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Abstract

Let Y be a compact Kähler normal space and let α ∈ H1,1
BC (Y ) be a Kähler class. We

study metric properties of the space Hα of Kähler metrics in α using Mabuchi geodesics.
We extend several results of Calabi, Chen, and Darvas, previously established when
the underlying space is smooth. As an application, we analytically characterize the
existence of Kähler–Einstein metrics on Q-Fano varieties, generalizing a result of Tian,
and illustrate these concepts in the case of toric varieties.

Introduction

Let Y be a compact Kähler manifold and αY ∈ H1,1(Y,R) a Kähler class. The space HαY of
Kähler metrics ωY in αY can be seen as an infinite dimensional Riemannian manifold, whose
tangent spaces TωYHαY can all be identified with C∞(Y,R). Mabuchi has introduced in [Mab87]
an L2-metric on HαY , by setting

〈f, g〉ωY :=

∫
Y
f g

ωY
n

VαY

,

where n = dimC Y and VαY =
∫
Y ωY

n = αnY denotes the volume of αY .
Mabuchi studied the corresponding geometry of HαY , showing, in particular, that it can

formally be seen as a locally symmetric space of non-positive curvature. Semmes [Sem92] re-
interpreted the geodesic equation as a complex homogeneous equation, while Donaldson [Don99]
strongly motivated the search for smooth geodesics through its connection with the uniqueness
of constant scalar curvature Kähler metrics.

In a series of remarkable works [Che00, CC02, CT08, Che09, CS12], Chen and his
collaborators have studied the metric and geometric properties of the space HαY , showing in
particular that it is a path metric space (a non-trivial assertion in this infinite-dimensional

setting). A key step from [Che00] has been the production of C1,1-geodesics, which turn out to
minimize the intrinsic distance d. Very recently, such a regularity result was improved by Chu
et al. [CTW17]: they showed that geodesics are C1,1. It follows from the work of Lempert and
Vivas [LV13], Darvas and Lempert [DL12], and Ross and Witt-Nyström [RW15] that one cannot
expect better regularity, but for the toric setting.

The metric study of the space (HαY , d) has been recently pushed further by Darvas [Dar17b,
Dar17c, Dar15]. He characterized there the metric completion of (HαY , d) and showed that such
a completion is non-positively curved in the sense of Alexandrov. He also introduced several
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Finsler-type metrics on HαY , which turn out to be quite useful (see [DR17, BBJ15]). For each
p > 1, we set

dp(φ0, φ1) := inf{`p(φ) | φ is a path joining φ0 to φ1}, ∀φ0, φ1 ∈ HωY , (1)

where

`p(φ) :=

∫ 1

0
|φ̇t|p dt =

∫ 1

0

(∫
Y
|φ̇t|p MA(φt)

)1/p

dt,

and MA(φt) := (ωY + ddcφt)
n/VαY . The goal of this article is to extend these studies to the case

when the underlying space has singularities.
From now on, let Y be a compact Kähler normal space and αY ∈ H1,1

BC (Y ) a Kähler class,

where H1,1
BC (Y ) denotes the Bott–Chern cohomology space. We fix a base point ωY representing

αY and work with the space of Kähler potentials

HωY := {φ ∈ C∞(Y,R) : ωY + ddcφ is a Kähler form}.

Our first main result extends the main results of [Che00] and [Dar15, Theorem 1], as follows.

Theorem A.

(i) (HωY , dp) is a metric space.

(ii) dp(φ0, φ1) = (
∫
Y |φ̇0|p MA(φ0))1/p = (

∫
Y |φ̇1|p MA(φ1))1/p, ∀φ0, φ1 ∈ HωY .

As we are going to discuss, in Remark 1.11, the singularities of Y prevent us from defining
the distance dp as in (1). We instead work on a resolution of Y and there define dp as a limit of
path length metrics. We refer to Definition 1.10 and Remark 1.14 for the precise definition of dp.

Following [Dar17c, Dar15] we then study the metric completion of the space (HαY , dp) and
establish the following generalization of [Dar15, Theorem 2].

Theorem B. Let Y be a projective normal variety and assume that ωY is a Hodge form. The
metric completion of (HωY , dp) is a geodesic metric space, which can be identified with the
finite-energy class (Ep(Y, ωY ), Ip).

Finite-energy classes have been introduced in [GZ07] and further studied in [BEGZ10, BBGZ13];
we recall their definition in § 2. The Mabuchi geodesics can be extended to finite-energy geodesics,
which are still metric geodesics. A key technical tool here is Theorem 3.6, which compares dp
and Ip, where

Ip(φ0, φ1) :=

(∫
Y
|φ0 − φ1|p

[
MA(φ0) + MA(φ1)

2

])1/p

.

This is a natural quantity which allows one to define the ‘strong topology’ on Ep(Y, ωY ).
The metric completion of (HαY , d) has been considered by Streets in his study of the Calabi

flow [Str16] and also plays an important role in recent works by Berman et al. [BBJ15] and
Berman et al. [BDL16]. There is no doubt that the extension to the singular setting will play
a leading role in subsequent applications. We illustrate this here by generalizing Tian’s analytic
criterion [Tia97, PSSW08], using results in [BBEGZ] and an idea in [DR17].

Theorem C. Let (Y,D) be a log Fano pair. It admits a unique Kähler–Einstein metric if and
only if there exists ε,M > 0, such that, for all φ ∈ Hnorm,

F(φ) 6 −εd1(0, φ) +M.
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Here, F is a functional whose critical points are Kähler–Einstein potentials (§ 5) and Hnorm

is the set of potentials in HωY normalized such that the supremum is 0. This result has been
independently obtained by Darvas [Dar17a] using a different approach.

Our results should also be useful in analyzing more generally constant scalar curvature Kähler
(cscK) metrics on mildly singular varieties (see, for example, the recent construction by Arezzo
and Spotti of cscK metrics on crepant resolutions of Calabi–Yau varieties with non-orbifold
singularities [AS16]).

A way to establish these results is to consider a resolution of singularities π : X → Y and
to work with the space Hω of potentials associated with the form ω = π∗ωY . All these results
actually hold in the more general setting when ω is merely a semi-positive and big form (i.e.∫
X ω

n > 0). We approximate Hω by spaces of Kähler potentials Hω+εωX and show that the most
important metric properties of (Hω+εωX , dε) pass to the limit.

The organization of the paper is as follows. Section 1 starts with a recap of Mabuchi geodesics
and metrics. Theorem A is proved in § 1.2, where we develop a low-regularity approach for
understanding geodesics by approximation. We introduce in § 2 classes of finite-energy currents
and compare their natural topologies with the one induced by the Mabuchi distances in § 3. We
study finite-energy geodesics in § 4 and prove Theorem B. We finally prove Theorem C in § 5.

1. The space of Kähler currents

Let (Y, ωY ) be a compact Kähler normal space of dimension n. It follows from the definition of
H1,1

BC (Y ) (see, for example, [BEG13, Definition 4.6.2]) that any other Kähler metric on Y in the
same Bott–Chern cohomology class of ωY can be written as

ωφ = ωY + ddcφ,

where d = ∂ + ∂ and dc = (1/2iπ)(∂ − ∂). Let HωY be the space of Kähler potentials

HωY = {φ ∈ C∞(Y,R);ωφ = ω + ddcφ > 0}.

This is a convex open subset of the Fréchet vector space C∞(Y ) := C∞(Y,R) and thus itself a
Fréchet manifold, which is, moreover, parallelizable:

THωY = HωY × C∞(Y ).

For any φ ∈ HωY , each tangent space TφHωY is identified with C∞(Y ).
As two Kähler potentials define the same metric when (and only when) they differ by an

additive constant, we set

HαY = HωY /R,

where R acts on HωY by addition. The set HαY is therefore the space of Kähler metrics on Y in
the cohomology class αY := {ωY } ∈ H1,1

BC (Y ).
In the whole article we fix π : X → Y a resolution of singularities and set ω = π∗ωY ,

α = π∗αY . Since α is no longer Kähler, we fix ωX a Kähler form on X and set

ωε := ω + εωX

for ε > 0. We will study the geometry and the topology of the spaces

Hα = π∗HαY and Hω = π∗HωY
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by approximating them by the spaces Hαε ,Hωε , where

Hωε := {ϕ ∈ C∞(X,R);ωε + ddcϕ > 0} and αε := {ωε}.

All the properties that we are going to establish actually hold for cohomology classes α
that are merely semi-positive and big (not necessarily the pull-back of a Kähler class under a
desingularization).

Our analysis will focus on the ample locus of α.

Definition 1.1. The ample locus Amp(α) of α is the Zariski open set of those points x ∈ X,
such that α can be represented by a positive closed (1, 1)-current that is a smooth positive form
near x.

We then let Hω denote the space of potentials ϕ ∈ C∞(X,R) such that ωϕ is a Kähler form
in Amp(α). In our main case of interest, i.e. when α = π∗αY for some Kähler class αY on a
normal space Y , the ample locus

Amp(α) = π−1(Y reg)

is the preimage of the set of regular points of Y .

1.1 The Riemannian structure
1.1.1 Mabuchi geodesics.

Definition 1.2 [Mab87]. The Mabuchi metric is the L2 Riemannian metric on Hω. It is defined
by

〈ψ1, ψ2〉ϕ =

∫
X
ψ1ψ2

(ω + ddcϕ)n

Vα
,

where ϕ ∈ Hω, ψ1, ψ2 ∈ C∞(X), and (ω + ddcϕ)n/Vα is the volume element, normalized so that
it is a probability measure. Here, Vα := αn =

∫
X ω

n.

In the following, we shall also use the notation ωϕ := ω + ddcϕ and

MA(ϕ) := V −1
α ωnϕ.

Geodesics between two points ϕ0, ϕ1 in Hω correspond to the extremals of the energy functional

ϕ 7→ H(ϕ) =
1

2

∫ 1

0

∫
X

(ϕ̇t)
2 MA(ϕt) dt,

where ϕ = ϕt is a smooth path in Hω joining ϕ0 and ϕ1. The geodesic equation is formally
obtained by computing the Euler–Lagrange equation for this energy functional (with fixed end
points). It is given by

ϕ̈MA(ϕ) =
n

Vα
dϕ̇ ∧ dcϕ̇ ∧ ωn−1

ϕ . (2)

We are interested in the boundary value problem for the geodesic equation: given ϕ0, ϕ1, two
distinct points in Hω, can one find a path (ϕ(t))06t61 in Hω which is a solution of (2) with end
points ϕ(0) = ϕ0 and ϕ(1) = ϕ1?

For each path (ϕt)t∈[0,1] in Hω, we set

ϕ(x, t+ is) = ϕt(x), x ∈ X, t+ is ∈ S = {z ∈ C : 0 < <(z) < 1};
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i.e. we associate with each path (ϕt) a function ϕ on the complex manifold M = X × S, which
only depends on the real part of the strip coordinate: we consider S as a Riemann surface
with boundary and use the complex coordinate z = t + is to parametrize the strip S. Set
ω(x, z) := ω(x).

Semmes observed [Sem92] that the path ϕt is a geodesic in Hω if and only if the associated
function ϕ on X ×S is a ω-psh solution of the homogeneous complex Monge–Ampère equation

(ω + ddcx,zϕ)n+1 = 0. (3)

This motivates the following.

Definition 1.3. The function

ϕ = sup{u ; u ∈ PSH(M,ω) and u 6 ϕ0,1 on ∂M}

is the Mabuchi geodesic joining ϕ0 to ϕ1.

Here PSH(M,ω) denotes the set of ω-psh functions on M : these are functions u : M →

R ∩ {−∞} that are locally the sum of a plurisubharmonic and a smooth function, such that
ω + ddcx,zu > 0 in the sense of currents (see § 2.1.1 for more details).

Proposition 1.4. Let (ϕt)06t61 be the Mabuchi geodesic joining ϕ0 to ϕ1. Then:

(i) ϕ ∈ PSH(M,ω) is uniformly bounded on M and continuous on Amp({ω})× S̄;

(ii) |ϕ(x, z)− ϕ(x, z′)| 6 A|<(z)−<(z′)| with A = ‖ϕ0 − ϕ1‖L∞(X);

(iii) ϕ|{<(z)=0} = ϕ0, ϕ|{<(z)=1} = ϕ1 and (ω + ddcx,zϕ)n+1 = 0.

It is, moreover, the unique bounded ω-psh solution to this Dirichlet problem.

We thank Hoang Chinh Lu for sharing his ideas on the continuity of ϕ.

Proof. The proof follows from a classical balayage technique together with a barrier argument,
as noted by Berndtsson [Ber15]. Set A = ‖ϕ1 − ϕ0‖L∞(X).

Observe that the function ϕ0 − At, with t = <(z), is ω-psh on M and ϕ0 − At|∂M 6 ϕ0,1.
Hence, it belongs to the family F defining the upper envelope ϕ, so ϕ0 −At 6 ϕt.

Similarly, ϕ0 + At is a ω-psh function on M and ϕ0 + At|∂M > ϕ0,1. Since (ω + ddcx,z(ϕ0 +
At))n+1 = 0, it follows from the maximum principle that u 6 ϕ0 + At, for any u ∈ F in the
family. Therefore,

ϕ0 −At 6 ϕt 6 ϕ0 +At.

Similar arguments show that

ϕ1 +A(t− 1) 6 ϕt 6 ϕ1 −A(t− 1).

The upper semi-continuous regularization ϕ∗ of ϕ satisfies the same estimates, showing, in
particular, that ϕ∗|∂M = ϕ0,1. Since ϕ∗ is ω-psh, we infer ϕ∗ ∈ F ; hence, ϕ∗ = ϕ. Thus ϕ is ω-psh
and uniformly bounded, proving the first statement in part (i). Classical balayage arguments show
that (ω + ddcx,zϕ)n+1 = 0, proving part (iii).

We now prove part (ii). Consider the function

χt(x) = max{ϕ0(x)−A log|z|, ϕ1(x) +A(log|z| − 1)}
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and note that it belongs to F and has the right boundary values.
Since χ− = ϕ0(x)−At 6 ϕ with equality at t = 0, we infer, for all x,

−A =
∂χ−
∂t |t=0

6 ϕ̇0(x).

Similarly χ+ = ϕ1(x) + A(t − 1) 6 ϕ with equality at t = 1 yields, for all x, ϕ̇1(x) 6 +A =
(∂χ+/∂t)|t=1. Since t 7→ ϕt(x) is convex (by subharmonicity in z), we infer that for a.e. t, x,
−A 6 ϕ̇0(x) 6 ϕ̇t(x) 6 ϕ̇1(x) 6 +A.

It remains to show that ϕ is continuous on Amp({ω}) × S̄. We can assume, without loss
of generality, that ϕ0 < ϕ1. Indeed, given any ϕ0, ϕ1 ∈ Hω, there exists C > 0, such that
ϕ0 < ϕ1 + C. By Lemma 1.8, the Mabuchi geodesic joining ϕ0 and ϕ1 + C is ψt = ϕt + Ct,
t ∈ [0, 1]. The continuity of (x, t) → ψt(x) will then imply the continuity of (x, t) → ϕt(x).

We change notation slightly, replacing the strip S by the annulus D := {z = et+is ∈ C : 1 6
|w| 6 e}. We are going to express the function ϕ as a global Θ-psh envelope on the compact
manifold X × P1, where we view the annulus D as a subset of the Riemann sphere, C ⊂ P1 =
C ∪ {∞}. The form Θ(x, z) = ω(x) + AωFS(z) is a semi-positive and big form on the compact

Kähler manifold M̃ := X × P1, so the viscosity approach of [EGZ17] can be applied, showing
that the envelope ϕ is continuous on Amp({ω})× S̄. Here, ωFS denotes the Fubini–Study metric
on P1 and A > 0 is a constant to be chosen next.

Consider U = max(U0, U1), where U0(x, z) := ϕ0(x) and

U1(x, z) := ϕ1(x) +A(log|z|2 − log(|z|2 + 1) + log(e2 + 1)− 2).

We choose A > 0 so large that U(x, 1) ≡ ϕ0(x). Note that U(x, e) ≡ ϕ1(x) since ϕ0 < ϕ1. Both

U0 and U1 are Θ-psh on M̃ , hence so is U .
Fix ρ a local potential of AωFS inD, such that ρ|∂D = 0 and let F be a continuous S1-invariant

function on M̃ , such that:

(a) F = ϕ0,1 on X × ∂D;

(b) F (x, z) > U(x, z) > ϕ0(x);

(c) F (x, z) + ρ(z) > ϕt(x) in X ×D, with t = log |z|.
We let the reader check that the function F = U in M̃\X ×D and

F (x, z) := (1− log|z|)ϕ0(x) + (log|z|)ϕ1(x)− ρ(z) + (log|z|)(1− log|z|),

for (x, z) ∈ X ×D, does the job.
We claim that for all (x, z) ∈ X ×D,

PΘ(F )(x, z) + ρ(z) = ϕlog|z|(x) ,

where
PΘ(F ) := sup{v : v ∈ PSH(M̃,Θ) and v 6 F}.

Indeed PΘ(F )+ρ is ω-psh in X×D and has boundary values 6ϕ0,1. It follows from the definition
of the geodesic that PΘ(F ) + ρ 6 ϕt. Conversely, F + ρ > U + ρ ∈ PSH(X ×D,ω) and U = ϕ0,1

on ∂M , thus PΘ(F ) + ρ = ϕ0,1 on ∂M . Condition (c) ensures that M = X ×D does not meet
the contact set {PΘ(F ) = F}, since F + ρ > ϕt > PΘ(F ) + ρ. It thus follows from a balayage
argument [BT82] that (Θ + ddcPΘ(F ))n+1 = 0 in M , and the maximum principle yields

PΘ(F ) + ρ = ϕt.
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The continuity of ϕ on Amp({ω})×S̄ now follows from [EGZ17], together with the following easy

observation: the arguments in [EGZ17, § 2.2] ensure that if F is a smooth function on M̃ , PΘ(F )
is a Θ-psh function, continuous on Amp({Θ}). The same result holds if F is merely continuous.

Indeed, let Fj be a sequence of smooth functions on M̃ converging uniformly to F . Taking the
envelope at both sides of the inequality Fj 6 F + ‖Fj − F‖L∞(X), we get PΘ(Fj) 6 PΘ(F ) +
‖Fj − F‖L∞(X). Hence, ‖PΘ(Fj) − PΘ(F )‖L∞(X) 6 ‖Fj − F‖L∞(X). Thus, PΘ(Fj) converges
uniformly to PΘ(F ), and so PΘ(F ) is a Θ-psh function that is continuous on Amp({Θ}) =
Amp({ω})× S̄. 2

Remark 1.5. If one could choose F smooth in this proof, it would follow from [BD12] (or [Ber13,
Theorem 1.2]) that ϕ ∈ C1,1̄(Amp(α) × S). This would also provide a compact proof of Chen’s
regularity result.

We now observe that geodesics in Hω are projections of those in Hωε ,

Proposition 1.6. Let ϕ denote the geodesic joining ϕ0 to ϕ1 in Hω and let ϕε denote the
corresponding geodesic in the space Hωε . The map ε 7→ ϕε is increasing and ϕε decreases to ϕ
as ε decreases to zero. Moreover,

ϕ = P (ϕε),

where P denotes the projection operator onto the space PSH(M,ω).

Recall that, for an upper semi-continuous function u : M → R, its projection P (u) is defined
by

P (u) := sup{v ∈ PSH(M,ω); v 6 u}.
The function P (u) is either identical to −∞ or belongs to PSH(M,ω). It is the greatest ω-psh
function on M that lies below u.

Proof. Set ψ := P (ϕε). Since ω 6 ωε, it follows from the envelope point of view that ϕ 6 ϕε.
Thus, ϕ = P (ϕ) 6 P (ϕε) = ψ and ψ ∈ PSH(M,ω). Now ψ 6 ϕ, since ψ 6 ϕε = ϕ0, ϕ1 on ∂M
and ψ ∈ PSH(M,ω). Thus, ψ = P (ϕε) = ϕ.

Fix ε′ 6 ε. The inclusion PSH(M,ωε′) ⊂ PSH(M,ωε) implies similarly that ϕ 6 ϕε
′
6 ϕε.

The decreasing limit v of ϕε, as ε decreases to zero, satisfies both ϕ 6 v and v ∈ PSH(M,ω)
with boundary values ϕ0, ϕ1, thus v = ϕ. 2

It will also be interesting to consider subgeodesics.

Definition 1.7. A subgeodesic is a path (ϕt) of functions in Hω (or in larger classes of ω-psh
functions) such that the associated function is a ω-psh function on X × S.

We shall soon need the following simple observation.

Lemma 1.8. Fix c ∈ R, ϕ,ψ ∈ Hω and let (ϕt)06t61 denote the Mabuchi geodesic joining ϕ = ϕ0

to ϕ1 = ψ. Then ψt(x) := ϕt(x)−ct, 0 6 t 6 1, x ∈ X, is the Mabuchi geodesic joining ϕ to ψ−c.

Proof. The proof follows from Definition 1.3 and the definition of envelopes, since sup{v; v ∈
PSH(M,ω) and v 6 ϕ, v 6 ψ − c on ∂M} = ϕt − ct. 2
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1.1.2 Mabuchi and other Finsler distances. When ω is Kähler, the length of a smooth path
(ϕt)t∈[0,1] in Hω is defined in a standard way,

`(ϕ) :=

∫ 1

0
|ϕ̇t| dt =

∫ 1

0

√∫
X
ϕ̇2
t MA(ϕt) dt.

The distance between two points in Hω is then

d(ϕ0, ϕ1) := inf{`(ϕ) | ϕ is a smooth path joining ϕ0 to ϕ1}.
It is easy to verify that d defines a semi-distance (i.e. non-negative, symmetric, and satisfying

the triangle inequality). It is, however, non-trivial to check that d is non-degenerate (see [MM05]
for a striking example).

Observe that d induces a distance on Hα (that we abusively still denote d) compatible with
the Riemannian splitting Hω = Hα × R, by setting

d(ωϕ, ωψ) := d(ϕ,ψ)

whenever the potentials ϕ,ψ of ωϕ, ωψ are normalized by E(ϕ) = E(ψ) = 0 (see § 2.2.1 for the
definition of the functional E).

It is rather easy to check that (Hα, d) is not a complete metric space. We shall describe the
metric completion (Hα, d) in § 4. Following Darvas [Dar15], we introduce a family of distances
that generalize d:

Definition 1.9. For p > 1 and ω Kähler, we set

dp(ϕ0, ϕ1) := inf{`p(ϕ) | ϕ is a smooth path joining ϕ0 to ϕ1},

where `p(ϕ) :=
∫ 1

0 |ϕ̇t|p dt =
∫ 1

0 (
∫
X |ϕ̇t|p MA(ϕt))

1/p dt.

Note that d2 = d is the Mabuchi distance. Mabuchi geodesics have constant speed with
respect to all the Finsler structures `p, as was observed by Berndtsson [Ber09, Lemma 2.1]: for
any C1-function χ,

t 7→
∫
X
χ(ϕ̇t) MA(ϕt)

is constant along a geodesic. Indeed

d

dt

∫
X
χ(ϕ̇t) MA(ϕt) =

∫
X
χ′(ϕ̇t)ϕ̈t MA(ϕt) +

n

Vα

∫
X
χ(ϕ̇t) dd

cϕ̇t ∧ ωn−1
ϕt

=

∫
X
χ′(ϕ̇t)

{
ϕ̈t MA(ϕt)−

n

Vα
dϕ̇t ∧ dcϕ̇t ∧ ωn−1

ϕt

}
= 0

since ϕ̈t MA(ϕt) − (n/Vα) dϕ̇t ∧ dcϕ̇t ∧ ωn−1
ϕt

= 0. Applying this observation to χ(t) = tp shows
that Mabuchi geodesics have constant `p-speed.

When ω is merely semi-positive, there are fewer smooth paths within Hω. It is natural to
consider smooth paths in Hωε and pass to the limit in the previous definitions.

Definition 1.10. Assume ω is semi-positive and big. Let ϕ0, ϕ1 ∈ Hω. We define the Mabuchi
distance between ϕ0 and ϕ1 as

dp(ϕ0, ϕ1) := lim inf
ε→0

dp,ε(ϕ0, ϕ1),

where dp,ε is the distance with respect to the Kähler form ωε := ω + εωX .
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The metric space of Kähler currents

We will show in Theorem 1.13 that it is a distance, which moreover does not depend on the
way we approximate ω by Kähler classes.

Remark 1.11. For any smooth path ψ : [0, 1] → Hω, we can still define

`p(ψ) :=

∫ 1

0

(
1

V

∫
X
|ψ̇t|p(ω + ddcψt)

n

)1/p

dt

when ω is merely semi-positive. Since PSH(M,ω) ⊂ PSH(M,ωε), ψt is both in Hω and Hωε .
Observe that

V −1
ε

∫
X
|ψ̇t|p(ωε + ddcψt)

n = V −1
ε

∫
X
|ψ̇t|p(ω + ddcψt + εωX)n

6 V −1

∫
X
|ψ̇t|p(ω + ddcψt)

n +Aε,

hence
`p,ε(ψ) 6 `p(ψ) +A′ε ,

where `p,ε denotes the length in Hωε . We infer

dp(ϕ0, ϕ1) 6 inf{`p(ψ) ψ smooth path joining ϕ0 and ϕ1 in Hω}.

The converse inequality is, however, unclear, owing to the lack of positivity of ω: it is difficult to
smooth out ω-psh functions if ω is not Kähler. This partially explains Definition 1.10.

1.2 Approximation by Kähler classes
Fix ϕ0, ϕ1 ∈ Hω. We let (ϕt)06t61 denote the Mabuchi geodesic in Hω joining ϕ0 to ϕ1.

Definition 1.12. For t = 0, 1 we set

I(t) :=

∫
X
|ϕ̇t|p MA(ϕt).

Theorem 1.13. Set ωε = ω + εωX , ε > 0. Then limε→0 dp,ωε(ϕ0, ϕ1) exists and is independent
of ωX . More precisely,

dpp,ε(ϕ0, ϕ1) → I(0) = I(1).

In particular, dp(ϕ0, ϕ1) = I(0)1/p = I(1)1/p defines a distance on Hω.

In the definition of I(0), I(1), the time derivatives ϕ̇0 = ϕ̇+
0 , ϕ̇1 = ϕ̇−1 denote the right and

left derivatives, respectively.

Remark 1.14. When ω = π∗ωY , for some Kähler form ωY on a compact normal space Y , for
each p > 1 and ∀φ0, φ1 ∈ HωY , we define

dp(φ0, φ1) := dp(ϕ0, ϕ1) where ϕ0 = π∗φ0, ϕ1 = π∗φ1.

This definition does not depend on the choice of resolution. Indeed, let π′ : X ′ → Y be another
resolution of Y that dominates X, i.e. there exists a holomorphic and bimeromorphic map
f : X ′ → X, such that π′ = π ◦ f . Set ω′ := π′∗ωY = f∗ω. We need to show that

dp,ω(ϕ0, ϕ1) = dp,f∗ω(f∗ϕ0, f
∗ϕ1).
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Denote by ψt the f∗ω-geodesic joining f∗ϕ0 and f∗ϕ1. We claim that ψt = f∗ϕt. We first observe
that, since ψt is a f∗ω-psh function for each fixed t, ψt = f∗γt, where γt is a ω-psh function on X.
Set M ′ := X ′×S, ψ(x′, t) := ψt(x

′), and γ(x′, t) := γt(x
′) for each (x′, t) ∈M ′. By construction,

we have that

f∗(ω + ddcγ)n+1 = (f∗ω + ddcψ)n+1 = 0 on M ′ := X ′ × S, ψ|∂M ′ = f∗ϕ0,1.

The claim follows from the uniqueness of the solution of the Dirichlet problem in Proposition 1.4.
The invariance of the non-pluripolar Monge–Ampère measure under bimeromorphic maps
[DiN15], together with the fact that V :=

∫
X ω

n =
∫
X′ f

∗ω, give∫
X
|ϕ̇0|p

(ω + ddcϕ0)n

V
=

∫
X′
| ˙f∗ϕ0|p

(f∗ω + ddcf∗ϕ0)n

V
=

∫
X′
|ψ̇0|p

(ω′ + ddcϕ0)n

V
.

The conclusion then follows from Theorem 1.13.

Proof. Observe that ϕ0, ϕ1 ∈ Hωε and let ϕεt be the corresponding geodesic. It follows from
[Dar15, Theorem 3.5] that

dpp,ε(ϕ0, ϕ1) = V −1
ε

∫
X
|ϕ̇ε0|p(ωε + ddcϕ0)n.

Now observe that

ϕ̇+
0 6 ϕ̇ε0 6

ϕεt − ϕ0

t
∀t ∈ (0, 1),

where the first inequality follows from the fact that ε → ϕεt is decreasing (Proposition 1.6), while
the second uses the convexity of t 7→ ϕεt . Thus,

|ϕ̇ε0 − ϕ̇+
0 | 6

∣∣∣∣ϕεt − ϕ0

t
− ϕ̇+

0

∣∣∣∣.
Letting ε↘ 0 and then t → 0 shows that |ϕ̇ε0 − ϕ̇+

0 | converges pointwise to zero. Moreover,
(ωε+ddcϕ0)n = fε dV where dV is the Lebesgue measure and fε > 0 are smooth densities, which
converge locally uniformly to f > 0 with (ω + ddcϕ0)n = f dV . The dominated convergence
theorem thus yields

lim
ε→0

dpp,ε(ϕ0, ϕ1) = V −1

∫
X
|ϕ̇+

0 |p(ω + ddcϕ0)n = I(0).

The argument for I(1) is similar.
This shows, in particular, that dp is a distance on Hω: if dp(ϕ0, ϕ1) = 0, then I(0) = I(1) = 0,

hence, ϕ̇0(x) = ϕ̇1(x) = 0 for a.e. x ∈ X, which implies ϕ̇t(x) = 0 for a.e. x ∈ X, by convexity of
t 7→ ϕt(x). Thus, ϕ0(x) = ϕ1(x) for a.e. x ∈ X. 2

We now extend the definition of the distance dp for bounded ω-psh potentials.

Definition 1.15. Let ϕ0, ϕ1 ∈ PSH(X,ω) ∩ L∞(X); then

dp(ϕ0, ϕ1) := lim inf
ε→0

lim inf
j,k→+∞

dp,ε(ϕ
j
0, ϕ

k
1) = lim inf

ε→0
dp,ε(ϕ0, ϕ1),

where ϕj0, ϕ
k
1 are smooth sequences of ωε-psh functions decreasing to ϕ0 and ϕ1, respectively.
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Observe that dp,ωε(ϕ0, ϕ1) is well defined for potentials in Ep(X,ωε) [Dar15], and so, in
particular, for bounded ωε-psh functions.

Proposition 1.16. Let ϕ0, ϕ1 ∈ PSH(X,ω) ∩ L∞(X). The limit of dp,ωε(ϕ0, ϕ1) as ε goes to
zero exists and does not depend on the choice of ωX .

Proof. First, observe that since ϕ0, ϕ1 are bounded, they belong to Ep(X,ωε) for any 0 6 ε 6 1.
By [Dar15, Corollary 4.14] we know that the Pythagorean formula holds true, i.e.

dpp,ε(ϕ0, ϕ1) = dpp,ε(ϕ0, ϕ0 ∨ε ϕ1) + dpp,ε(ϕ0 ∨ε ϕ1, ϕ1),

where ψ := ϕ0 ∨ε ϕ1 is the greatest ωε-psh function that lies below min (ϕ0, ϕ1). Fix ε 6 ε′. We
claim that

Vεd
p
p,ε(ϕ0, ψ) 6 Vε′d

p
p,ε′(ϕ0, ψ) and Vεd

p
p,ε(ψ,ϕ1) 6 Vε′d

p
p,ε′(ψ,ϕ1).

Let ψεt , ψ
ε′
t denote the ε-geodesic and the ε′-geodesic, both joining ψ and ϕ0. Since ε → ψεt is

increasing (Proposition 1.6), we have that, for any t ∈ (0, 1)

ψεt − ψ
t

6
ψε
′
t − ψ
t

,

which implies ψ̇ε0 6 ψ̇ε
′

0 . Moreover, observe that, since ϕ0(x) > ψ(x) for all x ∈ X, Lemma 3.3
yields ψ̇ε0(x) > 0 for all x ∈ X. It then follows that∫

X
|ψ̇ε0|p(ωε + ddcψ)n 6

∫
X
|ψ̇ε′0 |p(ωε′ + ddcψ)n,

hence the claim. The same type of arguments give Vεd
p
p,ε(ψ,ϕ1) 6 Vε′d

p
p,ε′(ψ,ϕ1). Hence,

VεV
−1
ε′ d

p
p,ε(ϕ0, ϕ1) 6 dpp,ε′(ϕ0, ϕ0 ∨ε ϕ1) + dpp,ε′(ϕ0 ∨ε ϕ1, ϕ1).

Using again [Dar15, Corollary 4.14] and the triangle inequality we get

VεV
−1
ε′ d

p
p,ε(ϕ0, ϕ1) 6 dpp,ε′(ϕ0, ϕ1) + 2dpp,ε′(ϕ0 ∨ε ϕ1, ϕ0 ∨ε′ ϕ1).

Moreover, since ϕ0 ∨ε′ ϕ1 > ϕ0 ∨ε ϕ1, [Dar15, Lemma 5.1] yields

dpp,ε′(ϕ0 ∨ε ϕ1, ϕ0 ∨ε′ ϕ1) 6
1

Vε′

∫
X

(ϕ0 ∨ε′ ϕ1 − ϕ0 ∨ε ϕ1)p (ωε′ + ddc(ϕ0 ∨ε ϕ1))n

6
1

Vε′

∫
X

(ϕ0 ∨ε′ ϕ1 − ϕ0 ∨ε ϕ1)p (ω + ωX + ddc(ϕ0 ∨ε ϕ1))n

:= V −1
ε′ η(ε, ε′).

Observe that η(ε, ε′) converges to 0 as ε′ goes to 0. From above, we have

Vεd
p
p,ε(ϕ0, ϕ1) 6 Vε′d

p
p,ε′(ϕ0, ϕ1) + η(ε, ε′).

Hence, the limit exists.
Now, let ωX , ω̃X be two Kähler metrics on X, such that

ωX 6 ω̃X 6 CωX
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for some C > 0. Assume first ϕ0 6 ϕ1. Set ω̃ε := ω+ εω̃X and observe that ωε 6 ω̃ε 6 ωε′ , where
ε′ = εC. Let ϕεt , ϕ̃

ε
t be the geodesic with respect to ωε and ω̃ε, respectively, and observe that

ϕεt 6 ϕ̃εt 6 ϕε
′
t . The same arguments as before give

|ϕ̇ε0|p 6 | ˙̃ϕε0|p 6 |ϕ̇ε
′

0 |p ,

hence ∫
X
|ϕ̇ε0|p(ωε + ddcϕ0)n 6

∫
X
| ˙̃ϕε0|p(ω̃ε + ddcϕ0)n 6

∫
X
|ϕ̇ε′0 |p(ωε′ + ddcϕ0)n.

The latter tells us that the limit does not depend on ωX . To get rid of the assumption ϕ0 6 ϕ1,
one can use the Pythagorean formula, as before. 2

An adaptation of the classical Perron envelope technique yields the following result of
Berndtsson [Ber15].

Proposition 1.17. Assume that ϕ0, ϕ1 are bounded ω-psh functions. Then

ϕ(x, z) := sup
{
u(x, z) | u ∈ PSH(X × S, ω) with lim

t→0,1
u 6 ϕ0,1

}
is the unique bounded ω-psh function on X × S, which is the solution of the Dirichlet problem
ϕ|X×∂S = ϕ0,1, with

(ω + ddcx,zϕ)n+1 = 0 in X × S.
Moreover ϕ(x, z) = ϕ(x, t) only depends on <(z) and |ϕ̇| 6 ‖ϕ1 − ϕ0‖L∞(X).

The proof goes exactly as that of Proposition 1.4. The function ϕ (or rather the path
ϕt ⊂ PSH(X,ω)∩L∞(X)) is called a bounded geodesic in [Ber15]. We use the same terminology
here, as it turns out that bounded geodesics are geodesics in the metric sense.

Proposition 1.18. Bounded geodesics are metric geodesics. More precisely, if ϕ0, ϕ1 are
bounded ω-psh functions and ϕ(x, z) = ϕt(x) is the bounded geodesic joining ϕ0 to ϕ1, then
for all t, s ∈ [0, 1],

dp(ϕt, ϕs) = |t− s| dp(ϕ0, ϕ1).

Proof. Let ϕj0, ϕ
k
1 ∈ Hωε be sequences decreasing, respectively, to ϕ0, ϕ1. It follows from the

comparison principle and the uniqueness in Proposition 1.17 that ϕt,j decreases to ϕt as j
increases to +∞. From Definition 1.15, Proposition 1.16 and the fact that the identity in the
statement holds in the Kähler setting for dε we obtain

dp(ϕt, ϕs) = lim inf
ε→0

lim inf
j,k→+∞

dp,ε(ϕt,j , ϕs,k)

= |t− s| lim inf
ε→0

lim inf
j,k→+∞

dp,ε(ϕ
j
0, ϕ

k
1) = |t− s|dp(ϕ0, ϕ1). 2

Remark 1.19. One can no longer expect that dp(ϕ0, ϕ1)p =
∫
X |ϕ̇t|p MA(ϕt) for a.e. t ∈ [0, 1],

as simple examples show. One can, e.g., take ϕ0 ≡ 0 and ϕ1 = max(u, 0), where u takes
positive values, has isolated singularities, and solves MA(u) = Dirac mass at some point: in
this case MA(ϕ1) is concentrated on the contact set (u = 0) while ϕ̇1 ≡ 0 on this set, hence∫
X |ϕ̇1|p MA(ϕ1) = 0. We thank Darvas for pointing this out to us.
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As this remark points out, we do not have that dpp(ϕ0, ϕ1) = I(0) = I(1) when ϕ0, ϕ1 are just
bounded ω-psh functions. Nevertheless, we can still recover the formula in some special cases.

We start by recalling the following.

Theorem 1.20. Let f be a continuous function, such that ddcf 6 CωX on X, for some C > 0.
Then P (f) has bounded Laplacian on Amp({ω}) and

(ω + ddcPω(f))n = 1{Pω(f)=f}(ω + ddcf)n. (4)

The fact that P (f) has a locally bounded Laplacian in Amp({ω}) is essentially [Ber13,
Theorem 1.2]. We do not assume here that f is smooth but one can check that the upper
bound on ddcf is the only estimate needed to pursue Berman’s approach. One can then argue
as in [GZ17, Theorem 9.25] to get (4).

Set

Hbd := {ϕ ∈ PSH(X,ω) ∩ L∞(X), ϕ = Pω(f) for some f ∈ C0(X) with ddcf 6 CωX , C > 0}.

Theorem 1.21. Assume that ϕ0, ϕ1 ∈ Hbd. Let ϕt be the Mabuchi geodesic joining ϕ0 and ϕ1.
Then

dpp(ϕ0, ϕ1) =

∫
X
|ϕ̇0|p MA(ϕ0) =

∫
X
|ϕ̇1|p MA(ϕ1). (5)

Proof. Set ϕ0,ε := Pωε(f0) and ϕ1,ε := Pωε(f1). Clearly, ϕi,ε decreases pointwise to ϕi, i = 1, 2.
Let ϕεt be the ωε-geodesic joining ϕ0,ε and ϕ1,ε. Combining [Dar15, Theorem 3.5] with (4), we
get

Vεd
p
p,ε(ϕ0,ε, ϕ1,ε) =

∫
X
|ϕ̇ε0|p(ωε + ddcϕ0,ε)

n =

∫
{ϕ0,ε=f0}

|ϕ̇ε0|p(ωε + ddcf0)n.

Set Dε := {ϕ0,ε = f0}, D0 := {ϕ0 = f0}, and observe that D0 ⊆ Dε. Since ϕ0,ε = Pωε(f) and
ϕ0 = Pω(f), Theorem 1.20 ensures that (ωε + ddcϕ0,ε)

n = gεω
n
X and (ω+ ddcϕ0)n = g0ω

n
X where

gε, g0 are defined as

gε :=


0, x /∈ Dε,

(ωε + ddcf0)n

ωnX
, x ∈ Dε,

g0 :=


0, x /∈ D0,

(ω + ddcf0)n

ωnX
, x ∈ D0.

We claim that gε converges pointwise to g0. Indeed, when x ∈ D0 ⊆ Dε, then gε(x) =
((ωε + ddcf0)n/ωnX)(x) converges to ((ω + ddcf0)n/ωnX)(x) = g0(x) as ε goes to 0. In the case
when x /∈ D0, i.e. ϕ0(x) < f0(x), since ϕε(x) decreases to ϕ0(x) as ε goes to zero, we can
infer that, for ε sufficiently small, we still have ϕε(x) < f0(x), which means x /∈ Dε. Hence,
gε(x) = 0 = g0(x). The claim is then proved.

Since 1Dεϕ
ε
0 = f0 = 1D0ϕ0, the same arguments in Theorem 1.13 show that |1Dεϕ̇

ε
0−1D0ϕ̇0|

converges pointwise to 0 as ε goes to zero.
We thus infer that 1Dε |ϕ̇ε0|pgε converges pointwise to 1D0 |ϕ̇0|pg0 as ε → 0. The dominated

convergence theorem yields

lim
ε→0

dpp,ε(ϕ0, ϕ1) = lim
ε→0

∫
X

1Dε |ϕ̇ε0|p(ωε + ddcϕ0,ε)
n =

∫
X

1D0 |ϕ̇0|p(ω + ddcϕ0)n,

hence the conclusion. 2
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Observe that if ϕ0, ϕ1 ∈ Hω, then ϕ0 ∨ ϕ1 ∈ Hbd. Indeed, since ϕ0, ϕ1 are smooth, the
functions −ϕ0,−ϕ1 are quasi-plurisubharmonic, i.e. there exists C > 0 such that ddc(−ϕi) >
−CωX for any i = 1, 2. Thus, min(ϕ0, ϕ1) = −max(−ϕ0,−ϕ1) is such that

ddc min(ϕ0, ϕ1) = −ddc max(−ϕ0,−ϕ1) 6 CωX .

In particular, (5) holds for dp(ϕ0, ϕ0 ∨ ϕ1) and dp(ϕ1, ϕ0 ∨ ϕ1).

2. Finite-energy classes

We define in this section the set E(α) (respectively Ep(α)) of positive closed currents T = ω +
ddcϕ with full Monge–Ampère mass (respectively finite weighted energy) in α, by defining the
corresponding class E(X,ω) (respectively Ep(X,ω)) of finite-energy potentials ϕ.

2.1 The space E(α)
2.1.1 Quasi-plurisubharmonic functions. Recall that a function is quasi-plurisubharmonic if

it is locally given as the sum of a smooth and a psh function. In particular quasi-psh (qpsh for
short) functions are upper semi-continuous and integrable.

Definition 2.1. We let PSH(X,ω) denote the set of all ω-plurisubharmonic functions. These
are quasi-psh functions ϕ : X → R ∪ {−∞} such that

ω + ddcϕ > 0

in the weak sense of currents.

The set PSH(X,ω) is a closed subset of L1(X), for the L1-topology.

2.1.2 The class E(X,ω). Given ϕ ∈ PSH(X,ω), we consider

ϕj := max(ϕ,−j) ∈ PSH(X,ω) ∩ L∞(X).

It follows from the Bedford–Taylor theory [BT82] that the MA(ϕj) are well-defined probability
measures. Moreover, the sequence µj := 1{ϕ>−j}MA(ϕj) is increasing [GZ07, p. 445]. Since the
µj all have total mass bounded from above by 1, we consider

µϕ := lim
j→+∞

µj ,

which is a positive Borel measure on X, with total mass 6 1.

Definition 2.2. We set

E(X,ω) := {ϕ ∈ PSH(X,ω) | µϕ(X) = 1}.

For ϕ ∈ E(X,ω), we set MA(ϕ) := µϕ.

The latter can be characterized as the largest class for which the complex Monge–Ampère
mass is well defined and the maximum principle holds [GZ07, Theorem 1.5]. We further note
that the domination principle holds ([BEGZ10, Corollary 2.5], [DDL18, Proposition 2.4]).
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Proposition 2.3. If ϕ,ψ ∈ E(X,ω) are such that

ϕ(x) 6 ψ(x) for MA(ψ)-a.e. x,

then ϕ(x) 6 ψ(x) for all x ∈ X.

It follows from the ∂∂-lemma that any positive closed current T ∈ α can be written
T = ω + ddcϕ for some function ϕ ∈ PSH(X,ω) that is unique up to an additive constant.

Definition 2.4. We let E(α) denote the set of all positive currents in α, T = ω + ddcϕ, with
ϕ ∈ E(X,ω).

Note that this definition does not depend on the choice of ω, nor does it depend on the choice
of ϕ.

2.2 The class E1(X,ω)
2.2.1 The Aubin–Mabuchi functional. Each tangent space TϕHω admits the following

orthogonal decomposition

TϕHω = {ψ ∈ C∞(X);βϕ(ψ) = 0} ⊕ R,

where β = MA is the 1-form defined on H by

βϕ(ψ) =

∫
X
ψMA(ϕ).

It is a classical observation of Mabuchi that the 1-form β is closed. Therefore, there exists
a unique function E defined on the convex open set Hω, such that β = dE and E(0) = 0. It is
often called the Aubin–Mabuchi functional and can be expressed (after integration along affine
paths) by

E(ϕ) =
1

(n+ 1)Vα

n∑
j=0

∫
X
ϕ (ω + ddcϕ)j ∧ ωn−j .

Lemma 2.5. The Aubin–Mabuchi functional E is concave along Euclidean segments, non-
decreasing, and satisfies the cocycle condition

E(ϕ)− E(ψ) =
1

(n+ 1)Vα

n∑
j=0

∫
X

(ϕ− ψ) (ω + ddcϕ)j ∧ (ω + ddcψ)n−j .

It is affine along geodesics and convex along subgeodesics in Hω.

Proof. These properties are well known when ω is in a Kähler class.
The monotonicity property follows from the definition since the first derivative of E is

dE = β = MA > 0, a probability measure: if ϕt is an arbitrary path, then

d

dt
E(ϕt) =

∫
X
ϕ̇t MA(ϕt).

It follows from Stokes theorem that

d2

dt2
E(ϕt) =

∫
X
ϕ̈t MA(ϕt) +

n

Vα

∫
X
ϕ̇t dd

cϕ̇t ∧ ωn−1
ϕ

=

∫
X

{
ϕ̈t MA(ϕt)−

n

Vα
dϕ̇t ∧ dcϕ̇t ∧ ωn−1

ϕt

}
.
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Thus, E is concave along Euclidean segments (ϕ̈t = 0), affine along Mabuchi geodesics,
and convex along Mabuchi subgeodesics. The cocycle condition follows by differentiating
E(tϕ+ (1− t)ψ).

These computations are merely heuristic as t → ϕt(x) is poorly regular when ϕt is a
geodesic or subgeodesic. We can, however, approximate ω by ωε = ω + εωX ; consider (ϕεt ) the
corresponding geodesic

Eωε(ϕ
ε
t ) =

1

(n+ 1)Vε

n∑
j=0

∫
X
ϕεt (ωε + ddcϕεt ) ∧ ωn−jε . (6)

It follows from Proposition 1.6 that ε 7→ ϕεt decreases to ϕt; hence, t 7→ E(ϕt) is affine, where
the limit of the affine maps t 7→ Eωε(ϕ

ε
t ).

For subgeodesics, we again approximate ω by ωε and we proceed as in the Kähler case. 2

Observe that E(ϕ + t) = E(ϕ) + t. Given ϕ ∈ Hω there exists a unique c ∈ R such that
E(ϕ+ c) = 0. The restriction of the Mabuchi metric to the fiber E−1(0) induces a Riemannian
structure on the quotient space Hα = Hω/R and allows decomposition of Hω = Hα × R as a
product of Riemannian manifolds.

Definition 2.6. For ϕ ∈ PSH(X,ω), we set

E(ϕ) := inf{E(ψ);ϕ 6 ψ and ψ ∈ PSH(X,ω) ∩ L∞(X)} ∈ [−∞,+∞[

and E1(X,ω) := {ϕ ∈ PSH(X,ω);E(ϕ) > −∞}.

2.2.2 Strong topology on E1(α). Set

I(ϕ,ψ) =

∫
X

(ϕ− ψ)(MA(ψ)−MA(ϕ)).

It has been shown in [BBEGZ] that I defines a complete metrizable uniform structure on
E1(α). More precisely, we identify E1(α) with the set

E1
norm(X,ω) =

{
ϕ ∈ E1(X,ω) | sup

X
ϕ = 0

}
of normalized potentials. Then:

(a) I is symmetric and positive on E1
norm(X,ω)2\{diagonal};

(b) I satisfies a quasi-triangle inequality [BBEGZ, Theorem 1.8];

(c) I induces a uniform structure that is metrizable [Bou07];

(d) the metric space (E1(α), dI) is complete [BBEGZ, Proposition 2.4], where dI denotes one
of the distances induced by the uniform structure I.

Definition 2.7. The strong topology on E1(α) is the metrizable topology defined by I.

The corresponding notion of convergence is the convergence in energy previously introduced
in [BBGZ13] (see [BBEGZ, Proposition 2.3]). It is the coarsest refinement of the weak topology
such that E becomes continuous. In particular, if Tj −→ T in (E1(α), dI), then

Tj −→ T weakly and Tnj −→ Tn

in the weak sense of Radon measures, while the Monge–Ampère operator is usually discontinuous
for the weak topology of currents.
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2.2.3 Yet another distance. To fit in with the notation of the next section, we introduce yet
another notion of convergence in E1(X,ω). We set

I1(ϕ,ψ) :=

∫
X
|ϕ− ψ|

[
MA(ϕ) + MA(ψ)

2

]
.

This symmetric quantity is non-negative. It follows from Proposition 2.3 that it only vanishes
on the diagonal of E1(X,ω)2, while Theorem 3.6 will insure that it satisfies a quasi-triangle
inequality. Hence, I1 induces a uniform structure, which is metrizable [Bou07].

For C > 0, we set

E1
C(X,ω) := {ϕ ∈ E1(X,ω);E(ϕ) > −C and ϕ 6 C}.

It follows from Hartogs’ lemma, the upper semi-continuity, and the concavity of E along
Euclidean segments (Lemma 2.5) that this set is a compact and convex subset of PSH(X,ω),
when endowed with the L1-topology (see [BBGZ13, Lemma 2.6]).

Proposition 2.8. For all ϕ,ψ ∈ E1(X,ω), I(ϕ,ψ) 6 2I1(ϕ,ψ). Conversely, for each C > 0, there
exists A > 0 such that, for all ϕ,ψ ∈ E1

C(X,ω),

I1(ϕ,ψ) 6
∫
X

[2 max(ϕ,ψ)− (ϕ+ ψ)] MA(0) +AI(ϕ,ψ)1/2n . (7)

In particular, the topologies induced by I, I1 on E1
norm(X,ω) are the same.

Observe that I1 induces a distance on E1(X,ω), but I is merely defined on E1
norm(X,ω), as

I(ϕ+ c, ψ + c′) = I(ϕ,ψ), for any c, c′ ∈ R.

Proof. The first inequality is obvious, as

I(ϕ,ψ) =

∫
X

(ϕ− ψ)(MA(ψ)−MA(ϕ)) 6
∫
X
|ϕ− ψ|(MA(ψ) + MA(ϕ)).

It follows from Proposition 2.13 that

I1(ϕ,ψ) = I1(ϕ,max(ϕ,ψ)) + I1(max(ϕ,ψ), ψ),

hence it suffices to establish the second inequality when ϕ 6 ψ. In this case

I1(ϕ,ψ) 6
∫
X

(ψ − ϕ) MA(ϕ),

by Lemma 2.12, while the Cauchy–Schwarz inequality yields∫
X

(ψ − ϕ) MA(ϕ) =

∫
X

(ψ − ϕ) MA(0) +

∫
X
d(ϕ− ψ) ∧ dcϕ ∧ Sϕ

6
∫
X

(ψ − ϕ) MA(0) + I(ϕ, 0)1/2

(∫
X
d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ Sϕ

)1/2

,

where we have set Sϕ :=
∑n−1

j=0 ω
j
ϕ ∧ ωn−1−j . Observing that Sϕ 6 2n−1ωn−1

ϕ/2 , we can invoke

[BBEGZ, Lemma 1.9] to obtain∫
X
d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ Sϕ 6 cnI(ϕ,ψ)1/2n−1

{
I

(
ϕ,
ϕ

2

)1−1/2n−1

+ I

(
ψ,
ϕ

2

)1−1/2n−1}
.
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Now I(ϕ,ϕ/2) 6 anI(ϕ, 0) 6 C ′ and [BBEGZ, Theorem 1.3] yields

I(ψ,ϕ/2) 6 bn{I(ψ, 0) + I(ϕ/2, 0)} 6 b′n{I(ψ, 0) + I(ϕ, 0)} 6 C ′′.

We thus get (7).
To prove the last statement, we need to show that, given a sequence ϕj ∈ E1

norm(X,ω)
converging to ψ with respect to I, then it also converges to ψ with respect to I1, and vice
versa. We first note that the I-convergence implies the L1-convergence of the potentials [GZ17,
Theorem 10.37]. This ensures that∫

X
[2 max(ϕj , ψ)− (ϕj + ψ)] MA(0) → 0 as j → +∞,

and moreover we have that ϕj , ψ ∈ E1
C(X,ω) for some C > 0 [GZ17, Lemma 10.33 and

Definition 10.34]. The I1-convergence would then follow from (7). Moreover, since I(ϕj , ψ) 6
2I1(ϕj , ψ), we conclude that the I1-convergence implies the I-convergence. 2

2.3 The complete metric spaces Ep(α)
Fix p > 1. Following [GZ07, BEGZ10], we consider the following finite-energy classes.

Definition 2.9. We set

Ep(X,ω) := {ϕ ∈ E(X,ω)/|ϕ|p ∈ L1(MA(ϕ))}

and let Ep(α) = {T = ω + ddcϕ | ϕ ∈ Ep(X,ω)} denote the corresponding sets of finite-energy
currents.

On the class Ep(X,ω), p > 1, we define

Ip(ϕ,ψ) :=

(∫
X
|ϕ− ψ|p

[
MA(ϕ) + MA(ψ)

2

])1/p

.

This quantity is well defined by [GZ07, Proposition 3.6]. It is obviously non-negative and
symmetric. It follows from the domination principle (Proposition 2.3) that

Ip(ϕ,ψ) = 0 =⇒ ϕ = ψ.

Moreover, it will follow from Theorem 3.6 (which shows in particular that Ip satisfies a quasi-
triangle inequality) that Ip induces a uniform structure. We can then define the following:

Definition 2.10. The strong topology on Ep(α) is the one induced by Ip.

By [BEGZ10, Theorem 2.17], a decreasing sequence converges strongly. We also have good
convergence properties if we approximate by slightly larger finite-energy classes Ep(X,ωε).

Proposition 2.11. Fix ωε = ω + εωX , ε > 0. If ϕ,ψ ∈ Ep(X,ω) ∩ L∞(X), then ϕ,ψ ∈ Ep(X,
ωε) ∩ L∞(X) and Ip,ωε(ϕ,ψ) → Ip,ω(ϕ,ψ) as ε → 0.

Moreover, if ϕ,ψ ∈ Ep(X,ω) and ϕj , ψj are sequences of smooth ωεj -psh functions decreasing
to ϕ,ψ with εj → 0, then

Ip,ωεj
(ϕj , ψj) → Ip,ω(ϕ,ψ)

as j goes to +∞.
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Proof. Note that ϕ,ψ belong to any energy class with respect to any Kähler form since they
are bounded. In particular, ϕ,ψ ∈ Ep(X,ωε). The first assertion follows from the fact that
(ωε + ddcϕ)n and (ωε + ddcψ)n converge weakly to (ω + ddcϕ)n and (ω + ddcψ)n as ε → 0,
respectively. For the second statement, we observe that, by symmetry, it suffices to prove that∫

X
|ϕj − ψj |p(ωεj + ddcϕj)

n
→

∫
X
|ϕ− ψ|p(ω + ddcϕ)n as j → +∞.

Given a bounded function f on X, we set

|f |p :=

(∫
X
|f |p(ωεj + ddcϕj)

n

)1/p

.

The triangle inequality yields

|ϕj − ψj |p 6 |ϕ− ψ|p + |(ϕj − ϕ)|+ |(ψ − ψj)|p
and similarly

|ϕj − ψj |p > |ϕ− ψ|p − |(ϕj − ϕ)| − |(ψ − ψj)|p.
Since ϕ − ψ is a positive quasi-continuous uniformly bounded function on X, it follows from
[GZ17, Theorem 4.26] that

|ϕ− ψ|pp =

∫
X
|ϕ− ψ|p(ωεj + ddcϕj)

n
→

∫
X
|ϕ− ψ|p(ω + ddcϕ)n

as j → +∞. Moreover, we claim that the terms |(ϕj −ϕ)|p and |(ψ− ψj)|p go to 0 as j → +∞.
Lemma 2.12, together with the fact that ωεj 6 ω + ωX , yields∫

X
(ϕj − ϕ)p(ωεj + ddcϕj)

n 6
∫
X

(ϕj − ϕ)p(ω + ωX + ddcϕ)n.

Note that ϕj , ϕ ∈ Ep(X,ω + ωX) (since they are bounded). Hence [GZ07, Theorem 3.8] ensures
that the integral at the right-hand side of this inequality is finite.

Since ϕj is decreasing to ϕ, it then follows from the dominated convergence theorem that
|(ϕj − ϕ)|pp → 0 as j → +∞. Fix j0 < j. Then∫

X
(ψj − ψ)p(ωεj + ddcϕj)

n 6
∫
X

(ψj0 − ψ)p(ω + ωX + ddcϕj)
n.

It follows again from the continuity of the Monge–Ampère operator along the decreasing
sequence, [Kol05, Corollary 1.14], and the dominated convergence theorem that letting j → +∞
and then j0 → +∞ we get ∫

X
(ψj0 − ψ)p(ω + ωX + ddcϕj)

n
→ 0.

Thus, |(ψj − ψ)|pp → 0 as j → +∞. Hence the conclusion. 2

It follows from Hölder’s inequality that the strong topology on Ep(α) is stronger than the
one on E1(α): if a sequence (ϕj) ∈ Ep(X,ω) is a Cauchy sequence for Ip, then it is a Cauchy
sequence in (E1(X,ω), dI), since

0 6 I(ϕ,ψ) =

∫
X

(ϕ− ψ)[MA(ψ)−MA(ϕ)] 6 21/pIp(ϕ,ψ).
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Since (E1(X,ω), dI) is complete, there is ϕ ∈ E1(X,ω) such that dI(ϕj , ϕ) → 0. Now Ip(ϕj , 0) is

bounded and MA(ϕj) converges to MA(ϕ) (by [BBGZ13, Proposition 5.6]). Thus, ϕ ∈ Ep(X,ω)

by Fatou’s and Hartogs’ lemmas.

One would now like to prove that Ip(ϕj , ϕ) → 0 and conclude that the space (Ep(X,ω), Ip)

is complete, arguing as in [BBEGZ, Proposition 2.4]. We refer the reader to Theorem 4.2 for a

neat treatment.

Lemma 2.12. Let ϕ,ψ be bounded ω-psh functions and S be a positive closed current of

bidimension (1, 1) on X. If ϕ 6 ψ, then∫
X

(ψ − ϕ)pωψ ∧ S 6
∫
X

(ψ − ϕ)pωϕ ∧ S.

In particular, V −1
α

∫
X(ψ − ϕ)pωjψ ∧ ω

n−j
ϕ 6

∫
X(ψ − ϕ)p MA(ϕ).

Proof. By Stokes’ theorem,∫
X

(ψ − ϕ)pωϕ ∧ S −
∫
X

(ψ − ϕ)pωψ ∧ S = p

∫
X

(ψ − ϕ)p−1d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ S

is non-negative if (ψ − ϕ) > 0.

The second assertion follows by applying the first one inductively. 2

We now establish a few useful properties of Ip that will notably allow us to compare Ip with

dp in the next section.

Proposition 2.13. For ϕ,ψ ∈ Ep(X,ω),

Ip(ϕ,ψ)p = Ip(ϕ,max(ϕ,ψ))p + Ip(max(ϕ,ψ), ψ)p.

Proof. Recall that the maximum principle ensures that

1{ϕ<ψ}MA(max(ϕ,ψ)) = 1{ϕ<ψ}MA(ψ),

while (ϕ−max(ϕ,ψ))p = 0 on (ϕ > ψ); thus,

2Ip(ϕ,max(ϕ,ψ))p =

∫
{ϕ<ψ}

|ϕ− ψ|p[MA(ϕ) + MA(ψ)].

Similarly, 2Ip(ψ,max(ϕ,ψ))p =
∫
{ϕ>ψ} |ϕ− ψ|p[MA(ϕ) + MA(ψ)] and the result follows, since

Ip(ϕ,ψ)p =
1

2

∫
{ϕ6=ψ}

|ϕ−ψ|p[MA(ϕ)+MA(ψ)]. 2

Corollary 2.14. For all ϕ,ψ ∈ Ep(X,ω),

Ip

(
ϕ+ ψ

2
, ψ

)
6 Ip(ϕ,ψ).
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Proof. By approximating ϕ,ψ from the above by a decreasing sequence, it suffices to treat the
case when ϕ,ψ ∈ Hω. Changing ω in ωψ, we can further assume that ψ = 0. It follows from
Proposition 2.13 that

Ip(0, ϕ/2)p = Ip(0,max(0, ϕ/2))p + Ip(max(0, ϕ/2), ϕ/2)p.

It follows from Lemma 2.12 that

Ip(0,max(0, ϕ/2))p 6
∫
X

max(0, ϕ/2)p MA(0)

= 2−p
∫
X

max(0, ϕ)p MA(0) 6 Ip(0,max(0, ϕ))p.

We claim that, for all 0 6 j 6 n,∫
X

(max(0, ϕ)− ϕ)pωjϕ ∧ ωn−j 6
∫
X

(max(0, ϕ)− ϕ)pωnϕ.

Assuming this for the moment, it follows again from Lemma 2.12 that

Ip(max(0, ϕ/2), ϕ/2)p 6
∫
X

(max(0, ϕ/2)− ϕ/2)p MA(ϕ/2)

=
1

2n+pVα

n∑
j=0

Cjn

∫
X

(max(0, ϕ)− ϕ)pωjϕ ∧ ωn−j

6
1

2

∫
X

(max(0, ϕ)− ϕ)p MA(ϕ) 6 Ip(ϕ,max(0, ϕ))p.

We infer
Ip(0, ϕ/2)p 6 Ip(0,max(0, ϕ))p + Ip(max(0, ϕ), ϕ)p = Ip(0, ϕ)p,

by using Proposition 2.13 again.
It remains to justify our claim. Set S = ωj−1 ∧ ωn−jϕ . It suffices, by induction, to establish

the following inequality:∫
X

(max(0, ϕ)− ϕ)pω ∧ S =

∫
X

(max(0, ϕ)− ϕ)pωϕ ∧ S −
∫
X

(max(0, ϕ)− ϕ)p ddcϕ ∧ S

6
∫
X

(max(0, ϕ)− ϕ)pωϕ ∧ S.

This follows by observing that

−
∫
X

(max(0, ϕ)− ϕ)p ddcϕ ∧ S = p

∫
X

(max(0, ϕ)− ϕ)p−1 d(max(0, ϕ)− ϕ) ∧ dcϕ ∧ S

= −p
∫
{ϕ<0}

(−ϕ)p−1 dϕ ∧ dcϕ ∧ S 6 0. 2

3. Comparing distances

In this section, we show that Ip is equivalent to dp (Theorem 3.6). Recall that

Hbd := {ϕ ∈ PSH(X,ω) ∩ L∞(X), ϕ = Pω(f) for some f ∈ C0(X) with ddcf 6 CωX , C > 0}.
In the following, we are going to use several times and in a crucial way the fact that Theorem 1.21
ensures

dpp(ϕ0, ϕ1) =

∫
X
|ϕ̇0|p

(ω + ddcϕ0)n

V
=

∫
X
|ϕ̇1|p

(ω + ddcϕ1)n

V
, ∀ϕ0, ϕ1 ∈ Hbd.
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3.1 Kiselman transform and geodesics
Let (ϕt)06t61 be the Mabuchi geodesic. For all x ∈ X, t ∈ [0, 1] 7→ ϕt(x) ∈ R is convex. It is
natural to consider its Legendre transform, us(x) : s 7→ supt∈[0,1]{st − ϕt(x)}. This function is
convex in s, but the dependence in x is −ω-psh, so we rather consider −us. We finally change s
in −s to obtain a more elegant formula,

ψs(x) := inf
06t61

{st+ ϕt(x)}.

Proposition 3.1. The functions x 7→ ψs(x) are ω-plurisubharmonic. In particular, x 7→ ψ0(x) =
inf06t61 ϕt(x) is ω-psh.

This is the minimum principle of Kiselman [Kis78]. For ϕ0, ϕ1 ∈ Hbd, we let ϕ0 ∨ ϕ1 denote
the greatest ω-psh function that lies below ϕ0 and ϕ1. In the notation of Berman and
Demailly [BD12]

ϕ0 ∨ ϕ1 = P (min(ϕ0, ϕ1)),

while ϕ0 ∨ ϕ1 is denoted P (ϕ0, ϕ1) in [Dar17c].
An important consequence of Kiselman’s minimum principle [Kis78] is the following

observation of Darvas and Rubinstein [DR16].

Proposition 3.2. The function ϕ0 ∨ ϕ1 is a bounded ω-psh, which has a locally bounded
Laplacian on the ample locus of α = {ω}, and its Monge–Ampère measure MA(ϕ0 ∨ ϕ1) is
supported on the coincidence set

{x ∈ X | ϕ0 ∨ ϕ1(x) = min(ϕ0, ϕ1)(x)}.

Moreover, MA(ϕ0 ∨ ϕ1) = 1{ϕ0∨ϕ1=ϕ0}MA(ϕ0) + 1{ϕ0∨ϕ1=ϕ1<ϕ0}MA(ϕ1).
Let (ϕt) be the Mabuchi geodesic joining ϕ0 and ϕ1. Then, for all x ∈ X,

ϕ0 ∨ ϕ1(x) = inf
t∈[0,1]

ϕt(x).

Proof. It follows from a classical balayage procedure that goes back to Bedford and Taylor [BT82]
that MA(ϕ0 ∨ ϕ1) is supported on the coincidence set {x ∈ X | ϕ0 ∨ ϕ1(x) = min(ϕ0, ϕ1)(x)}.
This holds true more generally for the Monge–Ampère measure of any envelope, namely

1{P (h)<h}MA(P (h)) ≡ 0,

where h is a bounded lower semi-continuous function.
We have observed in Proposition 3.1 that x 7→ inft∈[0,1] ϕt(x) is a ω-psh function. Since it

lies both below ϕ0 and ϕ1, we infer

inf
t∈[0,1]

ϕt 6 ϕ0 ∨ ϕ1.

Conversely, (t, x) 7→ ϕ0 ∨ ϕ1(x) is a subgeodesic (independent of t); hence, for all t, x,
ϕ0 ∨ ϕ1(x) 6 ϕt(x). Thus, ψ := ϕ0 ∨ ϕ1 = inft∈[0,1] ϕt; hence, ψ is bounded, thanks to
Proposition 1.4.

By Proposition 3.1, ψ is ω-psh, hence AωX -psh for some Kähler form ωX and A > 0. Thus,
supX ∆ωXψ > −C for some C > 0.
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It follows from the work of Berman and Demailly [BD12] (see also [Ber13, Theorem 1.2])
that for any compact subset K ⊂ Amp(α), there exists CK > 0, such that, for all t ∈ [0, 1],

sup
K

∆ωXϕt < CKn.

Thus (−ϕt) is a family of CKωX -psh functions in a neighborhood of K, which are uniformly
bounded from above. Thus,

−ψ = sup
06t61

(−ϕt) = − inf
06t61

ϕt

is CKωX -psh near K, in particular ∆ωXψ < CKn. This means that ψ has a locally bounded
Laplacian on Amp(α).

It follows then from classical arguments that the measure MA(ϕ0 ∨ ϕ1) is absolutely
continuous with respect to the Lebesgue measure. Since ϕ0 ∨ ϕ1, ϕ0 (respectively ϕ0 ∨ ϕ1, ϕ1)
have locally bounded Laplacians in Amp(α), it follows from [GT83, Lemma 7.7] that their second
partial derivatives agree on {ϕ0 ∨ ϕ1 = ϕ0} (respectively on {ϕ0 ∨ ϕ1 = ϕ1}), hence

MA(ϕ0 ∨ ϕ1) = 1{ϕ0∨ϕ1=ϕ0}MA(ϕ0) + 1{ϕ0∨ϕ1=ϕ1<ϕ0}MA(ϕ1).

We have used here the fact that none of the measures MA(ϕ0 ∨ ϕ1),MA(ϕ0), MA(ϕ1) charges
the pluripolar set X\Amp(α). 2

A basic observation that we shall use on several occasions is the following.

Lemma 3.3. Assume ϕ0, ϕ1 ∈ Hbd and let (ϕt)06t61 be the Mabuchi geodesic joining ϕ0 to ϕ1.
Then

dp(ϕ0, ϕ1) 6 ‖ϕ1 − ϕ0‖L∞(X).

Moreover,

(i) if ϕ0(x) 6 ϕ1(x) for some x ∈ X, then ϕ̇1(x) > 0;

(ii) if ϕ0(x) 6 ϕ1(x) for all x ∈ X then ϕ̇t(x) > 0 for all x ∈ X and a.e. t ∈ [0, 1].

By symmetry, if ϕ1(x) 6 ϕ0(x), it follows that ϕ̇0(x) 6 0. Moreover, if ϕ1(x) 6 ϕ0(x) for all
x ∈ X then ϕ̇t(x) 6 0 for a.e. x, t. Here, and in the following, ϕ̇0, ϕ̇1 denote the right and left
derivatives, respectively, while we recall that ϕ̇t(x) is well defined for a.e. (x, t).

Proof. From Theorem 1.21 we know that dpp(ϕ0, ϕ1) =
∫
X |ϕ̇0|p MA(ϕ0). Moreover, Proposition 1.4

ensures that |ϕ̇0| 6 ‖ϕ1 − ϕ0‖L∞(X). Hence, the first statement.
Assume ϕ̇1(x) < 0. Since t 7→ ϕt(x) is convex, we infer ϕ̇t(x) 6 ϕ̇1(x) < 0. Thus, t 7→ ϕt(x)

is decreasing, hence ϕ1(x) < ϕ0(x), a contradiction. This proves part (i).
Assume now that ϕ0(x) 6 ϕ1(x) for all x ∈ X. Then

ϕ0 6 ϕt 6 ϕ1.

The first of these inequalities follows from the fact that, by Proposition 1.4,

ϕ = sup{u u ∈ PSH(M,ω) : u 6 ϕ0,1 on M} ,
with ϕ(x, t+ is) = ϕt(x), and that ϕ0(x, t+ is) = ϕ0(x) is a subsolution (i.e. a candidate in the
envelope). The other inequality follows from the fact that ϕ1(x, t+ is) = ϕ1(x) is a supersolution
of (3) since (ω + ddcx,zϕ1)n+1 = 0 and ϕ1 > ϕ0,1. The same argument shows that ϕ0 6 ϕs 6 ϕt
for all 0 < s < t and x ∈ X, hence ϕ̇t(x) > 0 for all x ∈ X and a.e. t ∈ [0, 1], since the derivative
in time of ϕt is well defined for a.e. t. 2

1615

https://doi.org/10.1112/S0010437X18007170 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007170


E. Di Nezza and V. Guedj

We now establish a very useful relation established by Darvas [Dar17c, Proposition 8.1] when
ω is Kähler (see also [Dar15, Corollary 4.14]).

Proposition 3.4. Assume ϕ0, ϕ1 ∈ Hbd. Then, for all p > 1,

dpp(ϕ0, ϕ1) = dpp(ϕ0, ϕ0 ∨ ϕ1) + dpp(ϕ0 ∨ ϕ1, ϕ1).

Proof. We proceed by approximation, so as to reduce to the Kähler case. The identity is known
to hold for dp,ε and ϕ0 ∨ε ϕ1, where dp,ε denotes the distance associated with the Kähler form
ωε = ω + εωX and ϕ0 ∨ε ϕ1 is the greatest ωε-psh function that lies below min(ϕ0, ϕ1).

Using Theorem 1.21 and the triangle inequality, the proof boils down to checking that
dp,ε(ϕ0 ∨ϕ1, ϕ0 ∨ε ϕ1) → 0 as ε → 0. The same arguments used in the proof of Proposition 1.16
yield

dp,ε(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1) 6 dp,ε′(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1), ε < ε′.

We claim that dp,ε′(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1) goes to zero as ε goes to zero, since ϕ0 ∨ε ϕ1 decreases
to ϕ0 ∨ ϕ1 as ε → 0. Indeed, observe that ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1 ∈ Ep(X,ω′ε) ∩ L∞(X) and that by
Proposition 3.8 we know that

dp,ε′(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1) 6 2Ip,ε′(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1).

The same arguments in the proof of Proposition 2.11 then show that Ip,ε′(ϕ0∨ϕ1, ϕ0∨εϕ1) → 0
as ε goes to zero. The conclusion then follows. 2

We note for later use the following consequence.

Corollary 3.5. If ϕ0, ϕ1 ∈ Hbd, then

dp(ϕ0, ϕ0 ∨ ϕ1) 6 dp(ϕ0, ϕ1).

3.2 Comparing dp and Ip
The goal of this section is to establish that dp and Ip are equivalent, extending [Dar15,
Theorem 5.5].

Theorem 3.6. For all ϕ0, ϕ1 ∈ Hbd,

2−1dp(ϕ0, ϕ1) 6 Ip(ϕ0, ϕ1) 6 24+(2n−1)/pdp(ϕ0, ϕ1).

It follows from Definition 1.10 and Proposition 2.11 that

dp(ϕ0, ϕ1) = lim
ε→0

dp,ε(ϕ0, ϕ1) and Ip(ϕ0, ϕ1) = lim
ε→0

Ip,ε(ϕ0, ϕ1),

so it suffices to establish these inequalities when ω is a Kähler form.
We nevertheless give a direct proof, valid when ω is merely semi-positive, with several

intermediate results of independent interest. Several of these results have been obtained by
Darvas [Dar17b, Dar17c, Dar15] when ω is Kähler.

Lemma 3.7. Assume that ϕ0, ϕ1 ∈ Hbd satisfy ϕ0 6 ϕ1.

(i) dp(ϕ1, (ϕ0 + ϕ1)/2) 6 dp(ϕ0, ϕ1).

(ii) dp(ϕ0, ϕ1) 6 21+n/pdp(ϕ0/2, ϕ1/2).
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(iii) If ϕ1 = 0 then dp(ϕ0, 0) > 2dp(ϕ0/2, 0).

(iv) If ψ ∈ Hbd is such that ϕ0 6 ψ 6 ϕ1, then

max{dp(ϕ0, ψ); dp(ψ,ϕ1)} 6 dp(ϕ0, ϕ1).

Proof. Let ϕt (respectively ψt) denote the Mabuchi geodesic joining ϕ0 (respectively (ϕ0+ϕ1)/2)
to ϕ1. Since ϕ0 6 ϕ1, it follows from Lemma 3.3(ii) that t 7→ ϕt, t 7→ ψt are increasing and ϕt 6 ψt,
hence

ϕt − ϕ1

t− 1
>
ψt − ψ1

t− 1
,

since ϕ1 = ψ1. Therefore, ϕ̇1 > ψ̇1 > 0 and we infer∫
X
|ψ̇1|p MA(ψ1) = dp

(
ϕ1,

ϕ0 + ϕ1

2

)p
6 dp(ϕ0, ϕ1)p =

∫
X
|ϕ̇1|p MA(ϕ1).

This, together with Theorem 1.21, proves part (i).
Now let (ϕt) (respectively (ψt)) denote the geodesic joining ϕ0 to ϕ1 (respectively ϕ0/2 to

ϕ1/2). Observe that t 7→ ϕt, ψt are increasing, hence ϕ̇0 > 0. The family (ϕt/2) is a subgeodesic
joining ϕ0/2 to ϕ1/2, hence ϕt/2 6 ψt and

0 6
ϕ̇0

2
6 ψ̇0 =⇒ |ϕ̇0|p 6 2p|ψ̇0|p.

Moreover, MA(ϕ0) 6 2n MA(ϕ0/2), so we infer

dp(ϕ0, ϕ1)p =

∫
X
|ϕ̇0|p MA(ϕ0) 6 2n+pdp(ϕ0/2, ϕ1/2)p,

which proves part (ii). A similar argument shows that

0 6 ψ̇1 6
ϕ̇1

2
=⇒ |ψ̇1|p 6 2−p|ϕ̇1|p.

Now MA(ϕ1/2) = MA(ϕ1) = MA(0) when ϕ1 = 0, hence

dp(ϕ0, 0)p =

∫
X
|ϕ̇1|p MA(0) > 2pdp(ϕ0/2, 0)p,

which yields part (iii).
It remains to prove part (iv). Let (ϕt)06t61 (respectively (ψt)06t61) be the geodesic joining

ϕ0 to ϕ1 (respectively ϕ0 to ψ). Observe that ϕ0 = ψ0 and ψt 6 ϕt, hence ψ̇0 6 ϕ̇0. Moreover,
0 6 ψ̇0 since t 7→ ψt(x) is increasing. We infer

dp(ϕ0, ψ)p =

∫
X
|ψ̇0|p MA(ϕ0) 6

∫
X
|ϕ̇0|p MA(ϕ0) = dp(ϕ0, ϕ1)p.

The other inequality is proved similarly. 2

Proposition 3.8. For all ϕ0, ϕ1 ∈ Hbd,
0 6 dp(ϕ0, ϕ1) 6 2Ip(ϕ0, ϕ1).

Moreover, if ϕ0 6 ϕ1 then Ip(ϕ0, ϕ1) 6 (
∫
X(ϕ1 − ϕ0)p MA(ϕ0))1/p and

dp(ϕ0, ϕ1) 6

(∫
X

(ϕ1 − ϕ0)p MA(ϕ0)

)1/p

6 21+n/pdp(ϕ0, ϕ1).
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Proof. We first assume that ϕ0 6 ϕ1. The inequality

Ip(ϕ0, ϕ1) 6

(∫
X

(ϕ1 − ϕ0)p MA(ϕ0)

)1/p

follows from Lemma 2.12. Let (ϕt) be the geodesic joining ϕ0 to ϕ1. It follows from Lemma 3.3
that 0 6 ϕ̇0 6 ϕ1 − ϕ0 6 ϕ̇1, hence∫

X
(ϕ1 − ϕ0)p MA(ϕ1) 6

∫
X

(ϕ̇1)p MA(ϕ1) = dp(ϕ0, ϕ1)p (8)

and, similarly, dp(ϕ0, ϕ1)p 6
∫
X(ϕ1 − ϕ0)p MA(ϕ0).

We now show that
∫
X(ϕ1 −ϕ0)p MA(ϕ0) 6 2n+pd(ϕ0, ϕ1)p. Observe that (ϕ0 + ϕ1)/2 ∈ Hbd

with MA(ϕ0) 6 2n MA((ϕ0 + ϕ1)/2), hence∫
X

(ϕ1 − ϕ0)p MA(ϕ0) = 2p
∫
X

(
ϕ0 + ϕ1

2
− ϕ0

)p
MA(ϕ0)

6 2n+p

∫
X

(
ϕ0 + ϕ1

2
− ϕ0

)p
MA

(
ϕ0 + ϕ1

2

)
6 2n+pdp

(
ϕ0,

ϕ0 + ϕ1

2

)p
,

as follows from the first step of the proof, since ϕ0 6 ϕ1. Lemma 3.7(iv) yields

dp

(
ϕ0,

ϕ0 + ϕ1

2

)
6 dp(ϕ0, ϕ1),

hence
∫
X(ϕ1 − ϕ0)p MA(ϕ0) 6 2n+pdp(ϕ0, ϕ1)p.

We finally treat the first upper bound of the proposition, which does not require ϕ0 to lie

below ϕ1. It follows from the triangle inequality that

dp(ϕ0, ϕ1) 6 dp(ϕ0,max(ϕ0, ϕ1)) + dp(max(ϕ0, ϕ1), ϕ1)

6

(∫
{ϕ0<ϕ1}

(ϕ1 − ϕ0)p MA(ϕ0)

)1/p

+

(∫
{ϕ0>ϕ1}

(ϕ0 − ϕ1)p MA(ϕ1)

)1/p

6 21−1/p

(∫
X
|ϕ1 − ϕ0|p[MA(ϕ0) + MA(ϕ1)]

)1/p

= 2

(∫
X
|ϕ1 − ϕ0|p

[MA(ϕ0) + MA(ϕ1)]

2

)1/p

by using the elementary inequality a1/p + b1/p 6 21−1/p(a+ b)1/p. 2

Remark 3.9. Working with ψ = tϕ0 + (1 − t)ϕ1, 0 < t < 1, instead of (ϕ0 + ϕ1)/2, one can
improve this inequality and obtain(∫

X
(ϕ1 − ϕ0)p MA(ϕ0)

)1/p

6
(n+ p)1+n/p

p nn/p
dp(ϕ0, ϕ1).

We now extend Lemma 3.7(i), following [Dar15, Lemma 5.3].
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Lemma 3.10. For all ϕ0, ϕ1 ∈ Hbd,

dp

(
ϕ0,

ϕ0 + ϕ1

2

)
6 22+n/pdp(ϕ0, ϕ1).

Proof. When ϕ0 6 ϕ1, this follows from Lemma 3.7(i). Replacing ω with ω + ddcϕ0, we can
assume, without loss of generality, that ϕ0 = 0. The triangle inequality yields

dp

(
0,
ϕ1

2

)
6 dp

(
0, 0 ∨ ϕ1

2

)
+ dp

(
0 ∨ ϕ1

2
,
ϕ1

2

)
.

Observe that 0 ∨ ϕ1 6 0 ∨ ϕ1/2 6 min(0, ϕ1/2). It follows, therefore, from Lemma 3.7(iv)
that

dp

(
0, 0 ∨ ϕ1

2

)
+ dp

(
0 ∨ ϕ1

2
,
ϕ1

2

)
6 dp(0, 0 ∨ ϕ1) + dp

(
0 ∨ ϕ1,

ϕ1

2

)
.

Since 0 ∨ ϕ1 6 0 and 0 ∨ ϕ1 6 ϕ1/2, we can invoke Proposition 3.8 to obtain

dp(0, 0 ∨ ϕ1) + dp

(
0 ∨ ϕ1,

ϕ1

2

)
6

(∫
X
|0 ∨ ϕ1|p MA(0 ∨ ϕ1)

)1/p

+

(∫
X

∣∣∣∣0 ∨ ϕ1 −
ϕ1

2

∣∣∣∣p MA(0 ∨ ϕ1)

)1/p

6 21−1/p

(∫
X

[
|0 ∨ ϕ1|p +

∣∣∣∣0 ∨ ϕ1 −
ϕ1

2

∣∣∣∣p]MA(0 ∨ ϕ1)

)1/p

.

Recall now that the measure MA(0 ∨ ϕ1) is supported on the contact set S := {x ∈ X; 0 ∨
ϕ1(x) = min(0, ϕ1)(x)}. On this set, we have

|0 ∨ ϕ1|p +

∣∣∣∣0 ∨ ϕ1 −
ϕ1

2

∣∣∣∣p 6 2|ϕ1|p = 2[|0 ∨ ϕ1|p + |0 ∨ ϕ1 − ϕ1|p],

while Proposition 3.8 yields∫
X

[|0 ∨ ϕ1|p + |0 ∨ ϕ1 − ϕ1|p] MA(0 ∨ ϕ1)

6 2p+n[dp(0, 0 ∨ ϕ1)p + dp(0 ∨ ϕ1, ϕ1)p] = 2p+ndp(0, ϕ1)p,

where the last equality follows from Proposition 3.4. Altogether, this yields dp(0, ϕ1/2) 6
22+n/pdp(0, ϕ1), as claimed. 2

We are now ready to prove Theorem 3.6.

Proof. We have already observed that dp(ϕ0, ϕ1) 6 2Ip(ϕ0, ϕ1) in Proposition 3.8, so we focus
on the reverse control. Lemma 3.10 and Proposition 3.4 yield

22p+ndpp(ϕ0, ϕ1) > dpp

(
ϕ0,

ϕ0 + ϕ1

2

)
= dpp

(
ϕ0, ϕ0 ∨

ϕ0 + ϕ1

2

)
+ dpp

(
ϕ0 + ϕ1

2
, ϕ0 ∨

ϕ0 + ϕ1

2

)
.

It follows from (8) together with the fact that 2n MA((ϕ0 + ϕ1)/2) > MA(ϕ0) that

dpp

(
ϕ0, ϕ0 ∨

ϕ0 + ϕ1

2

)
>
∫
X

(
ϕ0 −

ϕ0 + ϕ1

2
∨ ϕ0

)p
MA(ϕ0)
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and

dpp

(
ϕ0 + ϕ1

2
, ϕ0 ∨

ϕ0 + ϕ1

2

)
> 2−n

∫
X

(
ϕ0 + ϕ1

2
− ϕ0 ∨

ϕ0 + ϕ1

2

)p
MA(ϕ0).

Hence

dpp(ϕ0, ϕ1) > 2−2(p+n)

∫
X

[(
ϕ0 −

ϕ0 + ϕ1

2
∨ ϕ0

)p
+

(
ϕ0 + ϕ1

2
− ϕ0 + ϕ1

2
∨ ϕ0

)p]
MA(ϕ0)

> 21−3p−2n

∫
X

∣∣∣∣ϕ0 −
ϕ0 + ϕ1

2

∣∣∣∣p MA(ϕ0)

= 21−4p−2n

∫
X
|ϕ0 − ϕ1|p MA(ϕ0),

where in the last inequality we used the fact that |a− b|p 6 2p−1(ap + bp), for any a, b ∈ R+.
Reversing the roles of ϕ0 and ϕ1, we get

dpp(ϕ0, ϕ1) > 21−4p−2n

∫
X
|ϕ1 − ϕ0|p MA(ϕ1),

from which it follows that dpp(ϕ0, ϕ1) > 21−4p−2nIpp (ϕ0, ϕ1). 2

3.3 Controlling the supremum
It follows from previous results that the supremum of a bounded potential with locally bounded
Laplacian in Amp(α) is controlled by the distance to the base point.

Lemma 3.11. There exists C > 0, such that for all ϕ ∈ Hbd,

−24+2nd1(0, ϕ) 6 sup
X
ϕ 6 24+2n(n+ 1)d1(0, ϕ) + C.

Proof. If supX ϕ 6 0, then supX ϕ 6 0 6 (n+ 1)d1(0, ϕ) + C, while

−d1(0, ϕ) = E(ϕ) 6 sup
X
ϕ,

as follows from Proposition 3.12. We therefore assume in what follows that supX ϕ > 0. If ϕ > 0,
Proposition 3.12 yields

1

n+ 1

∫
X
ϕMA(0) 6 E(ϕ) = d1(0, ϕ).

It is a classical consequence of the ω-plurisubharmonicity [GZ05, Proposition 2.7] that there
exists C > 0 such that, for all ϕ ∈ PSH(X,ω),

sup
X
ϕ 6

∫
X
ϕMA(0) + C.

Thus, supX ϕ 6 (n+ 1)d1(0, ϕ) + C.
When supX ϕ > 0 but ϕ takes both positive and negative values, we set ψ = max(0, ϕ) and

observe that supX ψ = supX ϕ. Using Propositions 2.13 and 3.8 and Theorem 3.6, we obtain

d1(0,max(0, ϕ)) 6 2I1(0,max(0, ϕ)) 6 2I1(0, ϕ) 6 25−(2n−1)/pd1(0, ϕ).

The conclusion, therefore, follows from the previous case. 2
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Proposition 3.12. Assume ϕ,ψ ∈ Hbd. Then

d1(ϕ,ψ) = E(ϕ) + E(ψ)− 2E(ϕ ∨ ψ).

Proof. We proceed by approximation, so as to reduce to the Kähler case. By [Dar15,
Corollary 4.14], we know that

d1,ε(ϕ,ψ) = Eωε(ϕ) + Eωe(ψ)− 2Eωε(ϕ ∨ε ψ),

where ωε := ω + εωX , ϕ ∨ε ψ is the greatest ωε-psh function that lies below min(ϕ,ψ), and Eωε

is as in (6). Since (ωε + ddcϕ)n converges weakly to (ω+ ddcϕ)n, we have that Eωε(ϕ) converges
to E(ϕ) as ε goes to 0. The same holds for Eωε(ψ). We then need to ensure that Eωε(ϕ ∨ωε ψ)
converges to E(ϕ ∨ ψ). Denote φε := ϕ ∨ωε ψ and φ := ϕ ∨ ψ. Fix ε′ > ε. Using Lemma 2.5 and
the fact that φε is decreasing to φ, we get

0 > Eωε(φε)− Eωε(φ) =
1

(n+ 1)Vε

n∑
j=0

∫
X

(φε − φ)(ωε + ddcφε)
j ∧ (ωε + ddcφ)n−j

>
1

(n+ 1)Vε

n∑
j=0

∫
X

(φε′ − φ)(ω + ωX + ddcφε)
j ∧ (ω + ωX + ddcφ)n−j .

Letting first ε to zero and the ε′, we get the result. The conclusion then follows from the previous
arguments and Proposition 1.16. 2

4. The complete geodesic space (Ep(X,ω), dp)

4.1 Metric completion
For ϕ,ψ ∈ Ep(X,ω), we let ϕj , ψk denote sequences of elements in Hbd decreasing to ϕ,ψ,
respectively, and set

Dp(ϕ,ψ) := lim inf
j,k→+∞

dp(ϕj , ψk).

We list in the following proposition various properties of this extension.

Proposition 4.1.

(i) Dp is a distance on Ep(X,ω), which coincides with dp on Hbd.
(ii) The definition of Dp is independent of the choice of the approximants.

(iii) Dp is continuous along decreasing sequences in Ep(X,ω).

Moreover all previous inequalities comparing dp and Ip on Hbd extend to inequalities between
Dp and Ip on Ep(X,ω).

In the following, therefore, we will denote Dp by dp.

Proof. It is a tedious exercise to verify that Dp defines a ‘semi-distance’, i.e. satisfies all
properties of a distance but for the separation property. It follows from the definition of Dp

and Proposition 2.11 that Theorem 3.6 extends in a natural way to potentials in Ep(X,ω). If
Dp(ϕ,ψ) = 0, it therefore follows that Ip(ϕ,ψ) = 0, hence ϕ = ψ by the domination principle.

One can check that Dp coincides with dp on Hbd as follows: using part (ii), one can use the
constant sequences ϕj ≡ ϕ and ψk ≡ ψ to obtain this equality.
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We now prove part (ii). Let ϕj , uj (respectively ψk, vk) denote two sequences of elements
of Hbd decreasing to ϕ (respectively ψ). We can assume without loss of generality that these
sequences are intertwining, i.e. for all j, k ∈ N, there exists `, q ∈ N, such that ϕj 6 u` and ψk 6 vq,
with similar reverse inequalities. It follows from Proposition 3.8 and the triangle inequality that

|dp(ϕj , ψk)− dp(u`, vq)| 6 dp(ϕj , u`) + dp(ψk, vq)

6 2Ip(ϕj , u`) + 2Ip(ψk, vq).

Now, again by Proposition 3.8, we get

Ip(ϕj , u`)
p 6

∫
X

(u` − ϕj)p MA(ϕj) 6 (p+ 1)n
∫
X

(u` − ϕ)p MA(ϕ),

where the last inequality follows from [GZ07, Lemma 3.5]. The monotone convergence theorem,
therefore, yields Ip(ϕj , u`) + Ip(ψk, vq) → 0 as `, q → +∞, proving part (ii).

One shows part (iii) with similar arguments. The extension of the inequalities comparing dp
and Ip follows from [BEGZ10, Theorem 2.17]. 2

Proposition 4.2. The metric spaces (Epnorm(X,ω), dp) and (Ep(X,ω), dp) are complete. The
Mabuchi topology dp dominates the topology induced by I: if a sequence converges for dp, it
converges in energy.

Proof. Let (ϕj) ∈ Ep(X,ω)N be a Cauchy sequence for dp. We claim that there exists ψ ∈ Ep(X,ω),
such that

dp(ϕj , ψ) → 0 and I(ψ,ϕj) → 0.

Extracting and relabelling, we can assume that

dp(ϕj , ϕj+1) 6 2−j , j > 1.

Set ϕ−1 ≡ 0 and for k > j, ψj,k := ϕj ∨ ϕj+1 ∨ · · · ∨ ϕk, and observe that ψj,k := ϕj ∨ ψj,k+1.
Hence, the Pythagorean formula gives

dp(ϕj , ψj,k) 6 dp(ϕj , ψj+1,k) 6 2−j + dp(ϕj+1, ψj+1,k).

Repeating this argument, we get dp(ϕj , ψj,k) 6 2−j+1. We then have

dp(0, ψj,k) 6
j−1∑
`=−1

dp(ϕ`, ϕ`+1) + dp(ϕj , ψj,k)

6
j∑

`=−1

dp(ϕ`, ϕ`+1) + dp(ϕj+1, ψj+1,k)

6 dp(0, ϕ1) + 2 + 2−j+1.

It follows from Theorem 3.6 that Ip(0, ψj,k) is uniformly bounded, hence its decreasing limit
ψj := limk→+∞ ψj,k ∈ Ep(X,ω) [BEGZ10, Proposition 2.19]. From the above, we also have

dp(0, ψj) 6 dp(0, ϕ1) + 2 + 2−j+1.

Lemma 3.11 then ensures that (supX ψj)j is uniformly bounded, hence ψj increases a.e.
towards ψ ∈ PSH(X,ω). Also, ψ ∈ Ep(X,ω) thanks to [BEGZ10, Proposition 2.4]. Moreover,
[BEGZ10, Theorem 2.17] yields

I(ψ,ψj) + Ip(ψj , ψ) −→ 0.
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It follows, therefore, from Proposition 3.8 that dp(ψ,ψj) → 0 and

dp(ψ,ϕj) 6 dp(ψ,ψj) + dp(ψj , ϕj) 6 dp(ψ,ψj) + 2−j+1
→ 0.

Recalling that ψj 6 ϕj , it follows from the quasi-triangle inequality, Proposition 2.8, and
Theorem 3.6 that

I(ψ,ϕj) 6 cn{I(ψ,ψj) + I(ψj , ϕj)} 6 cn,p{I(ψ,ψj) + dp(ψj , ϕj)}→ 0. 2

Recall that the precompletion of a metric space (X, d) is the set of all Cauchy sequences CX
of X, together with the semi-distance

δ({xj}, {yj}) = lim
j→+∞

d(xj , yj).

The metric completion (X, d) of (X, d) is the quotient space CX/ ∼, where

{xj} ∼ {yj} ⇐⇒ δ({xj}, {yj}) = 0,

equipped with the induced distance, which we still denote d.
We are now taking advantage of the fact that Hbd lives inside the complete metric space

(Ep(α), dp) to conclude the following.

Theorem 4.3. The metric completion of (Hbd, dp) is isometric to (Ep(X,ω), dp).

Thanks to Theorem 3.6, an equivalent formulation of this statement is that the metric
completion of (Hbd, dp) is bi-Lipschitz equivalent to (Ep(X,ω), Ip).

Proof. We work at the level of normalized potentials,

Ep0 (X,ω) = {ϕ ∈ Ep(X,ω) | E(ϕ) = 0}

and H0 := {ϕ ∈ Hbd | ω + ddcϕ > 0 and E(ϕ) = 0}.
Since (Ep0 (X,ω), dp) is a complete metric space that contains H0, it suffices to show that the

latter is dense in Ep0 (X,ω). Fix ϕ ∈ Ep0 (X,ω) and let (ϕj) ∈ HN
0 be a sequence quasi-decreasing to

ϕ: the normalization condition E(ϕj) = 0 prevents us from getting a truly decreasing sequence;
however, ϕj+εj is decreasing where εj is a sequence of real numbers decreasing to zero. It follows
from Proposition 3.8 that

dp(ϕj+` + εj+l, ϕj + εj)
p 6

∫
X

(ϕj − ϕj+`)p MA(ϕj+`) + εj .

Now [GZ07, Lemma 3.5] shows that the latter is bounded from above by

(p+ 1)n
∫
X

(ϕj − ϕ)p MA(ϕ) + εj ,

which converges to zero as j → +∞, as follows from the monotone convergence theorem.
Therefore (ϕj) is a Cauchy sequence in (H0, dp) that converges to ϕ, since

0 6 dp(ϕ,ϕj + εj) 6 lim inf
`→+∞

dp(ϕj+`, ϕj) 6 2(1 + p)n/pIp(ϕj , ϕ) + ε
1/p
j → 0,

by Proposition 3.8 and [BEGZ10, Theorem 2.17].
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We note the following alternative approach of independent interest. One first shows that H0

is dense in the set of all bounded ω-psh functions. Given ϕ ∈ Ep0 (X,ω), one then considers its
‘canonical approximants’,

ϕj = max(ϕ,−j) + εj ∈ PSH0(X,ω) ∩ L∞(X) ,

which decrease towards ϕ ∈ Ep0 (X,ω). It follows from Proposition 3.8 that

dp(ϕj+`, ϕj)
p 6 o(1) +

∫
X

(ϕj − ϕj+`)p MA(ϕj+`)

= o(1) +

∫
(ϕ6−j−`)

`p MA(ϕj+`) +

∫
(−j−`<ϕ<−j)

(ϕj − ϕj+`)p MA(ϕ)

= o(1) +

∫
(ϕ6−j−`)

`p MA(ϕ) +

∫
(−j−`<ϕ<−j)

(ϕj − ϕj+`)p MA(ϕ)

6 o(1) +

∫
(ϕ<−j)

ϕp MA(ϕ),

where we have used the maximum principle, together with the fact that∫
(ϕ6−k)

MA(ϕk) =

∫
X

MA(ϕk)−
∫

(ϕ>−k)
MA(ϕk) =

∫
(ϕ6−k)

MA(ϕ),

since ϕ ∈ E(X,ω), as follows again from the maximum principle. We infer that (ϕj) is a Cauchy
sequence, which converges to ϕ. 2

We are now in a position to prove Theorem B of the introduction.

Corollary 4.4. Assume ω = π∗ωY , where ωY is a Hodge form. Then the metric completion
(Hα, dp) is isometric to (Ep(α), dp). Similarly, the metric completion (Hω, dp) is isometric to
(Ep(X,ω), dp).

Proof. Thanks to [CGZ13, Corollary C] we can ensure that the space Hω is dense in Hbd. The
result then follows from Theorem 4.3. 2

4.2 Weak geodesics
4.2.1 Finite-energy geodesics. We now define finite-energy geodesics joining two finite-

energy endpoints ϕ0, ϕ1 ∈ E1(X,ω). Fix j ∈ N and consider ϕj0, ϕ
j
1 bounded ω-psh functions

decreasing to ϕ0, ϕ1. We let ϕt,j denote the bounded geodesic joining ϕj0 to ϕj1. It follows from
the maximum principle that j 7→ ϕt,j is non-increasing. We can thus set

ϕt := lim
j→+∞

ϕt,j .

Definition 4.5. The map (t, x) 7→ ϕt(x) is the (finite-energy) Mabuchi geodesic joining ϕ0

to ϕ1.

The ϕt indeed form a family of finite-energy functions: since t 7→ E(ϕt,j) is affine
(Lemma 2.5), we infer, for all j ∈ N,

(1− t)E(ϕ0) + tE(ϕ1) 6 (1− t)E(ϕ
(j)
0 ) + tE(ϕ

(j)
1 ) = E(ϕt,j),

hence ϕt ∈ E1(X,ω) with (1− t)E(ϕ0) + tE(ϕ1) = E(ϕt).
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It follows from the maximum principle that ϕt is independent of the choice of the
approximants ϕj0, ϕ

j
1: if we set ϕ(x, z) := ϕt(x), z = t + is, then ϕ is a maximal ω-psh function

in X ×S, as a decreasing limit of maximal ω-psh functions. It is thus the unique maximal ω-psh
function in X × S with boundary values ϕ0, ϕ1.

When ϕ0, ϕ1 belong to Ep(X,ω), these weak geodesics are again metric geodesics in the
complete metric space (Ep(X,ω), dp).

Proposition 4.6. Given ϕ0, ϕ1 ∈ Ep(X,ω), the Mabuchi geodesic ϕ joining ϕ0 to ϕ1 lies in
Ep(X,ω) and satisfies, for all t, s ∈ [0, 1],

dp(ϕt, ϕs) = |t− s| dp(ϕ0, ϕ1).

Thus, (Ep(X,ω), dp) is a geodesic space.

Proof. We can assume, without loss of generality, that ϕ0, ϕ1 6 0. Fix j ∈ N and consider ϕj0, ϕ
j
1

bounded ω-psh functions decreasing to ϕ0, ϕ1. We let ϕt,j denote the bounded geodesic joining

ϕj0 to ϕj1, which decreases towards ϕt as j increases to +∞. Observe that

ϕ0 ∨ ϕ1 6 ϕj0 ∨ ϕj1 6 ϕt,j .

It therefore follows from [GZ07, Lemma 3.5] and Lemma 4.7 that∫
X

(−ϕt,j)p MA(ϕt,j) 6 (p+ 1)n
∫
X

(−ϕ0 ∨ ϕ1)p MA(ϕ0 ∨ ϕ1) < +∞ ,

hence the monotone convergence theorem yields
∫
X(−ϕt)p MA(ϕt) < +∞, for all t, i.e.

ϕt ∈ Ep(X,ω).
The remaining assertion is proved as in the case of bounded geodesics (Proposition 1.18). 2

Lemma 4.7. Assume 0 > ϕ0, ϕ1 ∈ Ep(X,ω). Then ϕ0 ∨ ϕ1 ∈ Ep(X,ω) and∫
X

(−ϕ0 ∨ ϕ1)p MA(ϕ0 ∨ ϕ1) 6
∫
X

(−ϕ0)p MA(ϕ0) +

∫
X

(−ϕ1)p MA(ϕ1).

Proof. It suffices to establish the claimed inequality when ϕ0, ϕ1 ∈ Hbd and then proceed by
approximation. It follows from Proposition 3.2 that

MA(ϕ0 ∨ ϕ1) 6 1{ϕ0∨ϕ1=ϕ0}MA(ϕ0) + 1{ϕ0∨ϕ1=ϕ1}MA(ϕ1).

The inequality follows, since ϕ0, ϕ1 6 0. 2

4.2.2 (Non-)uniqueness of geodesics. Fix ϕ0, ϕ1 ∈ E1(X,ω). If the sets (ϕ0 < ϕ1) and
(ϕ0 > ϕ1) are both non-empty, the function ϕ0 ∨ ϕ1 differs from ϕ0 and ϕ1 and it follows
from Proposition 3.4 that

d1(ϕ0, ϕ1) = d1(ϕ0, ϕ0 ∨ ϕ1) + d1(ϕ0 ∨ ϕ1, ϕ1),

thus the concatenation of the geodesic joining ϕ0 to ϕ0 ∨ ϕ1 and of that joining ϕ0 ∨ ϕ1 to ϕ1

gives another minimizing path joining ϕ0 to ϕ1.
When ϕ0 6 ϕ1, this argument no longer works, but there are nevertheless very many

minimizing paths, as shown by the following result.
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Lemma 4.8. Assume ϕ0, ϕ1 ∈ Hbd are such that ϕ0 6 ϕ1. Let (ψt)06t61 be a path joining ϕ0 to
ϕ1. Then

`1(ψ) = d1(ϕ0, ϕ1)⇐⇒ ψ̇t(x) > 0 for a.e. t, x.

In particular, t 7→ tϕ1(x) + (1 − t)ϕ0 is a minimizing path for d1, which is not a Mabuchi
geodesic, unless ϕ1 − ϕ0 is constant.

Proof. Observe that

`1(ψ) =

∫ 1

0

∫
X
|ψ̇t(x)|MA(ψt) dt >

∣∣∣∣∫ 1

0

∫
X
ψ̇t(x) MA(ψt) dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

d

dt
E(ψt) dt

∣∣∣∣ = |E(ϕ1)− E(ϕ0)| = d1(ϕ0, ϕ1),

where the last identity follows from Proposition 3.12. There is equality if and only if |ψ̇t(x)| =
ψ̇t(x) > 0 for a.e. (t, x) (the sign has to be positive because ψ0 = ϕ0 6 ϕ1 = ψ1).

In particular, t 7→ ψt = tϕ1(x) + (1 − t)ϕ0 has this property, since ψ̇t = ϕ1 − ϕ0 > 0. We
recall that, since ψt is a smooth path, the geodesic equation can be written as

ψ̈t MA(ψt) =
n

V
dψ̇t ∧ dcψ̇t ∧ ωn−1

ψt

(see § 1.1.1). Now ψ̈t = 0, hence t 7→ ψt is not a Mabuchi geodesic, unless d(ϕ1 − ϕ0) ∧ dc(ϕ1 −
ϕ0) ∧ ωn−1

ψt
= 0 for all t, i.e. ϕ1 − ϕ0 is constant. 2

Conversely, it follows from the work of Darvas [Dar17c, Lemma 6.12] (based on [CC02, § 2.4])
that geodesics are unique in E2(X,ω).

Theorem 4.9. Assume ω = π∗ωY , where ωY is a Hodge form. Then the space (E2(X,ω), d2) is
a CAT(0) space.

Complete CAT(0) spaces are also called Hadamard spaces. Recall that a CAT(0) space is
a geodesic space that has non-positive curvature in the sense of Alexandrov. Hadamard spaces
enjoy many interesting properties (uniqueness of geodesics, contractibility, convexity properties,
etc., see [BH99]).

Proof. By Corollary 4.4 we know that (E2(X,ω), d2) is the completion of (Hω, d2) and by
Proposition 4.6 that it is a geodesic metric space. [BH99, Exercise 1.9.1.c (p. 163)] ensures that
(E2(X,ω), d2) is a CAT(0) space if and only if the CN inequality of Bruhat and Tits [BT72] holds,
i.e. ∀P,Q,R ∈ E2(X,ω) and, for any M ∈ E2(X,ω) such that d2(Q,M) = d2(R,M) = d2(Q,R)/2

(in other words M = ϕQRt |t=1/2 where ϕQRt is the geodesic joining Q,R), one has

d2(P,M)2 6 1
2d2(P,Q)2 + 1

2d2(P,R)2 − 1
4d2(Q,R)2. (9)

Assume first that P,Q,R ∈ Hω ⊂Hωε . Then by [CC02, § 2.4] (see also [Dar17c, Lemma 6.12]),
we have that

d2,ε(P,Mε)
2 6 1

2d2,ε(P,Q)2 + 1
2d2,ε(P,R)2 − 1

4d2,ε(Q,R)2 ,

where Mε is the point of ε-geodesic joining Q,R such that d2,ε(Q,M) = d2,ε(R,M) =
d2,ε(Q,R)/2. Thanks to Theorem 1.13, the right-hand side in the inequality converges to the
right-hand side of (9) as ε goes to zero. We claim that d2,ε(P,Mε) converges to d(P,M).
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Observe first that Mε decreases to M , since ε-geodesics decreases as ε decrease to zero
(Proposition 1.6). Moreover, the triangle inequality yields |d2,ε(P,Mε) − d2,ε(P,M)| 6 d2,ε(M,
Mε). Since M,Mε are both bounded, it follows from Theorem 3.6 and Proposition 2.11 that
d2,ε′(M,Mε) → 0 as ε → 0. This proves the claim.

If P,Q,R ∈ E2(X,ω), we choose smooth approximants Pk, Qk, Rk ∈ Hω decreasing to P,Q,R.
The above arguments ensure that

d2(Pk,Mk)
2 6 1

2d2(Pk, Qk)
2 + 1

2d2(Pk, Rk)
2 − 1

4d2(Qk, Rk)
2. (10)

The comparison principle implies that Mk decreases to M as k goes to +∞. It then follows
from Propositions 3.8 and 4.1 that d2(M,Mk) → 0 as k goes to +∞. This, together with
Proposition 4.1, gives (9) when letting k → +∞. 2

5. Singular Kähler–Einstein metrics of positive curvature

The existence of singular Kähler–Einstein metrics of non-positive curvature has been established
in [EGZ09], generalizing the fundamental work of Aubin [Aub78] and Yau [Yau78]. They always
exist, provided the underlying variety has mild singularities and the first Chern class is non-
positive.

Singular Kähler–Einstein metrics of positive curvature are more difficult to construct. It is
already so in the smooth case [CDS15]. Their first properties have been obtained in [BBGZ13,
BBEGZ]. In § 5.3, pushing further these works, we provide a necessary and sufficient analytic
condition for their existence, generalizing a result of Tian [Tia97] and Phong et al. [PSSW08].

5.1 Log terminal singularities
A pair (Y,D) is the data of a connected normal compact complex variety Y and an effective
Q-divisor D, such that KY +D is Q-Cartier. We write

Y0 := Yreg\SuppD.

Given a log resolution π : X → Y of (Y,D) (which may be chosen to be an isomorphism over Y0),
there exists a unique Q-divisor

∑
i aiEi, whose push-forward to Y is −D, such that

KX = π∗(KY +D) +
∑
i

aiEi.

Definition 5.1. The pair (Y,D) is klt if aj > −1 for all j.

The same condition will then hold for all log resolutions of Y . When D = 0, one says that
Y is log terminal when the pair (Y, 0) is klt. We have the following analytic interpretation. Fix
r ∈ N∗ such that r(KY +D) is Cartier. If σ is a nowhere-vanishing section of the corresponding
line bundle over a small open set U of Y , then

(irn
2
σ ∧ σ̄)1/r (11)

defines a smooth, positive volume form on U0 := U ∩ Y0. If fj is a local equation of Ej around a
point of π−1(U), then

π∗(irn
2
σ ∧ σ̄)1/r =

∏
i

|fi|2ai dV
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locally on π−1(U) for some local volume form dV . Since
∑

iEi has normal crossings, this shows
that (Y,D) is klt if and only if each volume form of the form of (11) has locally finite mass near
singular points of Y .

The previous construction globalizes as follows.

Definition 5.2. Let (Y,D) be a pair and let φ be a smooth Hermitian metric on the Q-line
bundle −(KY + D). The corresponding adapted measure mesφ on Yreg is locally defined by
choosing a nowhere-zero section σ of r(KY +D) over a small open set U and setting

mesφ := (irn
2
σ ∧ σ)1/r/|σ|2/rrφ .

The point is that the measure mesφ does not depend on the choice of σ; hence, it is globally
defined. This discussion shows that

(Y,D) is klt ⇐⇒ mesφ has finite total mass on Y,

in which case we view it as a Radon measure on the whole of Y .

5.2 Kähler–Einstein metrics on log Fano pairs
Definition 5.3. A log Fano pair is a klt pair (Y,D) such that Y is projective and −(KY +D)
is ample.

Let (Y,D) be a log Fano pair. Fix a reference smooth strictly psh metric φ0 on −(KY +D),
with curvature ω0 and adapted measure µ0 = mesφ0 . We normalize φ0 so that µ0 is a probability
measure. The volume of (Y,D) is

V := c1(Y,D)n =

∫
X
ωn0 .

Definition 5.4. A Kähler–Einstein metric T for the log Fano pair (Y,D) is a finite-energy
current T ∈ c1(Y,D). such that Tn = V · µT .

We now list some important properties of these objects, established in [BBGZ13, Ber15,
BBEGZ].

(i) A Kähler–Einstein metric ω is automatically smooth on Y0, with continuous potentials on
Y , and it satisfies

Ric(ωKE ) = ωKE + [D] on Yreg.

(ii) The definition of a log Fano pair requires the singularities to be klt. This condition is, in
fact, necessary to obtain K–E metrics on Yreg.

(iii) The Kähler–Einstein equation reads (ω0 +ddcφ)n = e−φ+cµ0 for some constant c ∈ R. If we
choose a log resolution, the equation becomes (ω + ddcϕ)n = e−ϕ+cµ̃0, where ω = π∗ω0 is
semi-positive and big and µ̃0 =

∏
i |fi|2ai dV .

(iv) The potential ϕ belongs to Hω and maximizes the functional

F(ϕ) := E(ϕ) + log

[∫
X̃
e−ϕdµ̃0

]
.

Conversely, any maximizer of F is a Kähler–Einstein metric.
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(v) Two Kähler–Einstein metrics are connected by the flow of a holomorphic vector field that
leaves D invariant.

(vi) If the functional F is proper (i.e. if E(ϕj) → −∞ ⇒ F(ϕj) → −∞), then there exists a
unique Kähler–Einstein metric.

Here, [D] is the integration current on D|Yreg . Writing Ric(ωKE ) on Yreg implicitly means
that the positive measure ωnKE |Yreg corresponds to a singular metric on −KYreg , whose curvature
is then Ric(ωKE) by definition.

5.3 The analytic criterion
Following an idea of Darvas and Rubinstein [DR17], we now extend [Tia97, Theorem 1.6] and
[PSSW08] by proving the following.

Theorem 5.5. Let (Y,D) be a log Fano pair. It admits a unique Kähler–Einstein metric if and
only if there exists ε,M > 0 such that, for all ϕ ∈ Hnorm,

F(ϕ) 6 −εd1(0, ϕ) +M.

This is Theorem D of the introduction.

Proof. We are going to use Theorem B. Note that ωY ∈ c1(−KX − D) is a Hodge form. One
implication is given by [BBEGZ, Theorems 4.8 and 5.4]: if

F(ϕ) 6 −εd1(0, ϕ) +M,

then F is proper, hence there exists a unique Kähler–Einstein metric.
So we assume now that there exists ω, a unique Kähler–Einstein metric, which we take as

our base point of Hω. It is the unique maximizer of F on E1(X,ω),

F(0) = sup
ϕ∈E1(X,ω)

F(ϕ),

as follows from [BBGZ13, Theorem 6.6], [BBEGZ, Theorems 4.8 and 5.3].
Note that F is invariant by translations, so we actually consider the restriction of F on

E1
norm(X,ω) = {ϕ ∈ E1(X,ω), supX ϕ = 0}. Assume for contradiction that there is no ε > 0 such

that F(ϕ) 6 −εd1(0, ϕ) +M for all ϕ ∈ Hnorm, where we set M := F(0) + 1. Then we can find
a sequence (ϕj) ∈ HN

ω such that supX ϕj = 0 and

F(ϕj) > −
d1(0, ϕj)

j + 1
+ F(0) + 1.

If E(ϕj) does not blow up to −∞, we reach a contradiction: up to extracting and relabelling,
we can assume that E(ϕj) is bounded and ϕj converges to some ψ ∈ E1(X,ω). Since F is upper
semi-continuous, we infer F(ψ) > F(0) + 1, a contradiction.

So we assume now that E(ϕj) → −∞. It follows from Lemma 3.12 that dj := d1(0, ϕj) =
−E(ϕj) → +∞. We let (ϕt,j)06t6dj denote the Mabuchi geodesic with unit speed joining 0 to
ϕj and set ψj := ϕ1,j . Note that the arguments in Lemma 3.3 show that t 7→ ϕt,j is decreasing,
hence ϕj 6 ψj 6 0. In particular, supX ψj = 0, while, by definition, d1(0, ψj) = 1 = −E(ψj).

It now follows from Berndtsson’s convexity result [Ber15, § 6.2] and its generalization to the
singular context [BBEGZ, Theorem 11.1] that the map t 7→ F(ϕt,j) is concave. We infer

0 > F(ϕ1,j)−F(ϕ0,j) >
F(ϕdj ,j)−F(ϕ0,j)

dj
> − 1

j + 1
+

1

dj
,
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thus F(ψj) → F(0). This shows that (ψj) is a maximizing sequence for F , which therefore
strongly converges to 0, by [BBEGZ, Theorem 5.3.3]. This yields a contradiction, since
d1(0, ψj) = 1. 2
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