Smith 2017; Brillinger & Rosenblatt 1967). This
normalisation isolates the contribution from the non-Gaussianity
to the bispectrum, by normalising out the amplitude part of the
statistic. It is akin to normalising the third central moment by σ 3

to calculate the skewness.

4.1. Bispectrumwith radio interferometric data

Because the bispectrum is formed from the triple product of a
triangle of wavespace measurements, it can be formed directly
through the product of three interferometric visibilities. In the
limit where the array has perfect (complete) uv-sampling, indi-
vidual measurements of signal on triangles of baselines can be
multiplied to form the bispectrum estimate. In the more gen-
eral case, where an interferometer has instantaneously incomplete,
but well-sampled baselines, there are two options for extracting
the triangles of signal measurements: direct (via multiplication of
measurements from three tiles forming a triangle of baselines), or
gridded, where each uv-measurement is gridded onto the uv-plane
(with its corresponding Fourier beam kernel and weights), and the
final bispectra are computed from the fully-integrated and gridded
data.

Direct bispectrum estimators can be applied to specific trian-
gles according to the array layout, but these are usually unique,
with irregular configurations (all three internal angles are distinct),
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leading to difficult cosmological interpretation and poor sensitiv-
ity. These issues arise for imaging-like arrays with pseudo-random
layouts, but are alleviated for redundant arrays, where regular
triangles (isosceles and equilateral) exist and are instantaneously
available in many copies in the array. These features make inter-
pretation more straightforward and increase sensitivity to these
bispectrum modes.

Gridded bispectrum estimators can be applied to any array,
yield improved sensitivity by coherent gridding of data, and may
allow for a wider range of triangles to be probed. Nonetheless, they
suffer from the increased difficulty of extracting robust estimates
that correctly account for the correlation of data in uv-space.

With the benefit of having a redundant array, we will apply both
sets of estimators to our data.

5. The gridded estimator

Each measured visibility encodes information about a small range
of Fourier modes of the sky brightness distribution. Although each
baseline is usually reported as a single number representing the
antenna separation measured between antenna centres, the base-
lines actually measure a range of separations when accounting
for the actual physical size.g This translates to a range of Fourier
modes being measured by a given baseline, and is equivalent to
the statement that a finite primary beam response to the sky mixes
Fourier modes through spectral leakage (effectively a taper on the
continuous Fourier transform). Thus, when measurements from
different baselines are combined coherently (with phase informa-
tion) onto a uv-plane, they can be gridded with a kernel that is
the Fourier Transform of the primary beam response to the sky.
Such a gridding kernel captures the degree of spectral leakage
introduced by the antenna response, and means that baselines of
similar length and orientation have some shared information. The
gridding kernel is represented by Ã in Equation (6). With a sin-
gle defined visibility phase centre, all visibility measurements can
be added with this beam kernel onto a single plane (for each fre-
quency channel), along with their associated weights, to form a
coherently averaged estimate for the Fourier representation of the
sky brightness temperature:

V̂uv =

∑
i

V(ui, vi)Ã(ui, vi)W(ui, vi)

∑
i

Ã(ui, vi)W(ui, vi)
, (11)

where i indexes measurement andW is the weight associated with
each. The bispectrum is then estimated as the sum over the beam-
weighted gridded visibilities:

B̂123 =

∑
j∈Ã

V̂j1V̂j2V̂j3Wj1Wj2Wj3

∑
j

Wj1Wj2Wj3
, (12)

where

W1j =W1Ã1j, (13)

are the beam-gridded measurement weights.

gDue to the physical size of the collecting antenna element, some parts of the antenna
have a smaller effective baseline length (closer to other antenna), and some have a longer
(further from the other antenna).

5.1. Gridded estimator noise

The gridded bispectrum estimator is formed from coherent addi-
tion of visibilities over all observations. As such, if a given visibility
has thermal noise level σtherm (Jy Hz)h, the uncertainty on the
bispectrum is

�B̂TOT =
√
3σ 3

therm√∑
Ã

W1W2W3

, (14)

where the denominator is the sum over the gridding kernel of the
weights triplets.

The uncertainty on the normalised bispectrum is then:

�B̂123,TOT = B

√
�B2

B2 + �P2
1

4P2
1

+ �P2
2

4P2
2

+ �P2
3

4P2
3
, (15)

where the uncertainties can contain both thermal noise and noise-
like uncertainty from residual foregrounds.

For 300 2-min observations, and 24 triangles per 28 m baseline
triad group, the expected thermal noise level for a complete dataset
is

�B= 4.2× 1010mK3h−6Mpc6. (16)

The presence of residual foregrounds will be studied in
Section 10.2.

6. The direct estimator

As an alternate approach to the gridded estimator, visibilities are
Fourier-transformed along the frequency direction to compute the
delay transform, and closed bispectrum triangles formed from the
closed redundant triads of antennas. This approach does not use
the primary beam and ignores the local spatial correlations gen-
erated by the primary beam spatial taper. It also transforms along
a dimension that changes angle with respect to k‖ as a function
of baseline length, but approximates a k‖ Fourier Transform for
small u (small angle).

The bispectrum for a given observation is the weighted average
over all triads:

B̂123 =

( ∑
i

V1iW1i

)( ∑
i

V2iW2i

)( ∑
i

V3iW3i

)
( ∑

i

W1i

)( ∑
i

W2i

)( ∑
i

W3i

) , (17)

where i indexes over redundant triangles (triads). The final bis-
pectrum estimate then performs a weighted average over observa-
tions, such that:

B̂123,TOT =

∑
j

B̂123,jWj

∑
j

Wj
, (18)

where

Wj =
( ∑

i

W1i

)( ∑
i

W2i

)( ∑
i

W3i

)
. (19)

hσtherm = 2kT
λ2

� �ν√
BW�t for bandwidth BW, spectral resolution �ν and observation time

interval �t
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Figure 2. Schematic of how a stretched isosceles triangle configuration is extracted from redundant angularly-equilateral triangle baselines of the MWA Phase II hexagons.

6.1. Direct Estimator noise

The direct bispectrum estimator is formed from coherent addition
of baseline triplets for a given observation, which are then aver-
aged with relative weights to the final estimate. As such, if a given
visibility has thermal noise level σtherm (Jy Hz), the uncertainty on
the bispectrum is

�B̂TOT =
√
3σ 3

therm√∑
j

Wj

. (20)

The uncertainty on the normalised bispectrum is then given by
the same expression as for the Gridded Estimator [Equation (15)].

For 300 observations, and 24 triangles per 28 m baseline triad
group, the expected noise level is

�B= 7.1× 1011mK3h−6Mpc6. (21)

7. Triangles considered for estimation

Unlike bispectrum estimates that can be obtained from Phase
I data, where the array is in an imaging configuration with no
redundant triangles, we aim to take advantage of the 72 redundant
tiles in the hexagonal sub-arrays, afforded by the Phase II layout.
This allows for both direct and gridded bispectrum estimators to
be applied to matched observations with matched data calibration.

The most numerous (highest sensitivity) groups of redundant
triangles are the angularly-equilateral configurations of the 14 m
and 28 m baselines (48 and 24 sets, respectively). For these trian-
gles, the equilateral configurations exist only for the η = 0 (k‖ = 0)
line-of-sight mode. Other configurations of these closed angular
triangles are isosceles or irregular triangles, depending on the η

values chosen; however, the closed triangle requirement of the
bispectrum demands that:

η1 + η2 + η3 = 0, (22)

in addition to the angular components of the vectors summing to
zero (as is enforced by choosing the closed triangle baselines).

For comparison with theoretical predictions, we will focus on
equilateral and isosceles triangles. The 14 m and 28 m base-
lines are very short, corresponding to cosmological scales of k⊥ �
0.01hMpc−1 at z = 9. Thus, although the equilateral configuration
is cosmologically relevant and the easiest to interpret, these modes
are expected to be heavily foreground dominated (i.e., they corre-
spond to the line-of-sight DC mode, and the large angular scales
of diffuse and point-source foreground emission). We consider
them for completeness, but will show them to be cosmologi-
cally irrelevant from an observational perspective when computed
this way. These same angularly-equilateral triangle configurations
will, however, be used to form relevant isosceles configurations
with η1 = η2 and η3 = −2η1. Given that we aim to sample modes
where foregrounds are not dominant in our power spectra, these
isosceles configurations form ‘stretched’ (also referred to ‘flattened’
in Watkinson et al. 2018) configurations (k‖ >> k⊥). Figure 2
shows how the stretched isosceles configurations are extracted
from the data with a redundant baseline triad. Figure 3 then shows
schematically the approximate vectors for two of the four isosceles
configurations considered here.

8. Observations

The direct and gridded estimators are applied to 21.0 h of Phase
II high-band zenith-pointed data, comprising 10.7 h (320 obser-
vations) on the EoR0 field (RA= 0 h, Dec.= −27◦) and 10.3 h
(309 observations) on the EoR1 field (RA= 4 h, Dec.= −30◦).
We observe 30.72 MHz in 384 contiguous 80 kHz channels, with
a base frequency of 167.035 MHz. Approximately 15% of the
observations were obtained from drift-scan data, where the tele-
scope remains pointed at zenith for many hours and the sky drifts
through. For consistency with the drift-n-shift data, we chose drift
scan data observed with the field phase centres within 3◦ of zenith.
The data were observed over 5 weeks from 2016 October 15 to
November 28, and 1 week in 2017 July. Because the delay spec-
trum is used as part of the power spectrum estimator for the direct
bispectrum, each observation was individually inspected for poor
calibration or data quality, and bad observations excised from the
dataset. The excised observations comprised ∼5% of the dataset,
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Figure 3. Schematic of how isosceles triangle vectors are extracted, overlaid on a power spectrum. We aim to choose triangles with vectors that reside in noise-like regions of the
delay spectrum.

and primarily were due to poor calibration solutions over sets of
data contiguous in time due to poor instrument conditions (e.g.,
many flagged tiles or spectral channels).

The 2-min observations were each calibrated through the
MWAReal-Time System (RTS;Mitchell et al. 2008), as is routinely
performed for MWA EoR data, and 1 000 of the brightest (appar-
ent) sources peeled from the dataset (Jacobs et al. 2016). These
629 calibrated and peeled observations were used for bispectrum
estimation.

9. Results

We begin by reporting the bispectrum estimates for the two
methods and fields, and then report the normalised bispectra,
which incorporate the power spectrum estimates. Table 1 shows
the bispectrum estimates and their one-sigma uncertainties (ther-
mal noise) for the direct and gridded estimators, both observ-
ing fields and for different triangle configurations. Bold-faced
results indicate bispectrum estimates that are consistent with ther-
mal noise. These tend to be those that are extremely stretched
isosceles configurations (cos θ ∼ 1), with estimates that sit well
outside the primary foreground contamination parts of parame-
ter space. Conversely, the equilateral triangle configurations that
use the k‖ = 0 mode exclusively show extremely large detections.

There is no suggestion that these are 21-cm cosmological bispec-
trum detections, but rather are foreground contaminants. This will
be explored more fully in Section 10. Note also that the thermal
noise levels reported here are a factor of a few larger than the the-
oretical expectation derived in Sections 5 and 6. This is due to the
fraction of data with weights that are less than unity, indicating
flagged baselines and spectral channels.

Also listed in Table 1 is the expected bispectrum values from
simulations that assume either bright or faint galaxies drive reion-
isation (Greig & Mesinger 2017). The largest amplitudes are for
the smallest k-modes, which also tend to be more foreground
dominated.

The normalised bispectrum, B, is normalised by the power
spectra at each of the k modes forming the triangles. Figure 4
shows the power spectra for the EoR1 and EoR0 fields for the full
datasets as used in the gridded estimator. These have been pro-
cessed through the CHIPS power spectrum estimator (Trott et al.
2016). Figures 5 and 6 show the corresponding delay spectra, as
used in the direct bispectrum. There are small differences between
the two power spectrum estimators, as is expected given that delay
spectra do not grid with primary beams, and Fourier Transform
along frequency, yielding different results for longer baselines. The
signature of Galactic emission from close to the horizon is evi-
dent in the EoR0 power spectra, while it is less structured in EoR1,
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Table 1. Bispectrum estimates and one-sigma uncertainties for the direct and gridded bispectra for each observing field and triangle
type. Bold-faced values indicate bispectrum estimates that are consistent with thermal noise. The right-hand column lists expected
bispectrum values from simulation for faint and bright galaxies driving reionisation. kmodes are comoving andmeasured in hMpc−1.

Triangles Direct Gridded Type Faint Galaxy

EoR0 (×1012 mK3 Mpc6) (×1012 mK3 Mpc6) 14m (mK3 Mpc6)

k1 = k2 = k3 = 0.007 1.3e9± 7.8 4.3e8± 0.2 Equilateral

k1 = 0.2, k2 = k3 = 0.1 −1071.2± 7.8 −1.6e4± 0.2 Isosceles 4.4× 109

k1 = 0.4, k2 = k3 = 0.2 −7571± 7.8 8.9e4± 0.2 Isosceles −2.7× 107

k1 = 0.6, k2 = k3 = 0.3 27250± 7.8 −1078± 0.2 Isosceles −3.6× 106

k1 = 1.0, k2 = k3 = 0.5 47.0± 7.8 22.0± 0.2 Isosceles 5.8× 104

EoR0 28m

k1 = k2 = k3 = 0.014 −1.3e7± 22.2 6.9e8± 0.3 Equilateral

k1 = 0.2, k2 = k3 = 0.1 120.8± 22.2 9582± 0.3 Isosceles

k1 = 0.4, k2 = k3 = 0.2 −2010± 22.2 −84.0± 0.3 Isosceles

k1 = 0.6, k2 = k3 = 0.3 943.2± 22.2 65.1± 0.3 Isosceles

k1 = 1.0, k2 = k3 = 0.5 13.7± 22.2 88.2± 0.3 Isosceles

EoR1 (×1012 mK3 Mpc6) (×1012 mK3 Mpc6) 14m Bright Galaxy

k1 = k2 = k3 = 0.007 −9.9e6± 2.3 2.0e10± 0.3 Equilateral

k1 = 0.2, k2 = k3 = 0.1 −21.5± 2.3 1.9e4± 0.3 Isosceles 4.4× 109

k1 = 0.4, k2 = k3 = 0.2 978.9± 2.3 −4.0e8± 0.3 Isosceles −2.9× 107

k1 = 0.6, k2 = k3 = 0.3 1546.4± 2.3 −25.4± 0.3 Isosceles −8.4× 105

k1 = 1.0, k2 = k3 = 0.5 −2.0± 2.3 0.4± 0.3 Isosceles 1.5× 105

EoR1 28m

k1 = k2 = k3 = 0.014 3.6e5± 6.7 −1.2e8± 0.5 Equilateral

k1 = 0.2, k2 = k3 = 0.1 2.7± 6.7 −1530± 0.5 Isosceles

k1 = 0.4, k2 = k3 = 0.2 1.7± 6.7 203.3± 0.5 Isosceles

k1 = 0.6, k2 = k3 = 0.3 −229.4± 6.7 −12.5± 0.5 Isosceles

k1 = 1.0, k2 = k3 = 0.5 37.1± 6.7 474.3± 0.5 Isosceles

Figure 4. Gridded power spectra for the 21 h of observations on two fields used in this work, as processed through the CHIPS estimator (Trott et al. 2016).
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Figure 5. Delay transform power spectra for the EoR1 field for the data used in this
analysis. Note the large leakage into the EoRwindow, which yields large denominators
for the normalised bispectrum.

Figure 6. Delay transform power spectra for the EoR0 field for the data used in this
analysis.

where the Galactic Centre has set. Most notably, the delay spec-
tra show large foreground leakage into the EoR window (k‖ <

0.4), yielding large power spectrum denominator values for the
normalised bispectrum.

Using these data, Table 2 describes the normalised bispec-
trum. Bold-faced results are broadly consistent with thermal
noise (< 5σ ), again reflecting the modes that are least affected
by foregrounds. The difference between the dimensional and
reduced bispectrum results is due to the different power spec-
tral estimators. Also notable is the difference in amplitude of the

gridded and direct normalised bispectrum estimates. Due to the
division by the power spectrum, the normalised bispectrum is
heavily dependent on the details of the power spectrum estimates,
which fluctuate substantially in foreground-affected regions. The
delay-space power spectra show increased foreground power in
the EoR window, and this is reflected in a larger power spectrum
estimate, and therefore a lower normalised bispectrum. This
reliance highlights the complexity for interpreting the normalised
bispectrum with foreground-affected data.

10. Bispectrum signature of foregrounds

Estimates of bispectrum sensitivity for operational and future
21-cm experiments are incomplete without a treatment of fore-
grounds. Despite the expectation that point source, continuum
foregrounds only impact a region of the three dimensional EoR
parameter space (kx, ky, k‖), in reality the details of the instru-
ments, complexity of extragalactic and Galactic emission, limited
bandwidth and calibration errors leave residual contaminating sig-
nal throughout the full parameter space. Although these methods
perform very well to remove such signal, the extreme dynamic
range demanded by this experiment translate to bias that exceeds
the expected cosmological signal strength. The results presented
here are clearly foreground-dominated, particularly for the equi-
lateral triangle configuration.

As such, the bispectrum signature of foregrounds can be com-
puted for a simple point-source foreground model. We first
consider the expected foreground bispectrum, which quantifies
the bias in the measurement, and then turn to the variance of
the foreground bispectrum, which quantifies the additional noise
term.

We employ a model where the sky is populated with a random
distribution of unresolved extragalactic point sources that follow
a low-frequency number counts distribution (Intema et al. 2011;
Franzen et al. 2016):

dN
dS

= αSβ Jy−1sr−1, (23)

where α � 3900 and β = −1.59 for sources with flux density at
150 MHz of less than 1 Jansky. We assume there is no source
clustering and spectral dependence, yielding a Poisson-distributed
number of sources in each differential sky area.

The clustering of point sources in the power spectrum has been
studied by Murray, Trott, & Jordan (2017). They find that source
clustering will be unimportant for theMWA (unless the clustering
is extreme, which is not measured), but may be important for the
SKA, which can clean to deeper source levels. Nonetheless, the
structure due to clustered point-source foregrounds only changes
the amplitude of the foreground structure in the EoR wedge as a
function of angular scale (k⊥). Because the line-of-sight spectral
component is unaffected, the signature of clustered foregrounds
in the EoR Window is mostly unchanged. These more realistic
point-source foregrounds will be considered in the simulations
of Watkinson & Trott (2019) and here we retain the analytic
signature of the Poisson foregrounds.

We further assume that the primary beam can be approximated
by a frequency-dependent Gaussian:

A(l,m, ν0)= exp
(

− (l2 +m2)ν2
0Aeff

2c2ε2

)
, (24)
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Table 2. Normalised bispectrum estimates,B, and one-sigma uncertainties for the direct and gridded bis-
pectra for each observing field and triangle type. Bold-faced values indicate bispectrum estimates that are
consistent with thermal noise.

Triangles Direct Gridded Type

EoR0 14m

k1 = k2 = k3 = 0.007 0.166± 2.5e− 7 10.4± 4.1e− 8 Equilateral

k1 = 0.2, k2 = k3 = 0.1 −0.266± 0.0004 921.2± 0.3 Isosceles

k1 = 0.4, k2 = k3 = 0.2 2.84± 0.0044 −1766.2± 0.6 Isosceles

k1 = 0.6, k2 = k3 = 0.3 −4.87± 0.063 −427.8± 5.8 Isosceles

k1 = 1.0, k2 = k3 = 0.5 3.45± 0.60 129.4± 108.9 Isosceles

EoR0 28m

k1 = k2 = k3 = 0.014 −0.019± 1.4e− 7 −29.3± 8.1e− 6 Equilateral

k1 = 0.2, k2 = k3 = 0.1 −0.14± 0.002 −594.5± 4.0 Isosceles

k1 = 0.4, k2 = k3 = 0.2 0.360± 0.009 948.9± 7.2 Isosceles

k1 = 0.6, k2 = k3 = 0.3 0.98± 0.18 −793.1± 37.6 Isosceles

k1 = 1.0, k2 = k3 = 0.5 1.08± 1.78 19450± 752 Isosceles

EoR1 14m

k1 = k2 = k3 = 0.007 −0.004± 1.2e− 8 0.61± 3.2e− 9 Equilateral

k1 = 0.2, k2 = k3 = 0.1 0.044± 0.0001 −666.5± 0.03 Isosceles

k1 = 0.4, k2 = k3 = 0.2 0.19± 0.0004 3157.0± 0.82 Isosceles

k1 = 0.6, k2 = k3 = 0.3 −0.064± 0.007 −1861.9± 0.54 Isosceles

k1 = 1.0, k2 = k3 = 0.5 −0.12± 0.13 5907.5± 56.1 Isosceles

EoR1 28m

k1 = k2 = k3 = 0.014 0.0006± 7.0e− 9 17.1± 8.4e− 7 Equilateral

k1 = 0.2, k2 = k3 = 0.1 0.0001± 0.0005 927.7± 0.43 Isosceles

k1 = 0.4, k2 = k3 = 0.2 −0.082± 0.002 −245.3± 0.15 Isosceles

k1 = 0.6, k2 = k3 = 0.3 0.012± 0.030 5881.8± 10.4 Isosceles

k1 = 1.0, k2 = k3 = 0.5 6.2± 1.2 4257.6± 15.6 Isosceles

where Aeff is the tile effective area and ε encodes the conversion
from an Airy disc to a Gaussian.

The visibility is given by Equation (4) for frequency ν. To
compute the line-of-sight component to the visibility, we Fourier
Transform over frequency channels, after employing a frequency
taper (window function) to reduce spectral leakage from the finite
bandwidth:

V(u, v, η) =
∫

dldmS(l,m, ν0)A(l,m, ν0)

×
∫

dνϒ(ν) exp
(

−2π i
ν(xl+ ym)

c

)
exp (−2π iνη)

=
∫

dldmS(l,m, ν0)A(l,m, ν0)

×
∫

dνϒ(ν) exp
(−2π iν(xl/c+ ym/c+ η)

)
(25)

=
∫

dldmS(l,m)A(l,m)

× ϒ̃(xl/c+ ym/c+ η) JyHz, (26)
whee ϒ(ν) is the spectral taper, �ν is the channel resolution, and
we have performed the Fourier Transform over frequency. For
analytic tractability, in this work we use a Gaussian taper, with a

characteristic width,� �BW/7, such that the edges of the band are
consistent with zero and it is well-matched to a Blackman–Harris
taper:

ϒ(ν)= 1√
2π�2

exp− ν2

2�2 , (27)

with corresponding Fourier Transform,

ϒ̃(η)= exp−2π 2�2η2. (28)
The bispectrum is formed from the triple product of visibilities.

Accounting for the fact that the point sources are only corre-
lated locally (δD(l1 + l2 + l3 = 0)), its expected value with respect
to foregrounds is

〈V1V2V3〉 =
∫

dldm〈S3(l,m)〉A3(l,m) exp
(−2π 2�2T2) (29)

where

T2 =
(
x1l
c

+ y1m
c

− η1

)2

+
(
x2l
c

+ y2m
c

− η2

)2

+
(
x3l
c

+ y3m
c

− η3

)2

. (30)

Here, the source counts have been separated from the spatial
integral. This is a general expression for a triplet of baselines.
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We can now simplify this for triangles, particularly those with
isosceles configurations (where the equilateral is a single case of
an isosceles).

Closed triangles follow the relations:

x1 + x2 = −x3 (31)
y1 + y2 = −y3 (32)
η1 + η2 = −η3, (33)

and we define, without loss of generality, the following relations
for the isosceles configurations considered in this work:

x1 = −2x2
x2 = x3
y1 = 0
y2 = −y3
y2 = x1 cos π/6= 2x2 cos π/6= √

3x2
2η2 = 2η3 = −η1. (34)

Making these substitutions in Equation (29), completing the
squares and collecting terms, we find:

〈V1V2V3〉 =
∫

dldm〈S3(l,m)〉A3(l)

× exp
(−12π 2�2 (

x22/c
2(l2 +m2)+ η2

2
))
. (35)

The source count expectation value uses the source number counts
distribution and the fact that the number of sources at any sky
location is Poisson-distributed to find:

〈S3(l,m)〉 =
∫
S
S3(ν0)

dN
dS

= α

4+ β
S4+β
max Jy3sr−1 (36)

Incorporating the primary beam from Equation 24, moving to
polar coordinates, and performing the integral over (l,m), we find
for the expected foreground bispectrum bias:

〈V1V2V3〉 = α

4+ β
S4+β
max

×π

θ
exp

(
−π 2BW2η2

2
25

)
Jy3Hz3 (37)

where

θ = 3Aeffν
2
0

c2
+ π 2BW2u22

25ν2
0

, (38)

and BW is the experiment bandwidth. This factor combines the
primary beam (spatial taper) and spectral taper components into
a single factor.

The equilateral configuration can be derived from this expres-
sion with η2 = 0. For the 28-m baselines, a maximum source flux
density of 1 Jy and Aeff = 21 m2, and performing the cosmological
conversions, we expect a bispectrum estimate of:

B(x= 28)� 8.6× 1019mK3h−6Mpc6, (39)

which is comparable to the estimates found in Section 9. For 14-m
baselines, B(x= 14)� 1.0× 1020mK3h−6Mpc6.

The isosceles configurations incorporate the η term. For
k‖ > 0.1, this term decays to below the noise, which is consistent
with that observed in the data. The signature of this isosce-
les foreground dimensional bispectrum in k⊥-k‖ space is shown
in Figure 7. For the k1 = 0.1h Mpc−1 stretched configuration,

Figure 7. Point-source-foreground dimensional bispectrum signature of isosceles tri-
angle vectors in k⊥ − k‖-space (note the stretched logarithmic colour bar). In this
model, the expected foreground signal has fallen to below the expected cosmological
signal value by k‖ ≥ 0.12.

we expect for 28 m (14 m):

B� 1.7× 1012 (1.0× 1012)mK3h−6Mpc6. (40)

The squeezed configurations of large k⊥ combined with small k‖
might be interesting for future studies, depending on the expected
cosmological signal on these scales. Given that the power spectrum
is expected to be small on these combination of line-of-sight and
angular scales, most EoR experiments are not designed for high
sensitivity here (k⊥ = 0.1 corresponds to 200-m baselines).

Interestingly, the expected foreground bispectrum signal is
positive, due to its constituent astrophysical sources being associ-
ated with overdensities. Conversely, the stretched isosceles 21-cm
bispectrum from the cosmological signal will be negative on many
scales during reionisation (Majumdar et al. 2018).

10.1. Normalised foreground bispectrum

The normalised bispectrum also contains the expected power
spectrum values for a foreground model. In line with the method-
ology developed in the previous section, we can write the expected
power spectrum at (u, v, η) as

P(u, v, η) = 〈V∗(u, v, η)V(u, v, η)〉
= α

3+ β
S3+β
max (41)

×
(
erf

(
b+ 2a√

2a

)
− erf

(
b− 2a√

2a

))
(42)

× exp−4π 2�2η2
√

π

4a
exp

b2

4a
, (43)

where

a = 2πc2

ν2
0Aeff/ε2

+ 4�2|x|2
c2

(44)

b = 8�2|x|η
c

, (45)
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encode the spatial and spectral tapers, and |x|2 = x2 + y2 (with-
out loss of generality). This expression is derived from the Fourier
Transform over Gaussians, and then the integral over dldm.i

When η = 0 and for the 28-m baseline triangles, the expected
bispectrum normalisation is√

P(u, v, η)3/V = 2.8× 1021 mK3h−6Mpc6. (46)

For the 14-m triangles, we find
√
P(u, v, η)3/V = 3.3×

1021 mK3h−6Mpc6. When compared with the expected
bispectrum value, we find that (28 m):

〈B〉 = 1.7, (47)

and 〈B〉 = 0.6 for the 14-m baselines, which exceed the equilateral
triangle configuration estimates from the MWA data. As with the
bispectrum estimate, the isosceles configurations have expected
power values that fall rapidly with η, and are less comparable to the
data in these idealised scenarios. However, for the k1 = 0.1hMpc−1

stretched configuration, we expect for 28 m (14 m):

〈B〉 = 4.0 (240, 000). (48)

These values are ratios of very small numbers, and therefore are
highly dependent on numerical details and are not representative.
However, they may lend support to the idea that the normalised
bispectrum is difficult to interpret because it relies on foreground
details in both the bispectrum and power spectrum.

Alternatively, the combination of power spectrum, dimen-
sional bispectrum and normalised bispectrum may help to shed
additional light on whether data are really foreground free. Given
the different behaviour of foregrounds in these statistics, this
information may be used to discriminate cosmological infor-
mation from foregrounds, or to help to design some iterative
foreground cleaning algorithm, taking into consideration their
behaviour in cosmological simulations. In this scenario, the nor-
malised bispectrum may provide useful information.

Figure 8 displays the normalised foreground bispectrum for
isosceles configurations in k⊥ − k‖ space. For the point-source
foregrounds, the power spectrum denominator dominates over
the expected bispectrum signal, yielding values< 10−3 across all of
parameter space. This presents an interesting divergence from the
usual expectation of foreground bias in the power spectrum, where
foregrounds add overall signal. In this case, a large measurement
that exceeds the thermal noise is consistent with a cosmological
origin, and not with residual foregrounds.

10.2. Foreground bispectrum error

We now turn our attention to consideration of the signal variance
due to residual foregrounds, 〈B2

FG〉, such that [cf., Equation (14)]:

�B2 = 3σ 6
therm∑

j

Wj
+ 〈B2

FG〉, (49)

and

〈B2
FG〉 = 〈V∗

1V
∗
2V

∗
3V1V2V3〉. (50)

iThis can also be derived as a covariance between umodes and ηmodes, which encodes
the spectral leakage that stems from the spatial and spectral tapers. This covariance is
that used to understand power spectrum uncertainties in EoR work, where correlations
between k-cells must be correctly treated.

Figure 8. Point-source-normalised foreground bispectrum signature of isosceles trian-
gle vectors in k⊥ − k‖-space (note the stretched logarithmic colour bar). In this model,
the expected foreground signal has fallen to below the expected cosmological signal
value by k‖ ≥ 0.12.

This reduces to a relatively simple expression for the simple point-
source case, due to the cancelling of complex components (this is
not generally true for the covariance). Using the same formalism
as earlier, and again considering the Poisson-distributed nature of
the flux density of the sources, we find:

〈B2
FG〉 =

∫
S6
dN
dS

dS
∫

A6(l,m)dldm (51)

×
∫

�ϒe(−2π i(η1�ν12+η2�ν34+η3�ν56)d�ν

= α
S7+β
max

7+ β

(
12π

c2ε2

ν2
0Aeff

)
e−4π 2�2(η2

1+η2
2+η2

3),

= α
S7+β
max

7+ β

(
12π

c2ε2

ν2
0Aeff

)
e−6π 2�2η2

1 ,

where �ϒ ≡ ϒ(ν1)ϒ(ν2)ϒ(ν3)ϒ(ν4)ϒ(ν5)ϒ(ν6). This expression
is flat in angular modes, and decays rapidly in line-of-sight
modes.

Comparing this with the expected value of the foreground bis-
pectrum, Equation (37), we can form the foreground bispectrum
signal-to-error ratio (Figure 9). The signal bias exceeds the uncer-
tainty for small scales, but on the larger scales of interest for EoR,
the uncertainty dominates. Nonetheless, there is no line-of-sight
dependence, demonstrating that the foreground bias and uncer-
tainty both drop rapidly and are negligible for k‖ > 0.12hMpc−1,
implying that for larger k‖ scales, point-source foregrounds are not
significant in the signal or noise budget.

One can also now compare the foreground uncertainty to the
expected thermal noise level. For the EoR1 field data, themeasured
uncertainty for the direct bispectrum estimator was 6.7 × 1012
mK3 Mpc6. Figure 10 shows this level (green line) compared with
the foreground bispectrum error (red line) as a function of line-of-
sight scale. (The gridded estimator has slightly lower noise level,
but the distinction is not significant when compared to the large
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Figure 9. Ratio of point-source foreground bispectrum bias to uncertainty, for isosce-
les triangle vectors in k⊥ − k‖-space (note linear plot). The bias exceeds the uncertainty
at large angular modes, but rapidly falls below for larger k⊥, with no dependence on
line-of-sight scale.

Figure 10. Errors for point-source-normalised foreground bispectrum (red) and ther-
mal noise (green), for isosceles triangle vectors in k⊥ − k‖-space and 300 observations
used in this work for the EoR1 field.

gradient of the foreground contribution.) As with the foreground
bias, the error induced by residual foregrounds drops steeply
beyond k‖ = 0.12hMpc−1, and falls below the thermal noise (even
in this case with a small dataset for the EoR1 field).

As a final step to assessing the advantages of the bispectrum
compared with the power spectrum to detect the cosmological
signal, we divide the expected 21-cm bispectrum values for the
faint and bright galaxies, presented in Table 1 by the foreground
error for these modes, and compare with that for the power spec-
trum. The power spectrum values for faint and bright galaxies
are taken from the same underlying dataset generated by 21-cm
FAST (Mesinger, Furlanetto, & Cen 2011). For all but the k1 =

0.1hMpc−1 mode, the foreground uncertainty is negligible, and the
ratio is uninteresting. For k1 = 0.1hMpc−1, k2 = k3 = 0.2hMpc−1:

P21 = 1.3× 104mK2Mpc3

�PFG = 0.2× 10−1mK2Mpc3

B21 = 4.4× 109mK3Mpc6

�BFG = 4.6× 1010mK3Mpc6, (52)

yielding better performance for the power spectrum, within the
foreground dominated region.

However, outside of the foreground ‘wedge’, which exists in
both power spectrum and bispectrum space, the data uncertainty
is limited by the thermal noise, and here the bispectrum achieves
higher signal-to-noise ratio for a set observation time:

P21 = 1.3× 104mK2Mpc3

�Ptherm = 5.7× 106mK2Mpc3

B21 = 4.4× 109mK3Mpc6

�Btherm = 5.3× 1011mK3Mpc6. (53)

Taking the ratios we find,

P21/�Ptherm = 0.002
B21/�Btherm = 0.008.

Accounting for the fact that the gridded bispectrum averages down
with t1.5 while the gridded power spectrum averages with t, the
observing time multiple (above 10 h) for a detection (SNR = 1)
is

tP = 500×
tB = 25× .

Therefore, the bispectrum detection can theoretically be achieved
in a fraction of the time of the power spectrum detection, for
thermal noise-limited modes close to the EoR wedge. An SNR =
1 detection level could potentially be reached in 250 h, for this
wave mode. This conclusion is relevant for the MWA, where the
excellent instantaneous uv-coverage allows for rapid observation
of triangle configurations. [We note that the power spectrum SNR
shown here is not inconsistent with previous expectations for the
performance of the MWA, because it applies only to this single
mode (Beardsley et al. 2016; Wayth et al. 2018)]. Future work pre-
sented in Watkinson & Trott (2019) will explore a more full range
of triangle configurations and foreground bias and error.

11. Discussion and conclusions

As discussed, the model used for the foreground bispectrum sig-
nal predicts that isosceles configurations have amplitudes that fall
rapidly with non-zero k‖. Nevertheless, we find that the numer-
ator and denominator of the normalised bispectrum scale such
that its amplitude in this model increases as a function of η. For
the 28-m baselines, the ratio doubles by k‖ > 0.014hMpc−1. Over
the same k range, the dimensional bispectrum is rapidly decay-
ing, losing seven orders of magnitude from the k‖ = 0 mode. In
this model, the expected foreground signal has fallen to below
the expected cosmological signal value by k‖ ≥ 0.12. The results
from the MWA datasets have some modes thermal noise-limited
at 10 h, and only the k‖ = 0 mode is clearly foreground dominated
for all experiments. In line with the discussion of Bharadwaj &
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Pandey (2005), it is possible that the dimensional bispectrum is
less affected by foregrounds than the power spectrum. However,
the normalised bispectrum is more difficult to interpret, given
the different observational foreground effects on the bispectrum
numerator and power spectra denominator.

Reduction of foreground contamination is an active field of
research in 21-cm EoR experiments, and primary motivator for
testing statistics other than the power spectrum. Despite the nor-
malised bispectrum providing a cosmologically stable and robust
estimate of non-Gaussianity compared with the dimensional bis-
pectrum, the expected foreground value is difficult to discrim-
inate from the expected signal value (Watkinson et al. 2018).
Conversely, the dimensional bispectrum yields values that are
highly significant detections, showing clear foreground contam-
ination. Thus, the normalised bispectrum may not be the best
discriminant in real EoR experiments. For future experiments,
with higher sensitivity, exploration of modes with negative bis-
pectra may help discrimination from foreground contamination,
where the bispectrum is expected to be positive This is explored
further inWatkinson & Trott (2019) and demonstrated previously
in Lewis (2011). It would also be interesting to study the signa-
ture of calibration errors in radio data on bispectrum estimates, to
explore whether they have an imprint that can be discriminated
from the cosmological signal.

The thermal noise levels, as are achieved in these 10 h datasets
for large k isosceles configurations, are 3–4 orders of magnitude
larger than the expected bispectrum value for these configurations
at low redshifts (Majumdar et al. 2018). The gridded bispectrum
noise scales with observation time to the power of 1.5, requiring
a 1 000 h observation with the MWA to achieve a cosmological
detection. This estimate is in line with predictions from Yoshiura
et al. (2015). Further advantage may be gained from incoherent
addition of isosceles triangle configurations with similar vector
lengths, where the bispectrum is expected to vary slowly with
changing parameters. An initial test of this for the k1 = 0.1hMpc−1

mode shows an improvement in sensitivity by a factor of ten
for the gridded estimator, yielding a theoretical detection of the
signal with 150 h of data. The direct estimator scales incoher-
ently with time (t0.75), due to the incoherent addition of triangles
from different observations, but does utilise coherent addition of
instantaneously-redundant triads.

We have presented the first effort to estimate the cosmologi-
cal bispectrum from the EoR with 21 h of MWA data, and have
shown the parts of parameter space that are consistent with ther-
mal noise at this level, using two types of bispectrum estimator.
These two approaches are presented in order to demonstrate the
practicalities of estimation of the bispectrum with real radio inter-
ferometer data. We have also derived a form for the expected
bispectrum signature of point-source foregrounds for equilateral
and isosceles configurations, and demonstrated broad consistency
between the analytic model and the estimates obtained from
the data.

By considering the foreground bispectrum variance in the
noise estimation, we have demonstrated that both the foreground
bias and variance are insignificant for k‖ < 0.12h Mpc−1, allow-
ing these regions of parameter space to be probed with dominant
thermal noise. Due to the ability of the gridded bispectrum esti-
mator to reduce thermal noise proportional to t1.5, unlike the
power spectrum which reduces with t, the 21-cm cosmological
bispectrum may be detectable with fewer observing hours than
the power spectrum for arrays with excellent instantaneous uv-
coverage (i.e., with well-sampled baselines). This insight makes

observational pursuit of the bispectrum worthwhile for some
current instruments.

In a companion paper (Watkinson & Trott 2019), we explore
optimal triangles to study from a signal and foreground contami-
nation ratio perspective. Future work can also study the signature
of calibration errors on the bispectrum. This work helps to define
the optimal observational strategy and approach to bispectrum
studies.
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