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General Toeplitz kernels and
(X , Y)-invariance
M. Cristina Câmara, Kamila Kliś-Garlicka , and Marek Ptak
Abstract. Motivated by the near invariance of model spaces for the backward shift, we introduce a
general notion of (X , Y)-invariant operators. The relations between this class of operators and the
near invariance properties of their kernels are studied. Those lead to orthogonal decompositions for
the kernels, which generalize well-known orthogonal decompositions of model spaces. Necessary
and sufficient conditions for those kernels to be nearly X-invariant are established. This general
approach can be applied to a wide class of operators defined as compressions of multiplication oper-
ators, in particular to Toeplitz operators and truncated Toeplitz operators, to study the invariance
properties of their kernels (general Toeplitz kernels).

1 Introduction

Invariant subspaces play an important role in the study of operators. In particular,
shift invariant subspaces (with various definitions) have attracted much attention
in mathematics and engineering. For instance, Beurling’s theorem characterizes all
nontrivial shift invariant subspaces of the Hardy space H2 ∶= H2(D) (D is the unit
disk), where the shift operator is multiplication by z, as being of the form θH2, where
θ is an inner function. From this result, one can deduce that all nontrivial S∗-invariant
subspaces of H2 are of the form K2

θ = H2 ⊖ θH2; these are called model spaces. They
provide the natural setting for truncated Toeplitz operators (see (2.8)), which have
generated enormous interest and are important in connection with applications in
mathematics, physics, and engineering (see, for instance, [15]).

Model spaces can also be seen as a particular case of Toeplitz kernels, i.e., kernels
of Toeplitz operators with symbol θ̄ (for definition of Toeplitz operator, see (2.5)).
Kernels of Toeplitz operators are not, in general, S∗-invariant subspaces of H2, but
they are nearly S∗-invariant. We say that a closed subspace M ⊂ H2 is nearly S∗-
invariant if

for all f ∈ M such that f (0) = 0, we have S∗ f ∈ M .(1.1)
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Nearly S∗-invariant subspaces were first introduced by Hitt [20], following Hayashi’s
work on kernels of Toeplitz operators [19]. These results were resumed and further
developed by Sarason in [28, 29] and since then nearly S∗-invariant subspaces have
been studied by many mathematicians. Hitt proved, in particular, the following.

Theorem 1.1 [20] Any nontrivial nearly S∗-invariant subspace of H2 has the form
N = gK, where g is the element of N of unit norm which has a positive value at the origin
and is orthogonal to all elements in N vanishing at 0, K is an S∗-invariant subspace and
the operator Mg is an isometry from K into H2.

Hayashi gave a complete characterization of the nearly S∗-invariant subspaces
which are kernels of Toeplitz operators as being those where g is outer and g2 is a
rigid function.

Recently, nearly S∗-invariant subspaces of H2 with finite defect m ∈ N were intro-
duced in [11] and their study has quickly attracted attention [12, 22, 27]. In most of
these papers, the emphasis is put on characterizations of those spaces in terms of
model spaces which generalize Hitt’s results.

Here, we will not take the same approach; rather we will study conditions for the
kernels of operators in a wide class to be nearly invariant, or almost invariant (see
Definition 1.4), in connection with certain invariance properties of the operators and
with orthogonal decompositions of their kernels generalizing well-known orthogonal
decomposition of the model spaces.

We also adopt a more general setting, by studying invariance properties with
respect to a general operator X ∈ B(H). This is motivated by the following obser-
vation. Imposing a zero at 0 for f in (1.1) is equivalent to imposing that z̄ f ∈ H2, in
which case S∗ f = z̄ f . So (1.1) can be equivalently reformulated as

if f ∈ M , z̄ f ∈ H2 , then z̄ f ∈ M ,(1.2)

which is the reason why nearly S∗-invariant spaces are also called nearly Mz̄-invariant,
or simply nearly z̄-invariant (in H2) [7]. More generally, for any function η in a wide
class, including all η ∈ H∞[7], Toeplitz kernels are nearly η-invariant, meaning that
for a Toeplitz kernel ker T ,

if f ∈ ker T , η f ∈ H2 , then η f ∈ ker T .(1.3)

Definition 1.2 Let H, H be Hilbert spaces such that H ⊂H. Let L ≠ {0} be a closed
subspace of H, and let X ∈ B(H). We say that L is nearly X-invariant w.r.t. (with
respect to) H if and only if, for all h ∈ L, such that Xh ∈ H we have Xh ∈ L. If there
exists a finite dimensional space F ⊂ H such that, for all h ∈ L with Xh ∈ H, we have
X f ∈ L⊕ F, we say that L is nearly X-invariant w.r.t. H with defect m, where m is the
smallest dimension of such subspace F.

Two other related definitions are the following.

Definition 1.3 Let L ≠ {0} be a closed subspace of H ⊂H, and let X ∈ B(H). We
say that L is H-stable for X if XL ⊂ H.
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Definition 1.4 A subspace L ⊂H is said to be almost-invariant for the operator
X ∈ B(H) if there exists a finite dimensional space F ⊂H such that

XL ⊂ L⊕ F.

The smallest possible dimension of F is called the defect of L.
Remark 1.5 As above let L ⊂ H ⊂H, and let X ∈ B(H). It is clear that if L is nearly
X-invariant w.r.t. H with defect m and L is H-stable for X, then L is almost-invariant
for X with defect m.

Near X-invariance can be interpreted as meaning that, under the action of X, any
element of L is mapped either into L or into H/H; no element of L is mapped into
H/L. We can interpret X-invariance with defect analogously. On the other hand,
this can be related, for model spaces, with certain orthogonal decompositions. For
example, if α and θ are inner functions with α < θ (i.e., θ

α ∈ H∞ and θ
α ∉ C), then we

have two well-known decompositions:
(i) K2

θ = αK2
θ
α
⊕ K2

α and

(ii) K2
θ = K2

θ
α
⊕ θ

α K2
α .

In the case (i), the first term in the orthogonal sum is such that ᾱ(αK2
θ
α
) ⊂ K2

θ , whereas

for the second term, we have ᾱK2
α ⊂ H2

− ∶= z̄H2. So the multiplication operator Mᾱ
maps any element of K2

θ either into K2
θ or into L2/H2. Thus the orthogonal decompo-

sition (i) reflects the fact that K2
θ is nearly ᾱ-invariant w.r.t. H2.

In the case (ii), we see that the first term is mapped by the multiplication operator
Mα into K2

θ , whereas the second term is mapped into H2/K2
θ . So the decomposition

(ii) can be seen as reflecting the fact that K2
θ is H2-stable for Mα and, if dim K2

α < ∞,
it is almost-invariant for Mα ∣H2 , i.e., the Toeplitz operator Tα .

Since model spaces are particular cases of Toeplitz kernels, a natural question
arises: is it possible to obtain, for more general kernels of operators, orthogonal
decompositions that generalize those that are known for model spaces and allow us to
establish conditions for their being nearly invariant or almost-invariant with respect
to a given operator?

The near S∗-invariance of Toeplitz kernels can also be related with the fact that
Toeplitz operators T are shift-invariant [2], i.e., for any f , g ∈ H2, we have

⟨T f , g⟩ = ⟨Tz f , zg⟩.(1.4)

Indeed, if f ∈ ker T and z̄ f ∈ H2, then from (1.4), we have ⟨Tz̄ f , g⟩ = ⟨T f , zg⟩ = 0
for any g ∈ H2, since T f = 0; therefore, z̄ f ∈ ker T . We see, thus, that the near S∗-
invariance of Toeplitz kernels can be derived from the shift-invariance of Toeplitz
operators. A second natural question arises from this observation: how are certain
invariance properties of an operator related with those of its kernel?

In this paper, we study these questions. We extend the notion of shift-invariant
operator (thus including, in particular, the usual notion of shift-invariant operator
in applications [32]), and we generalize the concept of nearly S∗-invariant subspace,
possibly with defect.

In Section 2, we study some basic properties of (X , Y)-invariant operators and we
focus on compressions of multiplication operators to closed subspaces of L2, showing
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in particular that those compressions are X-invariant for all X ∈ L∞ (so, in particular,
they are all shift-invariant). In Section 3, we study the relations between X-invariance
of operators and the near invariance properties of their kernels, and in Section 4, we
show that those relations lead to orthogonal decompositions for the kernels, which
generalize well-known orthogonal decompositions of model spaces. These results
allow us to establish necessary and sufficient conditions for those kernels to be nearly
X-invariant, with or without defect. They also allow for a general approach to the
study of a wide class of operators defined as compressions of multiplications operators
(general Toeplitz operators [6]) and the invariance properties of their kernels (general
Toeplitz kernels). In Sections 5 and 6, we apply those results to Toeplitz operators and
truncated Toeplitz operators.

2 (X , Y)-invariant operators

Let H, K be Hilbert spaces. Let X be a bounded linear operator on H, i.e., X ∈ B(H).
Let Y ∈ B(K), and let H ⊂H, K ⊂K be closed subspaces. We will use the notation

HX = { f ∈ H ∶ X f ∈ H} and KY = {g ∈ K ∶ Yg ∈ K}.(2.1)

An operator A ∈ B(H, K) is called (X , Y)-invariant if and only if we have

⟨AX f , g⟩ = ⟨Af , Yg⟩ for all f ∈ HX , g ∈ KY .(2.2)

In particular, if X ∈ B(H) and A ∈ B(H), we say that A is X-invariant if and only if

⟨AX f , g⟩ = ⟨Af , X∗g⟩ for f ∈ HX , g ∈ HX∗ ,(2.3)

i.e., A is (X , X∗)-invariant.

Proposition 2.1 Let H ⊂H and K ⊂K. Let A ∈ B(H, K) and X ∈ B(H), Y ∈ B(K).
Then:
(1) If AX = Y∗A on HX , then A is (X , Y)-invariant.
(2) A is (X , Y)-invariant if and only if A∗ is (Y , X)-invariant.
(3) If A ∈ B(H) and AX = XA on HX , then A is X-invariant.

Now let PHX denote the orthogonal projection

PHX ∶H → HX .

We will also denote by PHX , whenever the context is clear, the orthogonal projection
from H onto HX .

Note that if X is a co-isometry, i.e., XX∗ = I, then

f ∈ HX∗ if and only if X∗ f ∈ HX .(2.4)

Lemma 2.2 Let H ⊂H and K ⊂K. Let A ∈ B(H, K) and X ∈ B(H), Y ∈ B(K).
Then the following are equivalent:
(1) ⟨AX f , Y∗g1⟩ = ⟨Af , g1⟩ for f ∈ HX and g1 ∈ KY∗ ;
(2) PKY∗

A∣HX = PKY∗
(YAX)∣HX .

Proof Note that, for all f ∈ HX and g1 ∈ KY∗ , we have

⟨AX f , Y∗g1⟩ = ⟨YAX f , g1⟩ = ⟨PKY∗
(YAX f ), g1⟩
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and

⟨Af , g1⟩ = ⟨PKY∗
(Af ), g1⟩.

Thus, the lemma holds. ∎
Lemma 2.3 Let H ⊂H and K ⊂K. Let A ∈ B(H, K) and X ∈ B(H), Y ∈ B(K).
Assume that Y is a co-isometry. If A is (X , Y)-invariant, then PKY∗

A∣HX =
PKY∗

(YAX)∣HX .

Proof Let f ∈ HX and g1 = YY∗g1 ∈ KY∗ . Then, by (2.4), g = Y∗g1 ∈ KY . Since A is
(X , Y)-invariant, then

⟨AX f , Y∗g1⟩ = ⟨Af , YY∗g1⟩ = ⟨Af , g1⟩.

Now the result follows from Lemma 2.2. ∎
Proposition 2.4 Let H ⊂H and K ⊂K. Let A ∈ B(H, K) and X ∈ B(H), Y ∈ B(K).
Assume that X and Y are co-isometries. If A is (X , Y)-invariant, then A is (X∗, Y∗)-
invariant.

Proof For all f1 ∈ HX∗ , g1 ∈ KY∗ , we have that X∗ f1 ∈ HX , Y∗g1 ∈ KY , and

⟨AX∗ f1 , g1⟩ = ⟨AX∗ f1 , YY∗g1⟩ = ⟨AXX∗ f1 , Y∗g1⟩ = ⟨Af1 , Y∗g1⟩. ∎

Proposition 2.5 Let H ⊂H and K ⊂K. Let A ∈ B(H, K) and X ∈ B(H), Y ∈ B(K).
If Y is unitary, then the following are equivalent:
(1) A is (X , Y)-invariant.
(2) ⟨AX f , Y∗g1⟩ = ⟨Af , g1⟩ for f ∈ HX and g1 ∈ KY∗ .
(3) PKY∗

A∣HX = PKY∗
(YAX)∣HX .

If moreover X is unitary, then the above are equivalent to
(4) A is (X∗ , Y∗)-invariant.

Denote

S(X , Y) = {A ∈ B(H, K)∶A is (X , Y)-invariant}.

Clearly, S(X , Y) is a subspace of B(H, K).

Proposition 2.6 Let H =H = K =K and X ∈ B(H). Then S(X , X∗) = {X}′ = {T ∈
B(H) ∶ T X = XT}.

Let φ ∈ L∞. The linear operator Tφ ∈ B(H2) is called a Toeplitz operator with the
symbol φ if

Tφ f = PH2(φ f ) for f ∈ H2 .(2.5)

The Toeplitz operator Tz is usually denoted by S and identified with the unilateral shift.
Due to the Brown–Halmos characterization of Toeplitz operators, that is, A ∈ B(H2)
is a Toeplitz operator if and only if S∗AS = A, we have the following.

Example 2.7 Let H = H = H2 =K = K, X = S = Tz , Y = S∗. Then HX = KY∗ = H2

and (3) in Proposition 2.5 is just Brown–Halmos condition, S∗AS = A. Therefore, A ∈
B(H2) is a Toeplitz operator if and only if it is S-invariant, ((S , S∗)-invariant).
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Note also that taking H =K = L2, X = Mz , Y = Mz̄ and H = K = H2, HX = KY∗ =
H2, then (3) in Proposition 2.5 gives

A = PH2 A∣H2 = PH2 Mz̄ AMz ∣H2 = S∗AS .

So we also can say that A ∈ B(H2) is a Toeplitz operator if and only if it is Mz-
invariant,((Mz , Mz̄)-invariant).

It is also worth noting that, by Proposition 2.5, each Toeplitz operator A = Tφ , φ ∈
L∞, is (Mz̄ , Mz)-invariant. Indeed, for all f ∈ (H2)M z̄ , g ∈ (H2)Mz , we have

⟨Tφ Mz̄ f , g⟩ = ⟨φz̄ f , g⟩ = ∫
T

φz̄ f ḡdm = ⟨φ f , zg⟩ = ⟨Tφ f , Mz g⟩.(2.6)

Recall the definition of Hankel operators. Let J ∈ B(L2), (J f )(z) = z̄ f (z̄). Denote
by Γψ the Hankel operator with symbol ψ ∈ L∞ defined as Γψ ∶H2 → H2, Γψ f = PH2 Jψ f
for f ∈ H2. It is known that an operator Γ ∈ B(H2) is a Hankel operator if and only if

S∗Γ = ΓS .(2.7)

Hence, we have the following.
Example 2.8 Let H = H = H2 =K = K. Then A ∈ B(H2) is a Hankel operator if and
only if it is (S , S)-invariant.

Let α, θ be nonconstant inner functions. Consider the model spaces K2
α = H2 ⊖

αH2 and K2
θ = H2 ⊖ θH2, and let Pα , Pθ denote the orthogonal projections from L2

onto K2
α and K2

θ , respectively. It is known that K2
α ∩ L∞ is dense in K2

α . Let φ ∈ L2.
Define

Aα ,θ
φ f = Pθ(φ f ) for f ∈ K2

α ∩ L∞.(2.8)

If Aα ,θ
φ can be extended to a bounded operator from K2

α to K2
θ , i.e., Aα ,θ

φ ∈ B(K2
α , K2

θ),
then it is called the asymmetric truncated Toeplitz operator [3]. In particular, if θ = α,
it is called a truncated Toeplitz operator and the notation Aα

φ = Aα ,α
φ will be used. In

[30], Sarason showed that an operator A ∈ B(K2
θ) is a truncated Toeplitz operator if

and only if

⟨Az f , zg⟩ = ⟨Af , g⟩ for f , g ∈ K2
θ such that z f , zg ∈ K2

θ(2.9)

and called this property shift-invariance. In [17], this characterization was extended to
the asymmetric case.
Example 2.9 Let α, θ be nonconstant inner functions. Assume thatH =K = L2, H =
K2

α , K = K2
θ and X = Mz , Y = Mz̄ . Then condition (2) in Proposition 2.5 is the same

as condition (2.9) (case θ = α). Thus an operator A ∈ B(K2
α , K2

θ) is an asymmetric
truncated Toeplitz operator if and only if it is (Mz , Mz̄)-invariant. In case θ = α, A ∈
B(K2

θ) is a truncated Toeplitz operator if and only if it is Mz-invariant.
Similarly to (2.6), it can be checked that each bounded asymmetric truncated

Toeplitz operator Aα ,θ
φ is (Mz , Mz̄)-invariant.

Example 2.10 Recall now the notion of (asymmetric) truncated Hankel operators [17].
Let φ ∈ L2. Define

Bα ,θ
φ f = Pθ J(φ f ) for f ∈ K2

α ∩ L∞.(2.10)
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and assume that Bα ,θ
φ can be extended to a bounded operator from K2

α to K2
θ . We skip

the word “asymmetric” if α = θ. To give one more example of definition (2.2), let us
take H =K = L2, H = K2

α , K = K2
θ and X = Mz , Y = Mz . It can be easily shown using

[17, Proposition 4.2(b)] that an operator is an (asymmetric) truncated Hankel operator
if and only if it is (Mz , Mz)-invariant.

We will be particularly interested in compressions of multiplication operators to
several closed subspaces of H = L2. If H, K ⊂ L2 are closed and φ ∈ L∞, let

T H ,K
φ = PK MφPH ∣H .

If K = H, we write T H
φ . These are particular cases of the so-called general Wiener–

Hopf operators [1, 13, 31], which we call general Toeplitz operators [6].

Proposition 2.11 Let X ∈ B(L2), and let H, K be closed subspaces of L2. Then T H ,K
φ is

X-invariant, whenever X commutes with multiplication by φ in L2.

Proof Let f ∈ HX , g ∈ KX∗ . Then

⟨T H ,K
φ X f , g⟩ = ⟨PK φX f , g⟩ = ⟨φX f , g⟩.

On the other hand,

⟨Xφ f , g⟩ = ⟨φ f , X∗g⟩ = ⟨PK φ f , X∗g⟩ = ⟨T H ,K
φ f , X∗g⟩. ∎

Corollary 2.12 Let H, K be closed subspaces of L2. Then T H ,K
φ is Mψ-invariant for

all ψ ∈ L∞. In particular, all compressions of a multiplication operator Mφ to a closed
subspace of L2 are shift-invariant.

3 Invariance and preannihilator

In this section, we will consider (X , Y)-invariance from a different point of view. For
that we use the language of preannihilators and rank-one and rank-two operators in
the preannihilator. LetH,K be separable Hilbert spaces. Each rank-one operator from
K to H is usually denoted by x ⊗ y, where x ∈H, y ∈K, and it acts as (x ⊗ y)h =
⟨h, y⟩x for h ∈K. The weak* topology (ultraweak topology) in B(H,K) is given
by trace class operators of the form t = ∑∞n=0 xn ⊗ yn with xn ∈H, yn ∈K such that
∑∞n=0 ∥xn∥2 < ∞, ∑∞n=0 ∥yn∥2 < ∞. Let B1(K,H) denote the space of all such trace
class operators and ∥ ⋅ ∥1 be the trace norm. Denote also by Fk the set of all operators
in B1(K,H) of rank at most k. Note that B(H,K) is a dual space to B1(K,H) (see
[24, Chapter 16] for details) and the dual action is given by

B(H,K) × B1(K,H) ∋ (T , t) ↦ < T , t >=
∞

∑
n=0

⟨Txn , yn⟩.

For a closed subspace S ⊂ B(H,K), the preannihilator of S is defined as

S⊥ = {t ∈ B1(K,H)∶ < T , t >= 0 for all T ∈ S}.

Let N ⊂ B1(K,H). Recall that the annihilator of N is given by

N� = {T ∈ B(H,K)∶ < T , t >= 0 for all t ∈ N}.
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We will usually write, for T ∈ B(H,K) and t ∈ B1(K,H), that T ⊥ t if and only if <
T , t >= 0. Note that S ⊂ B(H,K) is weak*-closed if and only if S = (S⊥)⊥. Recall after
[21] that a weak∗-closed subspace S ⊂ B(H,K) is called k-reflexive (k = 1, 2, 3, 4 . . . ),
if S = (S� ∩ Fk)

⊥.
Now we recall previous definitions (Definitions 1.2–1.4) from this perspective.

Proposition 3.1 Let L, H be subspaces of a Hilbert space H such that L ⊂ H ⊂H, and
let X ∈ B(H). Then:
(1) L is invariant for X if and only if

X ⊥ x ⊗ y for all x ∈ L, y ∈H⊖L.(3.1)

(2) L is almost-invariant for X if and only if there exists a finite dimensional subspace
F such that

X ⊥ x ⊗ y for all x ∈ L, y ∈H⊖ (L⊕ F).(3.2)

(3) L is nearly invariant for X with respect to H if and only if

X ⊥ x ⊗ y for all x ∈ L ∩ HX , y ∈ H ⊖L.(3.3)

(4) L is nearly invariant for X with respect to H with defect m if and only if there exists
a finite dimensional subspace F ⊂ H such that

X ⊥ x ⊗ y for all x ∈ L ∩ HX , y ∈ H ⊖ (L⊕ F),(3.4)

where m is the smallest dimension of such subspace F.

Now we present a result concerning the topological behavior of the subspace of all
(X , Y)-invariant operators.

Proposition 3.2 Let H ⊂H and K ⊂K. Let A ∈ B(H, K) and X ∈ B(H), Y ∈ B(K).
Then

S(X , Y) = {A ∈ B(H, K)∶A is (X , Y)-invariant}

is 2-reflexive.

Proof Note that for A ∈ B(H, K) condition (2.2) is equivalent to

< A, X f ⊗ g − f ⊗ Yg >= 0 for f ∈ HX , g ∈ KY .(3.5)

Let us denote

N = {X f ⊗ g − f ⊗ Yg∶ f ∈ HX , g ∈ KY}.(3.6)

By (3.5), we have

S(X , Y)⊥ ⊃ N and S(X , Y) ⊃ N⊥ .(3.7)

Thus

(S(X , Y)⊥)⊥ ⊂ N⊥ ⊂ S(X , Y).
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Hence, S(X , Y) is weak*-closed (WOT-closed), since it is characterized by annihilat-
ing some trace class (finite rank) operators. Moreover, S(X , Y) is 2-reflexive because

(S(X , Y)⊥ ∩ F2)
⊥

⊂ (N ∩F2)
⊥

= N⊥ ⊂ S(X , Y). ∎

4 Kernels of (X , Y)-invariant operators

It is a well-known property that kernels of Toeplitz operators are nearly S∗-invariant.
It was also proved in a recent paper [27] that kernels of truncated Toeplitz operators
are nearly S∗-invariant with defect not greater than 1. More generally, in this section,
we study the invariance properties of the kernels of (X , Y)-invariant operators.

One may look at the property of near X-invariance of a space L ⊂ H as meaning
that, for any element f ∈ L, either X f is also in L, or it does not belong to H. In
other words, looking at how X acts on elements of L, we see that either (i) X f ∈ L, or
(ii) X f ∈ H/L, or (iii) X f ∈H/H; if L is nearly X-invariant, then only (i) and (iii)
can hold.

It is thus natural to ask, when L = ker A, where A ∈ B(H, K), for which elements
f ∈ ker A does each of the properties (i)–(iii) hold.

On may also consider the question of describing the part L of ker A such that
X∗L ⊂ ker A, or X∗L ⊂ H, and compare with the analog results for X. Indeed, these
questions are related, since we have, for co-isometric X,

(ker A)X∗ ⊂ X(ker A)X .(4.1)

To see this note that, by (2.4), f ∈ (ker A)X∗ if and only if X∗ f ∈ (ker A)X . It follows
that f = XX∗ f ∈ X(ker A)X . Note also that if X is unitary, then

(ker A)X∗ = X(ker A)X .

Our first result is a very simple but fundamental one, when considering those
questions. Let (L)�H = H ⊖L for any closed subset L ⊂ H.

We have the following.
Proposition 4.1 Let H ⊂H and K ⊂K. Let A ∈ B(H, K) and X ∈ B(H), Y ∈ B(K).
If A is (X , Y)-invariant, then

AX f ∈ (KY)�K for all f ∈ ker A∩ HX .

Proof If f ∈ ker A and X f ∈ H, then, for all g ∈ KY ,

⟨AX f , g⟩ = ⟨Af , Yg⟩ = 0, since Af = 0. ∎
As a consequence, we obtain the following necessary and sufficient condition for

ker A to be nearly X-invariant.
Theorem 4.2 Let H ⊂H, K ⊂K, A ∈ B(H, K) and X ∈ B(H), Y ∈ B(K). Assume
that A is (X , Y)-invariant. Then ker A is nearly X-invariant w.r.t. H if and only if AX f ∈
KY for all f ∈ ker A∩ HX .
Proof The space ker A is nearly X-invariant (in H) if and only if AX f = 0 for all
f ∈ ker A∩ HX . Since AX f ∈ (KY)�K , by Proposition 4.1, it will be zero if and only if
AX f ∈ KY . ∎
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Corollary 4.3 If A is (X , Y)-invariant and KY = K, then ker A is nearly X-invariant
w.r.t. H.

Theorem 4.4 Let H ⊂H and K ⊂K, and let A ∈ B(H, K), X ∈ B(H), Y ∈ B(K).
Assume that A is (X , Y)-invariant. If (KY)�K is finite dimensional, with dimension N,
then ker A is nearly X-invariant w.r.t. H with defect m ⩽ N.

Proof If AX f ∈ KY for all f ∈ ker A∩ HX , then by Proposition 4.1, we have AX f = 0
for all f ∈ ker A∩ HX and ker A is nearly X-invariant w.r.t. H. Suppose now that there
is f̃ ∈ ker A∩ HX with AX f̃ ∉ KY (therefore, we necessarily have AX f̃ ≠ 0, i.e., X f̃ ∉
ker A). Define

I = {g ∈ (KY)�K ∶ g = AX f for same f ∈ ker A∩ HX}.

We have I ≠ {0} because AX f̃ ≠ 0 and AX f̃ ∈ (KY)�K by Proposition 4.1. So let
{g1 , g2 , . . . , gm}, with m ⩽ N , be a basis for I. For each g j , j = 1, 2, . . . , m, let f j be
an element of ker A∩ HX such that g j = AX f j . We have that

A−1{g j} ∶= { f ∈ H ∶ Af = g j} = {X f j + h∶ h ∈ ker A}.

Now take h j = (I − Pker A)X f j ∈ A−1{g j}, which is such that Ah j = g j and h j ∈ H ⊖
ker A. Then, for any f ∈ ker A∩ HX , we have

AX f =
m
∑
j=1

c j g j =
m
∑
j=1
(c jAh j) = A

⎛
⎝

m
∑
j=1

c j h j
⎞
⎠

,

with c j ∈ C. Hence,

X f −
m
∑
j=1

c j h j ∈ ker A

and we can write that

X f ∈ ker A⊕ span{h j ∶ j = 1, 2, . . . , m}. ∎

Remark 4.5 From now on, we will use the notation

[h j] j=1, . . . ,m ∶= span{h j ∶ j = 1, . . . , m}.

We also define

HA
X = ker A∩ HX .

Corollary 4.6 Let A be (X , Y)-invariant. If (KY)�K = [ fY] for some fY ∈ K, then ker A
is nearly X-invariant w.r.t. H if and only if AX f & fY for all f ∈ HA

X . Otherwise ker A
is nearly X-invariant w.r.t. H with defect 1 and, if f0 is the element of HA

X such that
AX f0 = fY , then the defect space is [h0] with h0 = (I − Pker A)X f0.

Two simple examples illustrate these results.

Example 4.7 Let A be a Toeplitz operator (H =K = L2, H = K = H2) and take X =
Mz̄ , Y = Mz ; we have KY = (H2)Mz = H2 so, by (2.6) and Corollary 4.3, ker A is nearly
Mz̄-invariant w.r.t. H2.
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Taking X = Mz ,Y = Mz̄ , we have (KY)� = C and it is easy to see that, for a Toeplitz
operator TG with nontrivial kernel, there is always f0 ∈ ker TG such that TG z f0 = 1. So
we conclude from Corollary 4.6 that nontrivial Toeplitz kernels are nearly S-invariant
with defect 1 and thus also almost-invariant for Mz with defect 1, at most (see Remark
1.5). These are in fact well-known properties that illustrate Proposition 2.2 in [11],
stating that nearly S∗-invariant spaces of the form gKI , as in Hitt’s theorem where
K = KI is a model space, are almost-invariant for S with defect 1.

Example 4.8 Let A be an asymmetric truncated Toeplitz operator between model
spaces H = K2

α , K = K2
θ , with α, θ nonconstant inner functions, and let X = Mz̄ ,

Y = Mz . Then (KY)�K = ((K2
θ)Mz)�K2

θ
= [k̃θ

0 ], with k̃θ
0 = z̄(θ − θ(0)); so, by Example

2.9 and Corollary 4.6, kernels of (asymmetric) truncated Toeplitz operators are nearly
S∗-invariant with defect 1, at most (see also [27], Section 4 for the symmetric case).

5 Orthogonal decompositions of kernels

The study of near invariance properties for kernels of operators raises some natural
questions. For instance, if ker A is nearly X-invariant w.r.t. H, which elements are kept
in ker A under the action of X? If ker A is nearly X-invariant w.r.t. H with defect, which
elements “stay” in H upon the action of X?

In this section, we show that the relations between (X , Y)-invariance of an oper-
ator A and the near invariance properties of its kernel, with respect to X and Y,
yield decompositions of the kernel in terms of orthogonal sums where the terms
behave differently under the action of X. These decompositions generalize well-known
decompositions of model spaces, such as those presented in the introduction.

To motivate the results that follow, we present two simple examples.

Example 5.1 (Model spaces) Let θ be an inner function and assume, to begin with,
that θ(0) = 0. In this case, we have two decompositions

K2
θ = zK2

θ
z
⊕C, K2

θ = K2
θ
z
⊕ θ

z C,(5.1)

whereC = K2
z . If θ(0) ≠ 0, K2

θ cannot be decomposed similarly in terms of K2
z and K2

θ
z
,

but taking into account that K2
θ = ker Tθ̄ and K2

θ
z
= ker Tθ̄ z , we can generalize (5.1) by

writing

K2
θ = z ker Tzθ̄ ⊕ [kθ

0 ] = (K2
θ)z̄ ⊕ [kθ

0 ],(5.2)

K2
θ = ker Tzθ̄ ⊕ [k̃θ

0 ] = (K2
θ)z ⊕ [k̃θ

0 ]

with

kθ
0 = 1 − θ(0)θ , k̃θ

0 = z̄(θ − θ(0)).(5.3)

From the first decomposition in (5.2), we see that z̄K2
θ ⊂ K2

θ ⊕ [z̄] and

Mz̄(z ker Tzθ̄) ⊂ K2
θ , Mz̄(kθ

0) ∈ L2/H2 ,

which reflects the fact that K2
θ is nearly Mz̄-invariant w.r.t. H2.
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From the second decomposition in (5.2), we see that zK2
θ ⊂ K2

θ ⊕ [θ] (cf. [11],
Proposition 2.2) and

Mz(ker Tzθ̄) ⊂ K2
θ , Mz(k̃θ

0) ∈ H2/K2
θ ,

so we may interpret it as saying that K2
θ is H2-invariant for Mz and nearly S-invariant

with defect 1, w.r.t. H2, therefore almost-invariant for S with defect 1.

These are well-known properties; still, they provide an interpretation of the equali-
ties in (5.2) which will lead to future results generalizing model space decompositions.

Example 5.2 (Kernels of truncated Toeplitz operators on K2
θ with analytic symbols)

The kernels of operators in this class are of the form γK2
β , where γ and β are inner

functions such that β ⩽ θ, γ = θ/β and β divides ψ i
+-the inner factor of ψ+, [26], [10,

Theorem 7.2]. Let A be a truncated Toeplitz operator with ker A = γK2
β . Then, from

(5.2), we have

ker A = γ(K2
β)z̄ ⊕ [γkβ

0 ] with (ker A)z̄ = γ(K2
β)z̄ .(5.4)

Let us assume that γ(0) = 0, in which case γK2
β is not nearly S∗-invariant. Note

that, since γ(0) = 0, both terms of the orthogonal sum are mapped into H2 by
multiplication by z̄. On the other hand, only the elements of (ker A)z̄ are mapped into
ker A. We thus conclude that ker A is almost S∗-invariant (or, equivalently, almost Sθ -
invariant, where Sθ = Aθ

z is the truncated shift) with defect 1 and defect space [z̄γkβ
0 ].

These decompositions of the kernels of certain operators, in terms of direct sums
of subspaces behaving in different ways under multiplication by z and z̄, can be seen
as resulting from the relation between the shift-invariance of the operator and the
invariance properties of their kernels, as we show next.

Recall that for A ∈ B(H, K) and X ∈ B(H), H ⊂H,

HA
X = ker A∩ HX .(5.5)

Proposition 5.3 Let A ∈ B(H, K) and X ∈ B(H), H ⊂H. Then

ker A = HA
X ⊕ Pker A H�X .

Proof We have to prove that HA
X is the orthogonal complement of Pker A H�X in ker A.

Let f ∈ ker A, f &Pker AH�X . Then f &H�X and so f ∈ ker A∩ HX = HA
X .

Conversely, if f ∈ HA
X , then, for all g ∈ H�X ,

⟨ f , Pker A g⟩ = ⟨ f , g⟩ = 0

because f ∈ HX and g ∈ H�X . ∎

Recall that

(ker A)X = { f ∈ ker A ∶ X f ∈ ker A} ⊂ HA
X .

In its turn, we can decompose HA
X as follows.
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Proposition 5.4 Let X ∈ B(H), Y ∈ B(K), H ⊂H, K ⊂K. If A ∈ B(H, K) is (X , Y)-
invariant, then

HA
X = (ker A)X ⊕ PHA

X
(X∗A∗K�Y),

where we abbreviate (KY)�K to K�Y .

Proof Let f ∈ (ker A)X . Then obviously AX f = 0, and hence, for all g ∈ K�Y , we have

0 = ⟨AX f , g⟩ = ⟨X f , A∗g⟩ = ⟨ f , X∗A∗g⟩ = ⟨ f , PHA
X
(X∗A∗g)⟩.

Therefore, f &PHA
X
(X∗A∗K�Y) for all f ∈ (ker A)X . Conversely, let f ∈ HA

X and

f &PHA
X
(X∗A∗K�Y).(5.6)

For all g ∈ KY , we have, by (2.2), 0 = ⟨AX f , g⟩ = ⟨Af , Yg⟩ so

0 = ⟨X f , A∗g⟩ = ⟨ f , X∗A∗g⟩ = ⟨ f , PHA
X
(X∗A∗g)⟩.

Hence,

f &PHA
X
(X∗A∗KY).(5.7)

From (5.6) and (5.7), we conclude that, for f ∈ (ker A)X , f &PHA
X
(X∗A∗K), so for all

g ∈ K, we have

0 = ⟨ f , PHA
X
(X∗A∗g)⟩ = ⟨ f , X∗A∗g⟩ = ⟨AX f , g⟩,

and hence AX f = 0, so X f ∈ ker A and thus f ∈ (ker A)X . ∎

Clearly, ker A is nearly X-invariant w.r.t. H if and only if HA
X = (ker A)X , so we have

the following.

Corollary 5.5 Let X ∈ B(H), Y ∈ B(K), H ⊂H, K ⊂K. Assume that A ∈ B(H, K)
is (X , Y)-invariant. Then the subspace ker A is nearly X-invariant w.r.t. H if and only if
PHA

X
(X∗A∗K�Y) = {0}, i.e., ⟨AX f , g⟩ = 0 for all f ∈ HA

X , g ∈ K�Y .
The subspace ker A is nearly X-invariant w.r.t. H with defect if and only if

dim PHA
X
(X∗A∗K�Y) < ∞.(5.8)

As a consequence of the previous results, we have the following.

Theorem 5.6 Let X ∈ B(H), Y ∈ B(K), H ⊂H, K ⊂K. If A ∈ B(H, K) is (X , Y)-
invariant, then we have the orthogonal decomposition

ker A = (ker A)X ⊕ PHA
X
(X∗A∗K�Y) ⊕ Pker AH�X .(5.9)

Moreover, if X, Y are co-isometries, then A is (X∗, Y∗)-invariant, and we have

ker A = (ker A)X∗ ⊕ PHA
X∗
(XA∗K�Y∗) ⊕ Pker AH�X∗ .(5.10)

Corollary 5.7 Let X ∈ B(H), H ⊂H. If A ∈ B(H) is X-invariant, then we have the
orthogonal decomposition

ker A = (ker A)X ⊕ PHA
X
(X∗A∗H�X∗) ⊕ Pker AH�X .(5.11)
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Moreover, if X is a co-isometry, then A is X∗-invariant, and we have

ker A = (ker A)X∗ ⊕ PHA
X∗
(XA∗H�X) ⊕ Pker AH�X∗ .(5.12)

Remark 5.8 In (5.9), we have that (ker A)X consists of the elements of ker A which
are mapped into ker A by X;

M′A(X) ∶= PHA
X
(X∗A∗K�Y)(5.13)

consists of elements which are mapped into H/ker A by X; and

M′′A(X) ∶= Pker AH�X(5.14)

consists of elements which are mapped into H/H by X.
Similarly, having (5.10), we can consider the following spaces:

(ker A)X∗ ; M′A(X∗) ∶= PHA
X
(XA∗K�Y∗); M′′A(X∗) ∶= Pker AH�X∗ .(5.15)

According to definitions (5.13) and (5.14), we have the following.

Corollary 5.9 Let X ∈ B(H), Y ∈ B(K), H ⊂H, K ⊂K. If A ∈ B(H, K) is (X , Y)-
invariant, then:

(1) ker A∩ HX = HA
X = (ker A)X ⊕ M′A(X).

(2) ker A is nearly X-invariant w.r.t. H if and only if M′A(X) = {0}.
(3) If dim M′A(X) < ∞, ker A is nearly X-invariant with defect.
(4) M′′A(X) = {0} if and only if X(ker A) ⊂ H, i.e., ker A is almost-invariant for X.
(5) ker A is almost-invariant for X̃ = PH X∣H if M′′A(X) = {0}, dim M′A(X) < ∞.

Corollary 5.10 Let X ∈ B(H), Y ∈ B(K), H ⊂H, K ⊂K. Assume that A ∈ B(H, K)
is (X , Y)-invariant. If K�Y = [ fY], H�X = [ fX], then

ker A = (ker A)X ⊕ [PHA
X
(X∗A∗ fY)] ⊕ [Pker A fX].

In this case, ker A is nearly X-invariant with defect at most 1.

Remark 5.11 With the same assumptions as in Corollary 5.10 and taking Corollary
5.9(1) into account, we have, for f ∈ HA

X ,

X f ∈ X(ker A)X ⊕ [XPHA
X
(X∗A∗ fY)],

where the direct sum is orthogonal if X is unitary, and the second term in the sum
gives the defect space for the near X-invariance of ker A.

We finish this section by establishing a relation between X-invariance and conjuga-
tions that will be used later. Recall that by a conjugation on H, we mean an antilinear
operator which is involutive and isometric [16].

Proposition 5.12 Let C be a conjugation on H, and let H ⊂H be a Hilbert space. If
C(H) = H and X ∈ B(H) is such that CX∗ = XC, then C(HX) = HX∗ .

Proof Let f ∈ H, X f ∈ H. Then C f ∈ H and X∗C f = CX f ∈ H. ∎
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6 Toeplitz operators

Now we apply the previous results to kernels of Toeplitz operators. In what follows, we
assume that G ∈ L∞ and TG ∶H2 → H2 is defined by TG f = P+G f for all f ∈ H2, where
P+ is the orthogonal projection from L2 onto H2. Since, for any nonzero Toeplitz
kernel strictly contained in H2, one can associate a unimodular symbol [8, 29], we
may assume that ∣G∣ = 1. We assume also that ker TG ≠ {0}. We have the following
[8, 23].

Proposition 6.1 Let G ∈ L∞. For ∣G∣ = 1, we have ker TG ≠ {0} if and only if G admits
a factorization of the form G = O+z̄ĪO−1

+ , where I is an inner function, O+ ∈ H2 is outer.

Since the existence of a factorization such as described in Proposition 6.1 is in
general difficult to verify, unless G belongs to some special class such as that of
nonvanishing piecewise continuous functions on the unit circle T [25], one may
alternatively consider the Riemann–Hilbert problem

G f+ = f− with f+ ∈ H2 , f− ∈ H2
− ∶= z̄H2 .(6.1)

Indeed, ker TG consist of all solutions f+ to this problem, so ker TG ≠ {0} if and only
if there exists a nonzero solution to (6.1) (which may be obtained using a variety of
methods developed to solve Riemann–Hilbert problems).

Consider H =K = L2 and let X = Mβ , or simply X = β, with β inner, and Y = X∗.
We have that TG is β-invariant by Corollary 2.12 and, in this case,

H = H2 , HX = (H2)β = H2 , HX∗ = (H2)β̄ = βH2 ,(6.2)

H�X = {0}, H�X∗ = K2
β .(6.3)

To apply the decomposition given in Theorem 5.6, we first describe the spaces
(ker TG)β and (ker TG)β̄ .

Proposition 6.2 Let β be an inner function, and let G ∈ L∞. Then

(ker TG)β = ker TβG ; (ker TG)β̄ = β ker TβG .

Proof We have ker TβG ⊂ ker TG , where the inclusion is strict if β ∉ C. On the other
hand, if f ∈ ker TβG , then βG f = f− ∈ H2

−, so G(β f ) = f− and it follows that β f ∈
ker TG . Hence, ker TβG ⊂ (ker TG)β . Conversely, if f ∈ (ker TG)β , then f , β f ∈ ker TG ,
so G(β f ) = f− ∈ H2

−, which is equivalent to (βG) f = f−, and thus f ∈ ker TβG .
The second equality follows by (4.1). ∎

Remark 6.3 The relations between ker TG and ker TβG were studied in [5] where
it was shown, in particular, that ker TβG = {0} if dim ker TG < ∞ and dim K2

β ⩾
dim ker TG . However, it may be difficult to see whether or not ker TβG = {0} when
ker TG is infinite dimensional and β is not a finite Blaschke product (see, for instance,
[5] for some examples).

The decomposition theorem now yields the following.
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Theorem 6.4 Let G ∈ L∞ and β be an inner function. The following orthogonal
decompositions hold:

ker TG = ker TβG ⊕ Pker TG (Ḡz̄K2
β) = (H2)TG

β ;(6.4)

ker TG = β ker TβG ⊕ Pker TG K2
β .(6.5)

Proof The decompositions follow from Corollary 5.7, Propositions 5.4 and 6.2, and
(6.2) and (6.3). For (6.4), we took into account that, for A = TG ,

PHA
β
(β̄P+ḠK2

β) = Pker A(β̄P+ḠK2
β) = Pker TG (β̄ḠK2

β)

and β̄ḠK2
β = Ḡz̄K2

β . ∎

Remark 6.5 With the notation (5.13) and (5.14), we see that in (6.4), we have
M′′A(β) = {0}, which reflects the fact that β ker TG ⊂ H2. It also follows that ker TG is
almost-invariant for Mβ if β is a finite Blaschke product. On the other hand, regarding
(6.5), with X = β̄, one sees that M′A(β̄) = {0} which corresponds to ker TG being
nearly β̄-invariant.

Example 6.6 If G = ᾱ, where α is an inner function, then ker TG = K2
α . If β < α, the

decompositions (6.4) and (6.5) become

K2
α = K2

α
β
⊕ Pα(αz̄K2

β) = K2
α
β
⊕ Pα( α

β βz̄K2
β)

= K2
α
β
⊕ Pα( α

β K2
β) = K2

α
β
⊕ α

β K2
β

and

K2
α = βK2

α
β
⊕ Pα K2

β = βK2
α
β
⊕ K2

β ,

and we recover the known decompositions for K2
α ,

K2
α = K2

α
β
⊕ α

β K2
β , K2

α = βK2
α
β
⊕ K2

β .(6.6)

Now consider, for a given inner function α, the usual conjugation Cα in L2 given
by Cα f = αz̄ f̄ . This conjugation leaves the model space K2

α invariant, i.e., Cα K2
α = K2

α .
Moreover, as shown in [4], it is the only (up to multiplication by a constant of
modulus 1) conjugation C such that CMz = Mz̄C and CK2

α ⊂ K2
α . It is not difficult

to see that this unique conjugation Cα maps the two decompositions (6.6) onto each
other, i.e.,

Cα(K2
α
β
) = βK2

α
β

, Cα( α
β K2

β) = K2
β .(6.7)

Recently, in [14], it was shown that, for a given unimodular function G, the only (up
to multiplication by a constant of modulus 1) conjugation C such that CMz = Mz̄C and
C ker TG ⊂ ker TG has the form

CG f = Ḡz̄ f̄ , f ∈ L2 .(6.8)

Using this conjugation, the results in (6.7) may be generalized for all Toeplitz kernels
as follows.
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Proposition 6.7 Let G ∈ L∞ be a unimodular function, and let CG be the conjugation
defined by (6.8). Then

CG(ker TG)β̄ = (ker TG)β ,(6.9)

CG(Pker TG K2
β) = Pker TG (CG K2

β) = Pker TG (Ḡz̄K2
β).(6.10)

Proof The first equality is a consequence of Proposition 5.12, with H = ker TG , since
CG M β̄ = MβCG . The second equality is a consequence of CG being a conjugation on
ker TG . ∎

We thus have, as it happened in the case of model spaces:

Corollary 6.8 The two decompositions in Theorem 6.4 are mapped into each other by
the conjugation CG defined on ker TG .

The following example also raises an interesting question.

Example 6.9 Let ∣G∣ = 1 and take β = z. If G = θ̄, then ker TG = K2
θ . Since Pθ(z̄θ) =

k̃θ
0 , we have

K2
θ = ker Tzθ̄ ⊕ [k̃θ

0 ].(6.11)

In Example 6.9, k̃θ
0 is a maximal function for the Toeplitz kernel K2

θ , i.e., it cannot
belong to any Toeplitz kernel strictly contained in K2

θ , such as ker Tzθ̄ [7]. However,
(6.11) tells us furthermore that there exists a maximal function for K2

θ which is
orthogonal to ker Tzθ̄ = (K2

θ)z .
This raises the following question: given any Toeplitz kernel, ker TG , is there a

maximal function which is orthogonal to (ker TG)z? Since, from (6.4),

ker TG = (ker TG)z ⊕ [Pker TG (z̄Ḡ)],

that question in equivalent to asking whether Pker TG (z̄Ḡ) is a maximal function for
ker TG .

It was shown in [7] that every Toeplitz kernel has a maximal function and, in [5, 8]
that fM is a maximal function for ker TG if and only if G fM = z̄h̄, where h ∈ H2 is
outer. We have

Pker TG (z̄Ḡ) = Pker TG (CG1) = CG(Pker TG 1) = z̄ḠPker TG 1

and thus

GPker TG (z̄Ḡ) = z̄Pker TG 1.

Therefore, Pker TG (z̄Ḡ) is a maximal function for ker TG if and only if Pker TG 1 is outer.
Now, using Hitt’s/Hayashi’s representation ker TG = gKI (Theorem 1.1), where g is an
outer function, and the expression for Pker TG given in [18], we have

Pker TG 1 = gPI ḡ ⋅ 1 = gIP− ĪP+ ḡ = g g(0)(1 − I(0)I)

which is outer, since g(0) ≠ 0. We have thus proved the following.
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Proposition 6.10 Let G ∈ L∞ be a unimodular function. There exists a maximal
function fM in ker TG such that

ker TG = ker TzG ⊕ [ fM].

If ker TG = gKI is Hitt’s representation of ker TG according to Theorem 1.1, then such a
maximal function is given by

fM = Pker TG (z̄Ḡ) = z̄Ḡ ḡ g(0)(1 − I(0)Ī).

7 Truncated Toeplitz operators

Now we apply the previous results to truncated Toeplitz operators, for X = β̄ and X =
β, identifying as before Mα with α, for α ∈ L∞.

Let θ , β be nonconstant inner functions. Consider the model space K2
θ ⊂ L2 and

the operator X = Mβ̄ (we will simply write X = β̄). Let G ∈ L∞, and let Aθ
G ∶K2

θ → K2
θ

be defined by Aθ
G f = Pθ G f , f ∈ K2

θ . In this case, we have H = L2 , H = K2
θ and from

Proposition 6.2 and Theorem 6.4,

Hβ = (K2
θ)β = ker Tβθ̄ , (Hβ)�K2

θ
= (K2

θ)�β = Pθ(θz̄K2
β),(7.1)

Hβ̄ = (K2
θ)β̄ = β ker Tβθ̄ , (Hβ̄)�K2

θ
= (K2

θ)�β̄ = Pθ(K2
β),(7.2)

where we abbreviate, for α ∈ L∞, [(K2
θ)α]�K2

θ
to (K2

θ)�α .
Two particular cases are worth mentioning. The first is the case where (K2

θ)β =
ker Tβθ̄ = {0}, which was mentioned in Section 5. In this case, we have from Theorem
6.4 that Pθ(θz̄K2

β) = Pθ(θβ̄K2
β) = K2

θ and Pθ(K2
β) = K2

θ .
The second case is with β < θ, where

Hβ = (K2
θ)β = K2

θ
β

, (Hβ)�K2
θ
= (K2

θ)�β = θ
β K2

β ,(7.3)

Hβ̄ = (K2
θ)β̄ = βK2

θ
β

, (Hβ̄)�K2
θ
= (K2

θ)�β̄ = K2
β .(7.4)

In what follows, we will use the notation

(K2
θ)G

X = ker Aθ
G ∩ (K2

θ)X .(7.5)

We start by applying Theorem 5.6 for X = β̄:

Theorem 7.1 Let θ , β be nonconstant inner functions, and let G ∈ L∞. Then

ker Aθ
G = (ker Aθ

G)β̄ ⊕ M′G(β̄) ⊕ M′′G(β̄),(7.6)

where

M′G(β̄) ∶= M′Aθ
G
(M β̄) = P(K2

θ)
G
β̄

βAθ
Ḡ(P+(θβ̄K2

β)),(7.7)

M′′G(β̄) ∶= M′′Aθ
G
(M β̄) = Pker Aθ

G
(K2

β),(7.8)

abbreviating (K2
θ)⊥β = K2

θ ⊖ (K2
θ)β and (K2

θ)⊥β̄ = K2
θ ⊖ (K2

θ)β̄ , respectively.
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Remark 7.2 Note that M′G(β̄), M′′G(β̄) cannot be zero simultaneously (when ker Aθ
G

is not zero). In that case ker Aθ
G would be β̄-invariant and in consequence β̄ ker Aθ

G ⊂
ker Aθ

G ⊂ H2. That would give ker Aθ
G ⊂ β ker Aθ

G , implying that ker Aθ
G ⊂ βN H2 for

any N, which is a contradiction.
Corollary 7.3 With the same assumptions and notation as in Theorem 7.1, the following
are equivalent:
(1) M′′G(β̄) = {0}.
(2) ker Aθ

G is K2
θ -stable for Mβ̄ .

(3) ker Aθ
G ⊂ βK2

θ ∩ K2
θ = β ker Tβθ̄ = (K2

θ)β̄ .
(4) ker Aθ

G = (ker Aθ
G)β̄ ⊕ Pker Aθ

G
βAθ

Ḡ(P+(θβ̄K2
β)).

Proof The equivalence (1) ⇔ (2) is obvious. Regarding (1) ⇔ (3), we have that
Pker Aθ

G
(K2

β) = {0} if and only if Pker Aθ
G
(Pθ K2

β) = Pker Aθ
G
(K2

θ)�β̄ = {0}, which is equiv-
alent to ker Aθ

G ⊂ (K2
θ)β̄ = β ker Tβθ̄ . In this case, we have (K2

θ)G
β̄ = ker Aθ

G ∩ (K2
θ)β̄ =

ker Aθ
G , so the decomposition (4) follows from Theorem 7.1. Conversely, if (4) holds,

then no element of ker Aθ
G is mapped outside ker Aθ

G by M β̄ , so (1) holds. ∎
In the following corollary, note that saying that a closed subspace K of K2

θ is nearly
S∗-invariant w.r.t. H2 is equivalent to saying that K is nearly S∗-invariant w.r.t. K2

θ ,
since K2

θ is itself nearly S∗-invariant.
Corollary 7.4 With the same assumptions and notation as in Theorem 7.1, the following
are equivalent:
(1) M′G(β̄) = {0}.
(2) ker Aθ

G is nearly β̄-invariant (w.r.t. H2, w.r.t. K2
θ ).

(3) Aθ
G(β̄ f ) ∈ (K2

θ)β = ker Tβθ̄ , for all f ∈ (K2
θ)G

β̄ .
(4) Pβ(θ̄G f ) = 0, for all f ∈ (K2

θ)G
β̄ .

Proof The first equivalence is trivial. Note that M′G(β̄) = {0} if and only if
P(K2

θ)
G
β̄
(βAθ

Ḡ(P+θβ̄K2
β)) = {0}. This is equivalent to the fact that, for all h ∈

(K2
θ)�β , f ∈ (K2

θ)G
β̄ , we have

0 = ⟨βAθ
Ḡ h, f ⟩ = ⟨h, Aθ

G(β̄ f )⟩,

that is, Aθ
G(β̄ f ) ∈ (K2

θ)β = ker Tβθ̄ . So the second equivalence is proved.
Now, we have that f ∈ (K2

θ)G
β̄ if and only if f ∈ ker Aθ

G , β̄ f ∈ K2
θ , so G f = h− + θh+

with h− ∈ H2
−, h+ ∈ H2, and h+ = P+(θ̄G f ). Assume (3). Then Aθ

G(β̄ f ) ∈ (K2
θ)β if and

only if βAθ
G(β̄ f ) ∈ K2

θ , i.e., θP+θ̄(βAθ
G(β̄ f )) = 0, so

0 =P+θ̄βPθ Gβ̄ f = P+θ̄βPθ β̄(θh+) = P+θ̄βPθ θP− β̄h+
=P+θ̄β(I − θP+θ̄)θP− β̄h+ = βP− β̄h+ − P+βP+(P− β̄h+)
=Pβ h+ = Pβ P+(θ̄G f ) = Pβ(θ̄G f ).

Thus, (4) holds and (4) ⇒ (3) is also clear. ∎
Applying Theorem 5.6 to ker Aθ

G for X = β, we obtain the following.
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Theorem 7.5 Let θ , β be nonconstant inner functions, and let G ∈ L∞. Then

ker Aθ
G = (ker Aθ

G)β ⊕ M′G(β) ⊕ M′′G(β),(7.9)

where, for H = K2
θ ,

M′G(β) ∶= M′Aθ
G
(Mβ) = P(K2

θ)
G
β
(β̄Aθ

Ḡ(K2
θ)�β̄) = P(K2

θ)
G
β
(β̄Aθ

Ḡ Pθ(K2
β)),(7.10)

M′′G(β) ∶= M′′Aθ
G
(Mβ) = Pker Aθ

G
(K2

θ)�β̄ = Pker Aθ
G
(θβ̄K2

β),(7.11)

abbreviating (K2
θ)⊥β = K2

θ ⊖ (K2
θ)β and (K2

θ)⊥β̄ = K2
θ ⊖ (K2

θ)β̄ , respectively.

Remark 7.6 Note that M′G(β), M′′G(β) cannot be zero simultaneously, because then
ker Aθ

G would be β-invariant and thus β ker Aθ
G ⊂ ker Aθ

G . Repeating the reasoning we
would get βN ker Aθ

G ⊂ ker Aθ
G ⊂ K2

θ for any N. Thus θ̄βN ker Aθ
G ⊂ z̄H2 and therefore

θ̄ ker Aθ
G ⊂ β̄N z̄H2 for all N, meaning that ker Aθ

G ⊂ θ ⋂∞N=1 β̄N z̄H2 = {0}.

Now we study the relations between the decompositions of Theorems 7.1 and 7.5,
and the usual conjugation on K2

θ , defined by Cθ f = θz̄ f̄ . Note that, from Proposition
6.7, we have

Cθ(K2
θ)β = (K2

θ)β̄ .(7.12)

Truncated Toeplitz operators are complex-symmetric for the conjugation Cθ , i.e.,

Cθ Aθ
G Cθ = Aθ

Ḡ .(7.13)

Proposition 7.7 Let G ∈ L∞, and let β be an inner function. Then:
(1) Cθ(ker Aθ

G) = ker(Aθ
G)∗ = ker Aθ

Ḡ .
(2) Cθ(ker Aθ

G)β̄ = (ker Aθ
Ḡ)β .

(3) Cθ Pker Aθ
G

Cθ = Pker Aθ
Ḡ

.
(4) Cθ(K2

θ)G
β̄ = (K2

θ)Ḡ
β .

(5) Cθ P(K2
θ)

G
β̄

Cθ = P(K2
θ)

Ḡ
β

.

Proof (1) was proved in [9, Section 3]. For (2), let f ∈ (ker Aθ
G)β̄ . Then, by

(7.13), Cθ f ∈ Aθ
Ḡ and βCθ f = βθz̄ f̄ = θz̄(β f ) = Cθ(β̄ f ) ∈ ker Aθ

Ḡ , by (1), because β̄ f ∈
ker Aθ

G . Therefore (2) holds. Condition (3) follows from (2) and the properties of a
conjugation. Equalities (4) and (5) follow from (1)–(3) and Proposition 5.12 taking
into account that (K2

θ)G
β̄ = ker Aθ

G ∩ (K2
θ)β̄ and (K2

θ)Ḡ
β = ker Aθ

Ḡ ∩ (K2
θ)β . ∎

Note that, from Proposition 7.7, we have that Cθ(ker Aθ
Ḡ)β̄ = (ker Aθ

G)β . Therefore,
we have the following.

Corollary 7.8 The orthogonal decomposition of ker Aθ
G in Theorem 7.5 and the

orthogonal decomposition of ker Aθ
Ḡ according to Theorem 7.1 are mapped into each

other by the conjugation Cθ and we have (ker Aθ
G)β = Cθ(ker Aθ

Ḡ)β̄ , M′G(β) =
Cθ M′Ḡ(β̄), M′′G(β) = Cθ , M′′Ḡ(β̄).
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Now we consider, in particular, the case β = z and X = Mz̄ (or simply X = z̄), which
allows us also to compare the results thus obtained with some other existing results
on near S∗-invariance for kernels of truncated Toeplitz operators.

The equalities (7.1) and (7.2) now take the form

(K2
θ)z = ker Tzθ̄ , (K2

θ)�z = [k̃θ
0 ],(7.14)

(K2
θ)z̄ = z ker Tzθ̄ = {φ ∈ K2

θ ∶ φ(0) = 0}, (K2
θ)�z̄ = [kθ

0 ],(7.15)

where [ f ] = span{ f } and we abbreviate [(K2
θ)α]�K2

θ
to (K2

θ)�α .
In what follows, we take G ∈ L∞.

Proposition 7.9 Let θ be an inner function, and let G ∈ L∞. We have that

(ker Aθ
G)z = {φ ∈ (K2

θ)z ∶ (P+(Ḡθ̄Cθ φ)) (0) = 0},(7.16)

(ker Aθ
G)z̄ = {φ ∈ (K2

θ)z̄ ∶ (P+(Gθ̄φ)) (0) = 0}(7.17)

= {φ ∈ K2
θ ∶ φ(0) = 0 , (P+(Gθ̄φ)) (0) = 0}.(7.18)

Proof Let φ ∈ (K2
θ)z . We have φ ∈ ker Aθ

G if and only if

Gφ = φ− + θφ+ , φ± ∈ H2
± ,(7.19)

and zφ ∈ ker Aθ
G if and only if

Gzφ = ψ− + θψ+ , ψ± ∈ H2
± .(7.20)

From (7.19), we also get

Gzφ = zφ− + θzφ+ , φ± ∈ H2
± ,(7.21)

and, if φ− = z̄η+ with η+ ∈ H2
+, we can write

Gzφ = η+ + θzφ+ = η+ − η+(0) + η+(0) + θzφ+ .(7.22)

Comparing (7.22) with (7.20), we conclude that φ ∈ (ker Aθ
G)z if and only if η+(0) = 0.

Since φ− = P−(Gφ), we have

η+ = z̄φ− = z̄P−(Gφ) = z̄(zP+(z̄Ḡφ̄)) = P+(Ḡθ̄Cθ φ),

and thus (7.16) follows.
Now let φ ∈ ker Aθ

G , z̄φ ∈ ker Aθ
G , which is equivalent to

Gφ = φ− + θφ+ , φ(0) = 0, Gz̄φ = ψ− + θψ+ ,(7.23)

with φ± ∈ H2
± , ψ± ∈ H2

± . From the first equality in (7.23), we get

Gz̄φ = z̄φ− + θz̄φ+ = z̄φ− + θz̄(φ+ − φ+(0)) + φ+(0)z̄(θ − θ(0)) + φ+(0)z̄θ(0)
(7.24)

and comparing with the third equality in (7.23) we conclude that (7.23) holds if and
only if φ(0) = 0, φ+(0) = 0. Since φ+ = P+(θ̄Gφ), (7.17) holds. ∎

Now, from Corollary 7.3, we have the following.
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Proposition 7.10 Let θ be an inner function, and let G ∈ L∞. The following are
equivalent:
(1) ker Aθ

G is K2
θ -stable for Mz̄ .

(2) ker Aθ
G&kθ

0 .
(3) f (0) = 0 for all f ∈ ker Aθ

G .
(4) ker Aθ

G = (ker Aθ
G)z̄ ⊕ [Pker Aθ

G
(zPθ Ḡk̃θ

0)].

If any of these conditions holds, then ker Aθ
G is nearly z̄-invariant (w.r.t. H2, w.r.t. K2

θ )
with defect 1 and almost-invariant with defect 1 for S∗θ = Pθ z̄Pθ ∣K2

θ
.

Proof We have that ker Aθ
G & kθ

0 if and only if ker Aθ
G & 1 which is the same as f (0) =

0, for all f ∈ ker Aθ
G . That is equivalent to ker Aθ

G ⊂ zK2
θ ∩ K2

θ = z ker Tzθ̄ so (2) and (3)
are equivalent and, by Corollary 7.3, they are also equivalent to (1) and to

ker Aθ
G = (ker Aθ

G)z̄ ⊕ [Pker Aθ
G
(zAθ

Ḡ P+(θz̄))]

which in its turn is equivalent to (4). Since, with the notation of Theorem 7.1, M′′G(z̄) =
{0} (so M′G(z̄) ≠ {0}), we have that ker Aθ

G is K2
θ -stable for Mz̄ and nearly S∗-

invariant with defect 1. ∎
From Corollary 7.4, we also get the following.

Proposition 7.11 Let θ be an inner function, and let G ∈ L∞. The following are
equivalent:
(1) ker Aθ

G is nearly z̄-invariant (w.r.t. H2, w.r.t. K2
θ ).

(2) Aθ
G(z̄ f )&k̃θ

0 , for all f ∈ ker Aθ
G , f (0) = 0.

(3) P+(Gθ̄ f )(0) = 0, for all f ∈ ker Aθ
G , f (0) = 0.

(4) There exists f1 ∈ ker Aθ
G , such that f1(0) ≠ 0.

Proof We first remark that (K2
θ)G

z̄ = ker Aθ
G ∩ (K2

θ)z̄ = {φ ∈ ker Aθ
G ∶ φ(0) = 0}. To

see (1) ⇔ (2) recall from Corollary 7.4 that ker Aθ
G is nearly z̄-invariant if and only

if M′G(z̄) = {0}, i.e., Aθ
G(z̄ f ) ∈ ker Tzθ̄ = (K2

θ)z , for all f ∈ ker Aθ
G , f (0) = 0, which

is equivalent to (2) since (K2
θ)�z = [k̃θ

0 ]. On the other hand, by Corollary 7.4, (1) is
equivalent to

Pz(θ̄G f ) = 0 , for al l f ∈ ker Aθ
G , f (0) = 0.(7.25)

Since f ∈ ker Aθ
G if and only if G f = f− + θ f+ with f± ∈ H2

±, we have that for all f ∈
ker Aθ

G , f (0) = 0 the condition (7.25) is equivalent to

zP − z̄P+(θ̄ f− + f+) = zP−z̄ f+ = 0.

This is equivalent to

z̄ f+ ∈ H2 ,

which holds if and only if

f+(0) = 0.

In other words,

P+(θ̄G f ) (0) = 0 for al l f ∈ ker Aθ
G , f (0) = 0.
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So (1) ⇔ (3). Regarding the last equivalence, (3) ⇔ (4), we have that if M′G(z̄) =
{0}, then M′′G(z̄) ≠ {0}, so by (3) in Proposition 7.10, there must be some f1 ∈ ker Aθ

G
with f1(0) ≠ 0. Conversely, assume that there exists f1 ∈ ker Aθ

G with f1(0) ≠ 0. Let g
be any element of ker Aθ

G . Then there exists h+ ∈ H2 and g−, h− ∈ H2
− such that θ̄ g = g−

and G g = h− + θh+, i.e.,

( θ̄ 0
G θ)(

g
−h+

) = (g−
h−

) .

Analogous relation holds also for f1, so

( θ̄ 0
G θ)(

g f1
−h+ f2

) = (g− f1−
h− f2−

)

with f2 ∈ H2, f1− , f2− ∈ H2
−. Calculating the determinants on both sides, we get

g f2 + h+ f1 = g− f2− − h− f1− .

Note that the left-hand side is an element of H1 and the right-hand side is an element
of zH1. Thus, both have to be 0 and it follows that h+ = g f2

f1
, with f1(0) ≠ 0, so h+must

vanish at 0, whenever g(0) = 0, i.e., for all g = HAθ
G

z̄ . So (3) follows. ∎

As a consequence of Propositions 7.9 and 7.10 and Theorem 7.1, we can now state
the following.

Theorem 7.12 Let θ be an inner function and G ∈ L∞. We have that either:
(1) there exists f1 ∈ ker Aθ

G with f1(0) ≠ 0 and, in that case, ker Aθ
G is nearly z̄-invariant

(w.r.t. H2, w.r.t. K2
θ ) and

ker Aθ
G = (ker Aθ

G)z̄ ⊕ [Pker Aθ
G

kθ
0 ] = (ker Aθ

G)z̄ ⊕ [Pker Aθ
G

1] ,(7.26)

or
(2) f (0) = 0 for all f ∈ ker Aθ

G and, in that case, ker Aθ
G is nearly z̄-invariant with defect

1 and K2
θ -stable for Mz̄ , and we have

ker Aθ
G = (ker Aθ

G)z̄ ⊕ [Pker Aθ
G
(zAθ

Ḡ k̃θ
0)] = (K2

θ)G
z̄ .(7.27)

Remark 7.13 We recover in Theorem 7.12 some results obtained, in a different way,
in [27, Section 4], namely that ker Aθ

G is nearly z̄-invariant (w.r.t. K2
θ ) if there exists

f1 ∈ ker Aθ
G with f1(0) ≠ 0, and ker Aθ

G is nearly z̄-invariant with defect 1 if f (0) = 0
for all f ∈ ker Aθ

G . Another interesting result from [27] is that, in the latter case, if n
is the greatest natural number such that ker Aθ

G ⊂ zn H2, then z−n ker Aθ
G is a nearly

S∗-invariant subspace. Again, we can obtain this result differently, by observing that

z−n ker Aθ
G = ker AGzn ,(7.28)

where not all functions in ker AGzn vanish at 0, so by Proposition 7.10, it is nearly
z̄-invariant (w.r.t. K2

θ ). To prove (7.28), take f ∈ ker Aθ
G ⊂ K2

θ ∩ zn H2, then for some
h+ ∈ H2, h− ∈ H2

−, we have G f = h− + θh+. Thus (Gzn)(z−n f ) = h− + θh+, so f =
zn(z−n f ) with z−n f ∈ ker Aθ

Gzn . For the reverse inclusion, note that, if (Gzn) f =
h− + θh+, then G(zn f ) = h− + θh+ and zn f ∈ ker Aθ

G , so zn ker Aθ
Gzn ⊂ ker Aθ

G .
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We now compare the decomposition obtained in Example 5.2 with (7.26). We can
assume that G ∈ K2

θ , and ker Aθ
G = γK2

β with β < θ, γ = θ/β, γ(0) = 0, β < G i (inner
part of G). So, by Theorem 7.12, ker Aθ

G is nearly z̄-invariant with defect 1 and K2
θ -

invariant for Mz̄ , and we have

ker Aθ
G = (ker Aθ

G)z̄ ⊕ [Pker Aθ
G
(zAθ

Ḡ k̃θ
0)],

where Pker Aθ
G
= PγK2

β
= γPβ γ̄P+. One can see that

(ker Aθ
G)z̄ = (γK2

β)z̄ = γ(K2
β)z̄ .

It is left to show that [Pker Aθ
G
(zAθ

Ḡ k̃θ
0)] = [γkβ

0 ]. Indeed, we have

PγK2
β
(zAθ

Ḡ k̃θ
0) = γPβ γ̄(zAθ

Ḡ k̃θ
0) = γPβ γ̄θḠ ,(7.29)

because

Aθ
Ḡ k̃θ

0 = Pθ(Ḡz̄(θ − θ(0))) = Pθ(Ḡz̄θ) − Pθ(Ḡz̄θ(0)) = Cθ G = θz̄Ḡ .

Hence, from (7.29),

PγK2
β
(zAθ

Ḡ k̃θ
0) = γPβ(γ̄θḠ) = γPβ(βḠ),

where βḠ ∈ H2, because β divides the inner factor G i . Thus Pβ(βḠ) = c ∈ C and
γPβ(βḠ) = cγkβ

0 .
Note that the dichotomy of Theorem 7.12 does not extend to other cases with

β ≠ z, as we show in the following simple example where both M′G(β̄) and M′′G(β̄)
are different from {0}.

Example 7.14 Let G = z3, θ = z4. Then ker Aθ
G = zK2

z3 so, for X = z̄2, the decomposi-
tion (7.6) has the form

ker Aθ
G = (ker Aθ

G)z̄2 ⊕ M′G(z̄2) ⊕ M′′G(z̄2) = [z3] ⊕ [z2] ⊕ [z].

One can also study the z-invariance properties of kernels of truncated Toeplitz
operators and obtain the decomposition given in Theorem 7.5 with β = z, using
Theorem 7.12 and Corollary 7.8.

Theorem 7.15 Let θ be an inner function and G ∈ L∞. We have either

ker Aθ
G = (ker Aθ

G)z ⊕ [Pker Aθ
G

k̃θ
0 ],(7.30)

where the second term in the orthogonal sum corresponds to M′′G(z̄) in Theorem 7.1, or

ker Aθ
G = (ker Aθ

G)z ⊕ [Pker Aθ
G
(zAθ

Ḡ kθ
0)],(7.31)

where the second term in the orthogonal sum corresponds to M′G(z) in Theorem 7.1.

Corollary 7.16 The following are equivalent:
(1) ker Aθ

G is nearly z-invariant (w.r.t. K2
θ ).

(2) ker(Aθ
Ḡ) is nearly z̄-invariant (w.r.t. K2

θ ).
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(3) ⟨z̄Aθ
Ḡ kθ

0 , f ⟩ = 0 for all f ∈ ker Aθ
G , (Cθ f )(0) = 0.

(4) (P−G f ) ∈ z̄H2
− for all f ∈ ker Aθ

G , (Cθ f )(0) = 0.

Proof The equivalence between (1) and (2) is a direct consequence of the previous
results.

By Theorem 7.11, (2) is equivalent to the fact that, for all f ∈ ker Aθ
G such that f (0) =

0, the first equality holds and

0 = ⟨Aθ
Ḡ(z̄ f ), k̃θ

0 ⟩ = ⟨Aθ
Ḡ(z̄ f ), Cθ kθ

0 ⟩ = ⟨kθ
0 , Cθ Aθ

Ḡ(z̄ f )⟩
= ⟨kθ

0 , Aθ
G Cθ(z̄ f )⟩ = ⟨Aθ

Ḡ kθ
0 , θ f̄ ⟩ = ⟨z̄Aθ

Ḡ kθ
0 , Cθ f ⟩.

For f̃ = Cθ f , we have, thus, that the above is equivalent to ⟨z̄Aθ
Ḡ , f̃ ⟩ = 0 for all f̃ ∈

ker Aθ
G , (Cθ f̃ )(0) = 0. Hence (2)⇔(3).

Now we show that (3)⇔(4). Note that, for f such as in (3), we have

0 = ⟨z̄Aθ
Ḡ kθ

0 , f ⟩ = ⟨kθ
0 , Aθ

G z f ⟩ = ⟨kθ
0 , Gz f ⟩

= ⟨z̄kθ
0 , G f ⟩ = ⟨z̄, G f ⟩ − ⟨z̄θ(0)θ , G f ⟩.

Since f ∈ ker Aθ
G , we have that G f = P−(G f ) + θP+θ̄(G f ), so the previous equality is

equivalent to

0 =⟨z̄, P−G f ⟩ − θ(0)⟨z̄θ , P−G f ⟩ − θ(0)⟨z̄θ , θP+θ̄G f ⟩
=⟨z̄, P−G f ⟩ − θ(0)⟨P−z̄θ , P−G f ⟩
=⟨z̄, P−G f ⟩ − θ(0)θ(0)⟨z̄, P−G f ⟩
=(1 − ∣θ(0)∣2)⟨z̄, P−G f ⟩.

This is equivalent to

⟨z̄, P−G f ⟩ = 0,

i.e., P−G f ∈ z̄H2
−. ∎

Analogously, we have the following.

Corollary 7.17 The following are equivalent:
(1) ker Aθ

G is nearly z-invariant with defect 1 (w.r.t. K2
θ ).

(2) ker(Aθ
G)∗ is nearly z̄-invariant with defect 1 (w.r.t. K2

θ ).
(3) ker Aθ

G&k̃θ
0 .

(4) (Cθ f )(0) = 0 for all f ∈ ker Aθ
G .

(5) z ker Aθ
G ⊂ K2

θ .
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