
Obstruction theory and the level n elliptic genus

Andrew Senger

Compositio Math. 159 (2023), 2000–2021.

doi:10.1112/S0010437X23007406

https://doi.org/10.1112/S0010437X23007406 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007406
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X23007406&domain=pdf
https://doi.org/10.1112/S0010437X23007406


Compositio Math. 159 (2023) 2000–2021
doi:10.1112/S0010437X23007406

Obstruction theory and the level n elliptic genus

Andrew Senger

Abstract

Given a height at most two Landweber exact E∞-ring E whose homotopy is concen-
trated in even degrees, we show that any complex orientation of E which satisfies
the Ando criterion admits a unique lift to an E∞-complex orientation MU → E. As a
consequence, we give a short proof that the level n elliptic genus lifts uniquely to an
E∞-complex orientation MU → tmf1(n) for all n≥ 2.

Contents

1 Introduction 2000
2 Existence of E∞-orientations 2003
3 Uniqueness of E∞-orientations 2007
4 The level n elliptic genus 2009
Acknowledgements 2017
Conflicts of Interest 2017
Appendix A. K(n)-localizations of Landweber exact ring spectra 2017
References 2018

1. Introduction

Complex-oriented ring spectra play a central role in the chromatic approach to homotopy theory.
Given a homotopy associative ring spectrum E, recall that a complex orientation is a choice of
class u ∈ Ẽ2(CP∞) with the property that its restriction along S2 ∼= CP1 ↪→ CP∞ is the unit
1 ∈ E0(∗) ∼= Ẽ2(S2). A complex orientation determines an isomorphism of graded rings

E∗(CP∞) ∼= E∗[[u]].

Complex orientations may also be described in terms of the complex cobordism spectrum MU:
complex orientations of E are in natural bijection with maps of homotopy associative ring spectra
MU → E. For more background on complex orientations, we refer the reader to [Ada74, Part II].

The complex cobordism spectrum MU admits much more structure than that of a homotopy
associative ring spectrum: it is an E∞-ring spectrum. When E also admits the structure of an
E∞-ring spectrum, it is natural to ask whether a given complex orientation is induced by a map
of E∞-ring spectra

MU → E.
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Obstruction theory and the level n elliptic genus

We will call such maps E∞-complex orientations. The E∞-complex orientations of an E∞-ring
may be viewed as particularly canonical complex orientations.

Indeed, many of the most familiar (not necessarily complex) orientations admit lifts to
E∞-orientations. For example, the Atiyah–Bott–Shapiro orientations [ABS64]

MSpin → ko and MSpinC → ku

were refined to E∞-orientations by Joachim [Joa04], who gave an explicit geometric construc-
tion of such an E∞-orientation. Indeed, one expects that any orientation of geometric origin
may, with enough care, be refined to an E∞-orientation. A more sophisticated example is the
Ando–Hopkins–Rezk E∞-String orientation of the connective E∞-ring of topological modular
forms tmf (see [AHR10])

MString → tmf,

which refines the Witten genus [Wit87, Wit88]. While it is expected that this E∞-orientation
has a geometric origin, and much work has gone into developing such a viewpoint (for a small
sampling, see [ST04, ST11, Cos10, Cos11, DH11, BE21]), such a description has so far remained
elusive. In Theorem 1.7, we will prove that the Hirzebruch level n elliptic genera [Hir88], [Wit88,
§ 5] for n ≥ 2 may be lifted to E∞-complex orientations

MU → tmf1(n).

1.1 The Ando criterion
An algebraic approximation of what it means for a complex orientation MU → E to be E∞ is
given by the Ando criterion. It asks that the complex orientation be compatible in a suitable
sense with the power operations in E. In many cases, the Ando criterion is equivalent to the
property that the complex orientation MU → E be a map of H∞-ring spectra (see, e.g., [AHS04,
Proposition 6.1]).

Now let E denote an E∞, or more generally an H∞-ring spectrum, with a fixed complex
orientation u.

Notation 1.1. Given a complex vector bundle V → X of dimension d, we let tu(V ) ∈
E2d(Th(V )) denote the Thom class of V .

Fix a prime p, let ρ denote the vector bundle over BCp corresponding to the complex regular
representation of Cp, and let γ1 denote the tautological bundle over CP∞. Let Itr ⊂ E∗(BCp)
denote the transfer ideal. Recall from [HL18, § 7] that there are additive power operations

Ψu : E2∗(Th(γ1)) → E2p∗(Th(ρ� γ1))/Itr.

Definition 1.2. We say that a complex orientation of E satisfies the Ando criterion at the
prime p if

Ψu(tu(γ1)) = tu(ρ� γ1)

in E2p(Th(ρ� γ1))/Itr. We say that a complex orientation of E satisfies the Ando criterion if it
satisfies the Ando criterion for all primes p.

Remark 1.3. If E is p-local, then E∗(BC�)/Itr = 0 for all primes � �= p. Therefore, a complex
orientation of a p-local E∞-ring satisfies the Ando criterion if and only if it satisfies the Ando
criterion at p.
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The complex cobordism spectrum MU, equipped with the canonical complex orientation,
satisfies the Ando criterion.1 It follows that any E∞-complex orientation, or more generally any
H∞-complex orientation, satisfies the Ando criterion.

1.2 Results
The first main theorem of this paper states that for many E∞-rings of height at most two, this
condition is sufficient, and that the resulting E∞-complex orientations are determined up to
homotopy by their underlying complex orientations.

Theorem 1.4. Let E denote a height at most two Landweber exact E∞-ring whose homotopy is
concentrated in even degrees. Then any complex orientation MU → E which satisfies the Ando
criterion lifts uniquely up to homotopy to an E∞-ring map MU → E.

In the above theorem, we say that a Landweber exact ring spectrum E is of height at most n
if vn ∈ π∗(E)/(p, v1, . . . , vn−1) is a unit for all primes p.2 As a corollary, we obtain the following
result for height at most two Lubin–Tate theories.3

Corollary 1.5. Let k ⊆ Fp denote a field of characteristic p > 0 which is algebraic over the
prime field Fp, and let G denote a formal group of height at most two over k. Then any complex
orientation of the associated 2-periodic Morava K-theory K(k,G) lifts uniquely up to homotopy
to an E∞-complex orientation of E(k,G)

MU → E(k,G).

Proof. This follows immediately from Theorem 1.4 and [Zhu20, Theorem 1.2], which implies that
every complex orientation of K(k,G) admits a unique lift to a complex orientation of
E(k,G) which satisfies the Ando criterion whenever k is algebraic over Fp. �
Remark 1.6. Theorem 1.4 was inspired by recent work of Balderrama [Bal21, Theorem 6.5.3].
Balderrama showed that every periodic complex orientation of a Lubin–Tate theory of
height at most two satisfying an analogue of the Ando criterion lifts to an E∞-orientation.
He also showed that E∞-refinements of periodic complex orientations of even periodic
K(1)-local E∞-rings exist whenever the Ando criterion is satisfied and are unique up to
homotopy.

The key observation he made is the presence of evenness in the Goerss–Hopkins obstruction
theory for (periodic) E∞-complex orientations, which implies that the obstructions to existence
and uniqueness appearing in his theorem vanish for formal reasons. Our results about existence of
E∞-complex orientations will be obtained by observing a similar evenness in the Hopkins–Lawson
obstruction theory [HL18].

In contrast to Theorem 1.4, Balderrama did not obtain any uniqueness results at height 2 (see
[Bal21, Remark 6.5.4]). In Remark 3.6, we will prove that E∞-refinements of periodic complex
orientations of height 2 Lubin–Tate theories are unique.

Our second main theorem uses Theorem 1.4 to give a simple proof of the following
theorem.

1 This follows from [Qui71] as explained in [Law18, Proposition 4.1.2]. Alternatively, it follows directly from (the
proof of) [HL18, Theorem 32].
2 See [Rav86, Appendix A2.2] for the vi.
3 See Recollection 4.14 for a refresher on the Lubin–Tate theories E(k, G). The associated 2-periodic Morava
K-theories K(k, G) are obtained by cofibering out by the sequence (p, u1, . . . , un−1), or equivalently by the sequence
(p, v1, . . . , vn−1).
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Obstruction theory and the level n elliptic genus

Theorem 1.7. For n ≥ 2, the Hirzebruch level n elliptic genus lifts uniquely up to homotopy
to a map of E∞-rings

MU → tmf1(n).

While Theorem 1.4 does not apply directly to tmf1(n), it does apply to TMF1(n), and it is
not hard to upgrade the resulting E∞-complex orientation to one of tmf1(n). This reduces us to
verifying the Ando criterion, which may be done following the strategy of Ando, Hopkins, and
Strickland [AHS04].

Remark 1.8. During the writing process, [Abs21] has also appeared, which follows the strategy
of Ando, Hopkins, and Rezk [AHR10] to prove a similar result to Theorem 1.7 for Tmf1(n).
Our method is rather different from that of Absmeier and completely avoids the consideration
of p-adic Eisenstein measures.

1.3 Further questions
One of the key inputs in our proof of Theorem 1.4 is Theorem 2.11, which states that the Morava
K-theory of certain finite groups is concentrated in even degrees. This is closely related to these
groups being good in the sense of Hopkins, Kuhn, and Ravenel [HKR00, § 7].

These groups come in a family, and to see that the Hopkins–Lawson obstruction theory is
concentrated in even degrees one would like to show that the entire family has Morava K-theory
concentrated in even degrees; see Remark 2.13.

Question 1.9. Is the Morava K-theory of the groups Γ(n)
k of Definition 2.7 concentrated in even

degrees for k > 2, at least for n
 0? The groups Γ(1)
k are the extraspecial p-groups of type p1+2k

+ .

One could also ask about C2-equivariant refinement of our results.

Question 1.10. The complex cobordism spectrum may be refined to a C2-equivariant
E∞-ring MUR, and tmf1(n) admits the natural structure of a C2-equivariant E∞-ring [Mei21,
Theorem 2.20]. Moreover, the Hirzebruch level n elliptic genus admits a refinement to a map
of homotopy C2-ring spectra MUR → tmf1(n) (see [Mei21, Theorem 3.5]). Is there a suitable
C2-equivariant analogue of Theorem 1.4 which may be used to prove a C2-equivariant refine-
ment of Theorem 1.7? See [HL18, Remark 13] for a comment on a C2-equivariant version of the
Hopkins–Lawson obstruction theory.

On the other hand, it would be very interesting to study E∞-complex orientations at heights
3 and above. A natural choice of spectra to study would be Lubin–Tate spectra. Since the
obstruction groups do not vanish for formal reasons at these heights, it seems likely that this
will require an explicit analysis of the Goerss–Hopkins obstruction theory for E∞-maps MU →
E(k,G). In particular, one would have to compute the E2-page.

Problem 1.11. Compute the Goerss–Hopkins obstruction groups for E∞-maps MU → E(k,G)
for height 3 and above Lubin–Tate theories E(k,G).

2. Existence of E∞-orientations

In this section, we will prove the half of Theorem 1.4 concerning the existence of E∞-complex
orientations. The main tool that we will utilize is an obstruction theory for E∞-complex orienta-
tions studied by Hopkins and Lawson [HL18]. Given this obstruction theory, the existence half
of Theorem 1.4 reduces to the statement that certain obstruction groups vanish. Using work of
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Arone and Lesh [AL07], this can be further reduced to the evenness of the Morava K-theory of
certain extraspecial p-groups and related groups, which we are able to extract from the literature.

2.1 Hopkins–Lawson obstruction theory
We begin by summarizing the main results of the Hopkins–Lawson obstruction theory [HL18].
First, a definition.

Definition 2.1. Let E denote a homotopy commutative ring spectrum. We let Or(E) denote
the space of complex orientations of E, i.e. the fiber

Or(E) → Map(Σ∞−2 CP∞, E) → Map(Σ∞−2 CP2, E) � Map(S, E)

above the unit map S → E.

Theorem 2.2 [HL18, Theorems 1 and 32]. There exists a diagram of E∞-ring spectra

S → MX1 → MX2 → MX3 → · · · → MU

such that the following hold:

(i) the natural map lim−→MXn → MU is an equivalence;
(ii) the E∞-ring MX1 is equipped with a natural complex orientation inducing an equivalence

MapE∞(MX1, E) ∼−→ Or(E) for each E∞-ring E;
(iii) given m > 0 and an E∞-ring E, there is a pullback square

where Fm is a pointed space described in Recollection 2.6;
(iv) the map MXm−1 → MXm is a rational equivalence if m > 1, a p-local equivalence if m is

not a power of p, and a K(n)-local equivalence if m > pn;
(v) let E denote an E∞-ring such that π∗E is p-local and p-torsion free. Then an E∞-map

MX1 → E extends to an E∞-map MXp → E if and only if the corresponding complex
orientation of E satisfies the Ando criterion.

Using this theorem, we will reduce the proof of Theorem 1.4 to the following.

Lemma 2.3. Let E denote a p-complete Landweber exact ring spectrum with homotopy
concentrated in even degrees. Then E2n(Fp) ∼= E2n+1(Fp2) ∼= 0 for all n ∈ Z.

Remark 2.4. In fact, we only need that E2n+1(Fp2) ∼= 0. However, we include the statement
E2n(Fp) ∼= 0 since it is no harder for us to prove. This extra evenness implies uniqueness up to
homotopy for E∞-refinements of complex orientations of height at most one. However, we will
prove uniqueness in a different way in § 3.

Question 2.5. Given a p-complete Landweber exact ring spectrum E with homotopy concen-
trated in even degrees, is E2∗+k−1(Fpk) ∼= 0 for k ≥ 3?

Proof of existence in Theorem 1.4 assuming Lemma 2.3. We begin by reducing to the case
where E is p-complete for some prime p. We make use of the following fracture square (see
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[Bou79, Proposition 2.9]).

Note that E∧
p is again even and Landweber exact; see Appendix A.

By Theorem 2.2, we have MapE∞(MU, R) � Or(R) for a rational E∞-ring R; it follows further
that π1MapE∞(MU, R) ∼= π1Or(R) ∼= 0 if R has homotopy concentrated in even degrees. As a
consequence, there are pullback squares of sets:

(1)

and

To lift a complex orientation of E to an E∞-complex orientation, it therefore suffices to lift the
induced complex orientation of E∧

p . We may therefore assume that E is p-complete.
Let E now denote an p-complete Landweber exact E∞-ring with homotopy concentrated in

even degrees. Using Theorem 2.2, we see that it suffices to show that

π0MapE∞(MXp2 , E) → π0MapE∞(MXp, E)

is surjective.
By Theorem 2.2, there is a fiber sequence

MapE∞(MXp2 , E) → MapE∞(MXp, E) → Map∗(Fp2 ,Pic(E)).

Now, there are equivalences

Map∗(Fm,Pic(E)) � Hom(Σ∞Fm,pic(E)) � Hom(Σ∞Fm,ΣE),

where in the second equivalence we have used the fact that Σ∞Fm is (2m− 1)-connected by
[HL18, Corollary 4(5)]. It therefore follows from the above fiber sequence that it suffices to show
that

E1(Σ∞Fp2) ∼= 0.

Since E is p-complete, this follows from Lemma 2.3. �

2.2 Proof of Lemma 2.3
In the remainder of this section, we will prove Lemma 2.3. First, we must recall the definition
of the spaces Fm.

Recollection 2.6. Let Lm denote the nerve of the topologized poset of proper direct-sum decom-
positions of Cm, and let (Lm)� denote its unreduced suspension. The natural action of U(m) on
Cm endows Lm and (Lm)� with the structure of U(m)-spaces.
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Furthermore, view S2m as a U(m)-space via its identification with the one-point com-
pactification of Cm, viewed as the fundamental representation of U(m). Then Fm is
given by

Fm � ((Lm)� ∧ S2m)hU(m).

To prove Lemma 2.3, we will use a result of Arone–Lesh to reduce the study of the
E-cohomology of Fm to the E-cohomology of certain groups Γk, whose definition we now recall.

Definition 2.7 [Oli94, Definition 1]. Let σ0, . . . , σk−1 ∈ Σpk denote the permutations

σr(i) =

{
i+ pr if i ≡ 1, . . . , (p− 1)pr mod pr+1,

i− (p− 1)pr if i ≡ (p− 1)pr + 1, . . . , pr+1 mod pr+1.

We let Γk ⊂ U(pk) denote the subgroup generated by the permutation matrices corresponding
to σ0, . . . , σk−1, the central S1, and the diagonal matrices A0, . . . , Ak−1 given by

(Ar)ii = ζ�(i−1)/pr�
p ,

where ζp is a primitive pth root of unity. Then Γk lies in a central extension

1 → S1 → Γk → F2k
p → 1.

For each n ≥ 1, there is a normal subgroup Γ(n)
k ⊂ Γk which only contains the central pnth roots

of unity instead of the full S1. Then there are central extensions

1 → Cpn → Γ(n)
k → F2k

p → 1

and exact sequences

1 → Γ(n)
k → Γk → S1 → 1.

Remark 2.8. The groups Γ(1)
k are examples of extraspecial p-groups, and in this language are

commonly denoted by p1+2k
+ .

Proposition 2.9 [AL07, Propositions 9.6 and 10.3]. The p-completion of the spectrum

Σ∞Fm � Σ∞((Lm)� ∧ S2m)hU(m)

is null unless m = pk, in which case it is a summand of the p-completion of

Σk(S2pk
)hΓk

,

where Γk acts on S2pk
via the inclusion Γk ⊂ U(pk).

Now, (S2pk
)hΓk

may also be described as the Thom spectrum associated to the composition

BΓk → BU(pk) → Z × BU,

from which it follows that

E∗((S2pk
)hΓk

) ∼= Ẽ∗−2pk
(BΓk).

Lemma 2.3 therefore reduces to the following lemma.

Lemma 2.10. Let E denote a p-local Landweber exact ring spectrum whose homotopy is
concentrated in even degrees. Then, for k ≤ 2, E∗(BΓk) is concentrated in even degrees.

We will deduce Lemma 2.10 from the following Morava K-theory computations.
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Theorem 2.11. For all n ≥ 0, the following groups are concentrated in even degrees:

(i) (Tezuka and Yagita [TY89, Theorem 4.2]) K(n)∗(BΓ(1)
1 ) at all primes p;

(ii) (Schuster and Yagita [SY04, Theorem 5.4]) K(n)∗(BΓ(1)
2 ) at the prime 2;

(iii) (Yagita [Yag05, Theorem 1.2]) K(n)∗(BΓ(2)
2 ) at odd primes p.

A lemma of Strickland which builds on the work of Ravenel, Wilson, and Yagita [RWY98]
allows us to transport this evenness from Morava K-theory to E-cohomology.

Corollary 2.12. Given a p-local Landweber exact ring spectrum E whose homotopy is
concentrated in even degrees, the following groups are concentrated in even degrees:

(i) E∗(BΓ(1)
1 ) at all primes p;

(ii) E∗(BΓ(1)
2 ) at the prime 2;

(iii) E∗(BΓ(2)
2 ) at odd primes p.

Proof. Combine Theorem 2.11 with [Str99, Lemma 8.25].4,5 �
Proof of Lemma 2.10. The short exact sequence

Γ(n)
k → Γk → S1

induces a fiber sequence

BΓ(n)
k → BΓk → BS1.

Using the associated Atiyah–Hirzebruch spectral sequence

H∗(BS1;E∗(BΓ(n)
k )) ⇒ E∗(BΓk),

we find that if E∗(BΓ(n)
k ) is even for some n, then E∗(BΓk) must be as well. Therefore,

Lemma 2.10 follows from Corollary 2.12. �
Remark 2.13. By the same arguments, to give a positive answer to Question 2.5 it suffices to
show that K(n)∗(BΓ(ik)

k ) is concentrated in even degrees for a fixed ik not depending on n. This
is closely related to the question of whether Γ(ik)

k is a good group in the sense of Hopkins, Kuhn,
and Ravenel [HKR00, § 7].

3. Uniqueness of E∞-orientations

Our goal in this section is to prove the following result.

Theorem 3.1. Let E denote an L2-local6 complex orientable E∞-ring with the property that
K(1)∗E and K(1)∗LK(2)E are concentrated in even degrees at all primes p. Then each com-
plex orientation of E admits at most one refinement to an E∞-complex orientation up to
homotopy.

Example 3.2. Any Landweber exact ring spectrum E of height at most two whose homotopy is
concentrated in even degrees satisfies the hypotheses of Theorem 3.1. By Lemma A.1, LK(2)E

4 Note that we cannot apply [Str99, Lemma 8.25] directly to BΓk, since it only applies to spaces with bounded
above Q-cohomology.
5 While it is assumed in [Str99] that E is even-periodic, this is not used in the proof of [Str99, Lemma 8.25].
We also note that E may be viewed as a summand of an even-periodic ring spectrum E[x±1

2 ], so that we may
conclude from [Str99, Lemma 8.25] as stated.
6 Recall that L2-localization refers to Bousfield localization with respect to height two Johnson–Wilson theory
E(2), or equivalently with respect to a height two Lubin–Tate theory: see [Rav84, Definition 5.1].
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is again Landweber exact and has homotopy concentrated in even degrees. It therefore suf-
fices to show that K(1)∗E is concentrated in even degrees. This is true because K(1)∗E ∼=
K(1)∗MU ⊗π∗MU π∗E, and K(1)∗MU is concentrated in even degrees.

Combining Theorem 3.1 with Example 3.2, we obtain the uniqueness half of Theorem 1.4.

Example 3.3. The ring spectra Tmf1(n) satisfy the hypotheses of Theorem 3.1. This follows from
[Wil15, Propositions 2.4 and 2.6], which imply that the p-complete complex K-theory of these
spectra and their K(2)-localizations is p-torsionfree and concentrated in even degrees. The proof
is exactly the same as the case without level structure, which is treated in [Beh14]. The key point
is that the Igusa tower becomes formally affine at a finite stage.

Our proof of Theorem 3.1 will be based on the orientation theory of [ABGHR14] and the
following lemma.

Lemma 3.4. Let E denote an MU-module with the property that K(1)∗E is concentrated in
even degrees. Then [KUp, LK(1)E] is torsionfree and [ΣKUp, LK(1)E] = 0.

Definition 3.5. We say that a (KUp)∗-module is pro-free if it is the p-completion of a free
module. Moreover, given a spectrum X, we write KU∨

∗ (X) for π∗LK(1)(KU ⊗X).

Proof. Since K(1)∗(KUp) is even, KU∨
∗ (KUp) is pro-free by [HSt99, Proposition 8.4(f)].

Therefore, by [BH16, Proposition 1.14], there is an isomorphism

π∗Hom(KUp, LK(1)(KUp ⊗ E) ∼= Hom(KUp)∗(KU∨
∗ (KUp),KU∨

∗ (E)).

By assumption, K(1)∗(E) is even and, hence, KU∨
∗ (E) is even and pro-free by [HSt99,

Proposition 8.4(f)]. In particular, it is torsionfree, so that Hom(KUp)∗(KU∨
∗ (KUp),KU∨

∗ (E)) is
even and torsionfree.

The result then follows from the following facts.

(i) Since E is an MU-module, the unit map LK(1)E → LK(1)(MU ⊗ E) admits a splitting given
by the module structure map.

(ii) There is a splitting of the map LK(1)MU → LK(1)E(1) which is compatible with the unit
map [HSa99, Theorem 4.1].

(iii) There is an equivalence of spectra KUp �
⊕p−2

i=0 Σ2iLK(1)E(1). �
Proof of Theorem 3.1. Using the pullback square of sets (1), we may assume that E is
p-complete.

Recall the map Σ∞CP∞ → bu which is adjoint to the canonical map CP∞ → BU. By
orientation theory [ABGHR14], we must show that

[bu, gl1(E)] → [Σ∞CP∞, gl1(E)]

is injective. Since E is p-complete, gl1(E) agrees with gl1(E)∧p in degrees ≥2, so we may as well
replace the former by the latter. Letting F denote the fiber of the map gl1(E) → L2gl1(E), we
find that there is a fiber sequence

F∧
p → gl1(E)∧p → LK(1)⊕K(2)gl1(E).

It therefore suffices to show that

[bu, F∧
p ] → [Σ∞CP∞, F∧

p ]

and
[bu, LK(1)⊕K(2)gl1(E)] → [Σ∞CP∞, LK(1)⊕K(2)gl1(E)]
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are injective. The first is injective because F∧
p is 3-coconnective by [AHR10, Theorem 4.11] and

the cofiber of Σ∞CP∞ → bu is 4-connective.
To prove that the second is injective, we first note that the Bousfield–Kuhn functor [Bou87,

Kuh89] and the chromatic fracture square for LK(1)⊕K(2)gl1(E) imply that there is an exact
sequence

[ΣKUp, LK(1)LK(2)E] → [bu, LK(1)⊕K(2)E] → [KUp, LK(1)E].

Applying Lemma 3.4, we learn that [bu, LK(2)⊕K(1)E] is torsionfree. It therefore injects into
its rationalization, so that the result follows from the fact that Σ∞CP∞ → bu is a rational
equivalence. �
Remark 3.6. Balderrama has shown that periodic complex orientations of height 2 Lubin–Tate
theories E(k,G) which satisfy a version of the Ando criterion admit lifts to periodic E∞-complex
orientations MUP → E(k,G) (see [Bal21, Theorem 6.5.3(3)]). In this remark, we prove that such
lifts are unique up to homotopy.

We begin with a result which has been proven by Rezk at height 2 (which is the case
that we use) [Rez13] and in general is an unpublished theorem of Hopkins and Lurie that has
now appeared in work of Burklund, Schlank, and Yuan [BSY22, Theorem H]. Let k denote the
algebraic closure of k. Then we have

π∗Gm(E(k,G)) := π∗Map(Z, gl1(E(k,G))) ∼=

⎧⎪⎨⎪⎩
k
× ∗ = 0,

Zp ∗ = 3,
0 otherwise.

On π0, the map Z → gl1(E(k,G)) corresponding to a ∈ k
× picks out the Teichmuller lift [a].

Since Gal(k) has p-cohomological dimension at most 1 (see [GS06, Proposition 6.1.9]), it
follows that

π0Gm(E(k,G)) ∼= k×.

In particular, the map π0Gm(E(k,G)) → π0gl1(E(k,G)) is injective. Now, by orientation theory
it suffices to show that

[ku, gl1(E(k,G))] → [Σ∞
+ CP∞, gl1(E(k,G))]

is injective. By what we have proven above about uniqueness of E∞-complex orientations, it
suffices to show that

[Z, gl1(E(k,G))] → [S0, gl1(E(k,G))]

is injective, which is what we showed above.
As noted in [Bal21, Remark 6.5.4], this implies that the Goerss–Hopkins obstruction group

Ext2Δ(Q̂(E(k,G)∧0 MUP), ω) is equal to 0.

4. The level n elliptic genus

Convention 4.1. In this section n will denote an integer greater than or equal to 2.

In this section, we will prove Theorem 1.7, which states that the Hirzebruch level n elliptic
genus lifts uniquely up to homotopy to an E∞-complex orientation MU → tmf1(n).

We will begin by recalling some background material about E∞-rings of topological modular
forms with level-Γ1(n) structures in § 4.1. In § 4.2, we recall from [AHS01, AHS04] how complex
orientations may be described in terms of Θ1-structures. We then describe the level n elliptic
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genus in this language, following Meier [Mei21, § 3]. In § 4.3, we show that a complex orienta-
tion for TMF1(n) satisfies the Ando criterion at p if and only if its composition along a map
TMF1(n) → E(k,G) to a Lubin–Tate theory does.

In § 4.4, we recall from [AHS04] how the Ando criterion for Lubin–Tate theories may be
rephrased in terms of Θ1-structures. We then prove that the Hirzebruch level n genus satisfies
the Ando criterion. As a consequence of Theorem 1.4, it lifts uniquely up to homotopy to an
E∞-ring map MU → TMF1(n). Finally, in § 4.5, we prove that this E∞-ring map admits a unique
up to homotopy lift to an E∞-ring map MU → tmf1(n), completing the proof of Theorem 1.7.

4.1 Topological modular forms with level structures
In this section, we will recall some basic facts about the E∞-rings tmf1(n), Tmf1(n) and TMF1(n)
of topological modular forms with level-Γ1(n) structure. We begin by recalling the algebraic
background.

Definition 4.2. We let M1(n) denote the Deligne–Mumford moduli stack of elliptic curves
with level Γ1(n) structure over Z[1/n]. Concretely, given a scheme S on which n is invertible, we
have

M1(n)(S) = elliptic curves E over S with a point P ∈ E[n](S) of exact order n.

Moreover, we write M1(n) for the Deligne–Rapoport moduli stack of generalized elliptic curves
with level Γ1(n) structure [DR73]. This is again a Deligne–Mumford stack over Z[1/n], and
M1(n) ⊂ M1(n) is an open substack.

We denote the universal family of curves by π : C → M1(n), and write πsm : Csm → M1(n)
for the smooth locus. Then Csm admits a natural structure of a group scheme, and we write ω
for the line bundle of invariant differentials.

Finally, we write M = M1(1) and M = M1(1) for the moduli stacks of (generalized) elliptic
curves without level structure.

Recollection 4.3 (Goerss, Hopkins, and Miller [DFHH14, Chapter 12], Lurie [Lur18b], and Hill
and Lawson [HL16]). There is a sheaf Otop

M of E∞-ring spectra on the Kummer log-étale site of
M with the following properties.

(i) There is a natural isomorphism of sheaves π0Otop

M
∼= OM.

(ii) There are natural isomorphisms of quasicoherent sheaves π2iOtop

M
∼= ωi and π2i+1Otop

M
∼= 0.

(iii) Write π̂sm : Ĉsm → M for the completion of πsm : Csm → M along the zero section. There
is a natural isomorphism of sheaves of rings π0Hom(Σ∞

+ CP∞,Otop) ∼= (π̂sm)∗OĈsm .

Since the natural morphisms M1(n) → M are Kummer log-étale (we refer the reader to
[HL16] for more details), we may define E∞-rings:

TMF1(n) := Γ(M1(n),Otop

M )

and
Tmf1(n) := Γ(M1(n),Otop

M ).

By definition, there are spectral sequences

Hs(M1(n), ωi) ⇒ π2i−sTMF1(n)

and
Hs(M1(n), ωi) ⇒ π2i−sTmf1(n).
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Remark 4.4. Let n ≥ 2. It follows from [Mei22a, Proposition 2.4(4)] that Hs(M1(n), ωi) = 0 for
all s > 0, so that TMF1(n) has homotopy groups concentrated in even degrees and that there
are natural isomorphisms

π2i(TMF1(n)) ∼= Γ(M1(n), ωi).

Moreover, TMF1(n) is Landweber exact. Indeed, this is a consequence of flatness of M1(n) over
Z[1/n], the integrality of M1(n)Fp and the fact that the formal group of an elliptic curve is of
height at most two.

However, because the groups H1(M1, ω
i) do not in general vanish, we do not have a similar

theorem for Tmf1(n). Instead, we have the E∞-ring spectrum tmf1(n) from [Mei21].

Recollection 4.5 [Mei21, Theorem 1.1]. There is an essentially unique connective E∞-ring spec-
trum tmf1(n) whose homotopy groups are concentrated in even degrees and which is equipped
with an E∞-ring map

tmf1(n) → Tmf1(n)

such that the induced maps

π2itmf1(n) → π2iTmf1(n) → Γ(M1(n), ωi)

are isomorphisms.

Remark 4.6. There is a sequence of natural maps

tmf1(n) → Tmf1(n) → TMF1(n).

4.2 Θ1-structures
In this section, we describe complex orientations in terms of Θ1-structures and give a description
of the Hirzebruch level n genus in this language.

Suppose that we are given a base Deligne–Mumford stack S and a formal group or generalized
elliptic curve G over S. We denote the structure map by p : G→ S and the zero section by
0 : S → G. Given a line bundle L on G, we set

Θ1(L) := p∗0∗L ⊗ L−1.

There is a canonical trivialization 0∗Θ1(L) ∼= OS .

Definition 4.7. A Θ1-structure on a line bundle L over G is a trivialization of Θ1(L) which
pulls back to the canonical trivialization of 0∗Θ1(L).

Equivalently, a Θ1-structure on L is an isomorphism p∗0∗L ∼= L which pulls back to the
canonical isomorphism 0∗p∗0∗L ∼= 0∗L.

Remark 4.8. It is clear from the definition that there is a natural bijection between Θ1-structures
on L and L−1.

Remark 4.9. Note that a line bundle L on G admits a Θ1-structure if and only if it is pulled
back from a line bundle on S via the structure map p.

When G is a generalized elliptic curve, Θ1-structures are unique when they exist.

Lemma 4.10. Suppose that G is a generalized elliptic curve. Then the set of Θ1-structures on a
line bundle L over G is either empty or consists of a single element.

Proof. The set of isomorphisms p∗0∗L ∼= L is a torsor for OG(G)×, whereas the set of iso-
morphisms 0∗p∗0∗L ∼= 0∗L is a torsor for OS(S)×. It therefore suffices to show that the map
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OG(G) → OS(S) induced by pulling back along the zero section is an isomorphism. This follows
from [Sta23, Tag 0E0L]. �

Now let E denote an even weakly periodic homotopy commutative ring spectrum, and
let GE = SpfE0(CP∞) denote the associated formal group over Spec π0E. We denote by
γ1 the canonical line bundle over CP∞ and let OGE

(1) denote the line bundle over GE

corresponding to

E0(Th(γ1)) ∼= Ẽ0(CP∞) ∼= ker(OGE

0∗−→ π0E).

Then we have the following theorem.

Proposition 4.11 [AHS01, Theorem 2.48]. There is a natural bijection between complex
orientations of E and Θ1-structures on OGE

(1).

Proof. Recall that a complex orientation of E consists of an element of Ẽ2(CP∞) which restricts
to the unit along the map Ẽ2(CP∞) → Ẽ2(CP1) ∼= π0E. Since the map E0(CP∞) → π0E is
an infinitesimal thickening, complex orientations of E may be identified with E0(CP∞)-module
isomorphisms E0(CP∞) ∼= Ẽ2(CP∞) that become equal to the canonical isomorphism Ẽ2(CP1) ∼=
π0E after tensoring down along E0(CP∞) → π0E.

By Remark 4.8, we may replace OGE
(1) with OGE

(1)−1 in the statement of the proposition.
To prove the proposition, it therefore suffices to identify the global sections of Θ1(OGE

(1)−1)
with Ẽ2(CP∞) and pullback along the zero section with Ẽ2(CP∞) → Ẽ2(CP1) ∼= π0E. This is
an immediate consequence of the definitions. �

Even though tmf1(n) is not weakly even periodic, Meier has shown that its complex
orientations may still be described in terms of Θ1-structures.

Proposition 4.12 [Mei21, Lemma 3.2]. There is a natural bijection between complex orienta-
tions of tmf1(n) and Θ1-structures on OĈ(1) over Ĉ → M1(n).

We now recall the treatment of Hirzebruch’s level n elliptic genus from [Mei21, § 3]. The
following proposition is a mild rephrasing of [Mei21, Lemma 3.3].

Proposition 4.13. Let P : M1(n) → Csm denote the universal level Γ1(n) structure.

(i) The pullback of the line bundle OC([0] − [P ]) on C to Ĉ is naturally isomorphic to OĈ(1).
(ii) There is a degree n étale cover q : C′ → C of generalized elliptic curves so that q∗OC([0] − [P ])

admits a (necessarily unique) Θ1-structure.

Since the induced map q̂ : Ĉ′ ∼−→ Ĉ is an isomorphism, we obtain a Θ1-structure on O
Ĉ
(1)

and, hence, by Proposition 4.12 a complex orientation of tmf1(n). This is the complex orientation
corresponding to the Hirzebruch level n elliptic genus.

4.3 Reduction to Lubin–Tate theory
Our goal in this section is to prove Proposition 4.16. This proposition implies that to verify the
Ando criterion for the Hirzebruch level n elliptic genus, it suffices to verify the Ando criterion
after composition with a map TMF1(n) → E(k,G) to a Lubin–Tate theory. This will be useful
to us because work of Ando, Hopkins, and Strickland [AHS04] rephrases the Ando criterion for
Lubin–Tate theories in terms of Θ1-structures.

We begin by recalling some basic facts about Lubin–Tate theories.

Recollection 4.14 (Goerss and Hopkins [GH04] and Lurie [Lur18b]). Let k denote a perfect field
of characteristic p > 0 and let G denote a formal group of finite height h over k. To the pair
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(k,G) one may associate an E∞-ring spectrum E(k,G), known as the Lubin–Tate spectrum of
(k,G). The ring π0E(k,G) is naturally isomorphic to the universal deformation ring of (k,G),
which is non-canonically isomorphic to W(k)[[u1, . . . , uh−1]]. We let Guniv denote the universal
deformation of G over π0E(k,G), and denote by ωGuniv its module of invariant differentials. There
are natural isomorphisms of π2iE(k,G) with ωi

Guniv .

Construction 4.15. Let k denote a perfect field of characteristic p > 0. Associated to a super-
singular k-point (E,α ∈ E[n](k)) of M1(n), there is a map of E∞-ring spectra TMF1(n) →
E(k, Ê). Indeed, this follows from the description of E(k, Ê) as an oriented deformation ring
[Lur18b, § 6], Lurie’s Serre–Tate theorem for strict abelian varieties [Lur18a, § 7], and the
universal property of TMF1(n).

Proposition 4.16. Let k denote a perfect field of characteristic p and let (E,α ∈ E[n](k))
denote an object of M1(n)(k) with E a supersingular elliptic curve. Then a complex orientation
of TMF1(n) satisfies the Ando criterion at p if and only if its composite with the canonical map
TMF1(n) → E(k, Ê) does.

Our proof of Proposition 4.16 rests on the following lemma.

Lemma 4.17. Let E → F denote a map of complex orientable homotopy commutative ring
spectra. Suppose that π∗E and π∗F are p-torsionfree and that the induced map π∗E/p→ π∗F/p
is an injection. Then the map E∗(BCp)/Itr → F ∗(BCp)/Itr is an injection.

Proof. Since π∗E is p-torsionfree, a choice of complex orientation gives rise to an isomorphism
(see [Qui71, Proposition 4.2]):

E∗(BCp)/Itr ∼= E∗[[t]]/〈p〉(t)

where |t| = 2, 〈p〉(t) = [p](t)/t, and [p](t) is the p-series of the formal group on E∗. Moreover,
since π∗E is p-torsionfree, we may identify tn−1E∗[[t]]/(〈p〉(t), tn) with a shift of E∗/p. The
analogous statements for F also hold.

Taking the induced complex orientation of F , we identify E∗(BCp)/Itr → F ∗(BCp)/Itr with
the natural map E∗[[t]]/〈p〉(t) → F ∗[[t]]/〈p〉(t). To show that this map is injective, it suffices to
show that it is injection on the associated graded for the t-adic filtration. This identifies with a
shift of the natural map E∗/p→ F ∗/p in each degree, which is an injection by hypothesis. �

Proof of Proposition 4.16. It is clear that if a complex orientation of TMF1(n) satisfies the Ando
criterion at p, so does the induced complex orientation of E(k, Ê). To prove the converse, it
suffices to show that the induced map

TMF1(n)∗(BCp)/Itr → E(k, Ê)∗(BCp)/Itr

is an injection. We begin by reducing to the case n ≥ 5. Any map Spec k → M1(n) fits into a
diagram
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for k′ a finite separable extension of k. It follows that there is a diagram

so that it suffices to show that

TMF1(n)∗(BCp)/Itr → TMF1(n2)∗(BCp)/Itr

and

TMF1(n2)∗(BCp)/Itr → E(k′, Êk′)∗(BCp)/Itr

are injective.
We may therefore assume that n ≥ 5 if we can show that the first map is an injection. Both

π∗TMF1(n) and π∗TMF1(n2) are p-torsionfree, and

π2iTMF1(n)/p ∼= Γ(M1(n)Fp , ω
i) → Γ(M1(n2)Fp , ω

i) ∼= π2iTMF1(n)/p

is an injection since M1(n2)Fp → M1(n)Fp is a finite étale cover. Therefore, we may apply
Lemma 4.17 to show that the first map above is an injection.

We may now assume that n ≥ 5, so that M1(n) is represented by an affine scheme Spec Rn
(see [Mei22a, Proposition 2.4(2)]). Let m ⊂ Rn denote the kernel of the map Rn → k. Then
Rn/m is a finite field (hence, perfect), and the pair (E,P ∈ E[n](k)) descends to Rn/m. As a
consequence, there is a factorization TMF1(n) → E(Rn/m, Ê) → E(k, Ê). It follows immediately
from Lemma 4.17 that the induced map

E(Rn/m, Ê)∗(BCp)/Itr → E(k, Ê)∗(BCp)/Itr

is an injection, so that it suffices to show that

TMF1(n)∗(BCp)/Itr → E(Rn/m, Ê)∗(BCp)/Itr

is an injection. To apply Lemma 4.17, we need to show that π∗TMF1(n)/p→ π∗E(Rn/m, Ê)/p
is an injection. By abuse of notation, we let ω denote the invertible Rn-module corresponding to
the line bundle ω on M1(n). Then the above map can be identified with the m-adic completion
map (ω∗/2/p) → (ω∗/2/p)∧m. This is an injection by the Krull intersection theorem, since M1(n)Fp

is an integral scheme. �

4.4 The Ando criterion and Θ1-structures
In this section, we recall from the work of Ando, Hopkins, and Strickland how the Ando criterion
for Lubin–Tate theories may be rephrased in terms of Θ1-structures. We refer the reader to
[AHS04] for proofs and further details. We then combine this rephrasing with Proposition 4.16
to prove that the Hirzebruch level n elliptic genus satisfies the Ando criterion. Finally, we deduce
from Theorem 1.4 that the Hirzebruch level n elliptic genus lifts uniquely up to homotopy to an
E∞-ring map

MU → TMF1(n).

We begin by recalling from [AHS04, § 14] how Θ1-structures may be normed along isogenies.

Recollection 4.18 [AHS04, § 14]. Suppose we are given an isogeny G→ G′ of formal groups or
elliptic curves. Given a line bundle L over G, there is a line bundle N(L) over G′, called the
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norm of L. Moreover, given a Θ1-structure s on L, there is an associated Θ1-structure N(s) on
N(L), called the norm of s.

Remark 4.19. Given an isogeny of formal groups G → G̃, there is a natural isomorphism of line
bundles N(OG(1)) ∼= O

G̃
(1).

Remark 4.20. Suppose that we are given an elliptic curve E with a point P of exact order n,
i.e. a level Γ1(n) structure, and an isogeny E → Ẽ of degree p coprime to n. Then the image P̃
of P in Ẽ is again a point of exact order n, and there is a natural isomorphism of line bundles
N(OE([0] − [P ])) ∼= O

Ẽ
([0] − [P̃ ]).

Following [AHS04], we may now use this language to rephrase the Ando criterion for
Lubin–Tate theory. We begin with some setup.

Recollection 4.21. Let k denote a perfect field of characteristic p > 0 and let G denote a formal
group of finite height over k, so that we have an associated Lubin–Tate theory E(k,G). Then there
are two ring maps i, ψ : π0E(k,G) → E(k,G)0(BCp)/Itr. The first, i, is induced by the projection
BCp → ∗. The second ψ, is the total power operation. Over the ring E(k,G)0(BCp)/Itr, there is
a degree p isogeny

i∗Guniv → ψ∗Guniv

induced by the total power operation on E(k,G)0(CP∞).

Given a Θ1-structure s on OGuniv(1), there are therefore two naturally induced Θ1-structures
on Oψ∗Guniv(1) ∼= N(Oi∗Guniv(1)): the pullback ψ∗(s) and the norm N(i∗(s)).

Definition 4.22. We say that a Θ1-structure s on Guniv satisfies the Ando criterion if ψ∗(s) =
N(i∗(s)).

It follows from [AHS04, § 5] that this is compatible with our previous definition of the Ando
criterion.

Proposition 4.23. A complex orientation of E(k,G) satisfies the Ando criterion if and only if
the associated Θ1-structure on O

G̃
(1) satisfies the Ando criterion.

We are now able to prove the main theorem of this section.

Theorem 4.24. The Hirzebruch level n elliptic genus MU → tmf1(n) → TMF1(n) satisfies the
Ando criterion. As a consequence of Theorem 1.4 and Remark 4.4, it lifts uniquely up to
homotopy to an E∞-complex orientation

MU → TMF1(n).

Proof. Choose, for each p not dividing n, (E,P ∈ E[n](k)) ∈ M1(n)(k) with E supersingular
and k a perfect field of characteristic p. By Proposition 4.16, it suffices to show that the induced
complex orientation of E(k, Ê) satisfies the Ando criterion.

By the Serre–Tate theorem [Kat81, § 1], π0E(k, Ê) is the universal deformation ring of
E. We let Euniv denote the universal deformation of E over π0E(k, Ê), and let P univ ∈
Euniv[n](π0E(k,G)) denote the unique lift of P . The associated formal group Êuniv is a universal
deformation of Ê.

Applying Proposition 4.23, we must show that the Θ1-structure s on O
Êuniv

(1) correspond-
ing to the level n elliptic genus satisfies the Ando criterion, i.e. that ψ∗(s) = N(i∗(s)). By the
definition of the level n elliptic genus, there is a degree n étale isogeny q : (Euniv)′ → Euniv and
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a Θ1-structure s on q∗OEuniv([0] − [P univ]) which induces s. By the Serre–Tate theorem, the
isogeny of formal groups

i∗Êuniv → ψ∗Êuniv

over E(k, Ê)0(BCp)/Itr lifts to the following diagram of isogenies of elliptic curves.

Let P univ denote the image of i∗(P univ) in ψ∗Euniv. From the above diagram, we obtain
Θ1-structures ψ∗(s) and N(i∗(s)) on

(qψ)∗Oψ∗Euniv([0] − [P univ]) ∼= N((qi)∗Oi∗Euniv([0] − [i∗(P univ)])).

As these induce ψ∗(s) and N(i∗(s)), it suffices to show that ψ∗(s) = N(i∗(s)). But this follows
immediately from the uniqueness of Θ1-structures over elliptic curves proven in Lemma 4.10. �

4.5 Lift to tmf1(n)
In this section, we will complete the proof of Theorem 1.7 by proving the following two lemmas.

Lemma 4.25. Suppose that we are given a complex orientation MU → Tmf1(n) with the
property that the composite

MU → Tmf1(n) → TMF1(n)

lifts to an E∞-ring map. Then this complex orientation lifts uniquely to an E∞-complex
orientation MU → Tmf1(n).

Lemma 4.26. Any E∞-complex orientation of Tmf1(n) lifts uniquely to an E∞-complex
orientation of tmf1(n).

Proof of Lemma 4.25. The uniqueness will follow from Theorem 3.1 and Example 3.3 once we
know that a complex orientation of Tmf1(n) is determined by the induced complex orientation
of TMF1(n). This follows from the fact that the map π∗Tmf1(n) → π∗TMF1(n) is injective in
even degrees by [Mei22b, Proposition 2.5] and the descent spectral sequence.

It therefore suffices to show that the E∞-map MU → TMF1(n) lifts to an E∞-map MU →
Tmf1(n). We begin with the pullback square of E∞-rings coming from [HL16]:

This square satisfies the following properties.

(i) The E∞-rings Kcusp
1 (n) and Δ−1Kcusp

1 (n) are Landweber exact and of height at most one.
(ii) The induced map π∗K

cusp
1 (n)/p→ π∗Δ−1Kcusp

1 (n)/p is injective for all p.

It follows that to construct an E∞-lifting MU → Tmf1(n), it suffices to lift the composite

MU → TMF1(n) → Δ−1Kcusp
1 (n)

to an E∞-map
MU → Kcusp

1 (n).
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By the uniqueness in Theorem 1.4 and (i) above, it suffices to lift the complex orientation
and verify that it satisfies the Ando criterion. However, we are given a lift of the complex
orientation by assumption, and it follows from Lemma 4.17 and (ii) above that it satisfies the
Ando criterion. �
Proof of Lemma 4.26. For this, we use orientation theory [ABGHR14]. We have the sequence of
maps

bu J−→ bgl1(S) → bgl1(tmf1(n)) → bgl1(Tmf1(n)),

and E∞-complex orientations of tmf1 and Tmf1(n) correspond to nullhomotopies of the respec-
tive composites. Since bu is 2-connective, we may as well replace all occurrences of bgl1 with
bsl1 := τ≥2bgl1.

Now, it follows from the definition of tmf1(n) (see [Mei21]) that the map tmf1(n) →
τ≥0Tmf1(n) fits into the following pullback square.

As a consequence, tmf1(n) → Tmf1(n) induces an isomorphism on πk for k ≥ 2. Since
π1tmf1(n) = 0, it follows that the composite

bsl1(tmf1(n)) → bsl1(Tmf1(n)) → τ≥3bsl1(Tmf1(n))

is an equivalence, so that there is a splitting

bsl1(Tmf1(n)) � bsl1(tmf1(n)) ⊕ Σ2π1Tmf1(n),

from which the lemma follows. �
Proof of Theorem 1.7. Combine Theorem 4.24 with Lemmas 4.25 and 4.26. �
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Appendix A. K(n)-localizations of Landweber exact ring spectra

In this appendix, we prove the following lemma, which the author was unable to find a reference
for in the literature.

Lemma A.1. Let E denote a Landweber exact ring spectrum whose homotopy is concentrated
in even degrees. Then LK(n)E is also a Landweber exact ring spectrum whose homotopy is
concentrated in even degrees.

Before we proceed to the proof of Lemma A.1, we need a lemma from commutative algebra.

Lemma A.2. Let R∗ denote a graded commutative ring and let x1, . . . , xn ∈ R∗ denote a reg-
ular sequence of homogeneous elements. Then the sequence x1, . . . , xn remains regular in the
completion (R∗)∧(x1,...xn).
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Proof. Let I = (x1, . . . xn). We claim that there are short exact sequences

0 → R∗/Ik−1 x1−→ R∗/Ik → R∗/(Ik + (x1)) → 0 (A.1)

for all k ≥ 1. Supposing this for the moment, we find by taking the limit that

0 → (R∗)∧I
x1−→ (R∗)∧I → (R∗/x1)∧I → 0

is short exact. In particular, we find that x1 is a regular element in (R∗)∧I and that (R∗)∧I /x1
∼=

(R∗/x1)∧I . Taking R∗/x1 as our new ring and the image of x2, . . . , xn in R∗/x1 as our exact
sequence, we may conclude by induction on the length of our regular sequence.

It remains to establish (A.1). It is sufficient to prove that (A.1) is exact on the associated
graded of the I-adic filtration where x1 is considered as a map of I-adic filtration degree 1. Since
x1, . . . , xn is regular, this associated graded may be identified with the sequence

which is easily verified to be short exact. �
Proof of Lemma A.1. By abuse of notation, we let vi ∈ π∗E inductively denote an arbitrary lift
of the class vi ∈ π∗E/(p, . . . , vi−1). Given a positive integer k, let Ik = (p, v1, . . . , vk−1) and let
I0 = (0). It follows from [HSt99, Proposition 7.10] that π∗LK(n)E ∼= (v−1

n π∗E)∧In . In particular,
π2∗−1LK(n)E = 0. It is clear that the operation of inverting v−1

n preserves Landweber exactness,
so that it suffices to prove that completion with respect to In does as well. However, this follows
immediately from Lemma A.2. �
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