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Abstract. Throughout the processing and analysis of survey data, a ubiquitous issue nowadays
is that we are spoilt for choice when we need to select a methodology for some of its steps. The
alternative methods usually fail and excel in different data regions, and have various advantages
and drawbacks, so a combination that unites the strengths of all while suppressing the weaknesses
is desirable. We propose to use a two-level hierarchy of learners. Its first level consists of training
and applying the possible base methods on the first part of a known set. At the second level,
we feed the output probability distributions from all base methods to a second learner trained
on the remaining known objects. Using classification of variable stars and photometric redshift
estimation as examples, we show that the hierarchical combination is capable of achieving general
improvement over averaging-type combination methods, correcting systematics present in all
base methods, is easy to train and apply, and thus, it is a promising tool in the astronomical
“Big Data” era.

1. Introduction

In this era of massive surveys and resulting colossal databases, one of the hottest topics
is how to mine relevant information from these data as efficiently as possible. Scientists
are very inventive in constructing a wide diversity of methods to reach their goals and
deriving scientific results in many ways. Very often, the issue the data analyst faces is
not “How to answer my question?” but “Which of the n possible methods would solve
best my problem?”.

Two examples of this situation among many are the classification of astronomical
objects and the estimation of photometric redshifts. Both subjects have recently seen
the proliferation of methods used. For the first, there is nowadays an increasing variety
of supervised classifiers; in the astronomical literature, Dubath et al. (2011); Rimoldini
et al. (2012); Goldstein et al. (2015); Devine et al. (2016); Tramacere et al. (2016) rep-
resent a few examples. The Gaia Variability Processing Pipeline (Eyer et al. submitted)
applies three methods for the classification of variable stars, Bayesian Networks, Gaus-
sian Mixtures and Random Forest. Often, when many classifiers can be applied for the
task, generally well-performing ones might fail on some classes while generally lower-
performing others succeed on them, and it would be desirable to join the overall good
performance of the former with the class-specific good scores of the latter. For photomet-
ric redshifts, many variants for both the empirical and the template-fitting methodologies
exist (e.g. Ilbert et al. 2006; Brammer et al. 2008; Carliles et al. 2010; Carrasco Kind &
Brunner 2014b; Hoyle 2016), some of which (and more) are considered and tested for use
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in the Euclid Photometric Redshift pipeline. It would be useful to be able to merge the
complementary advantages of these.

We propose a high-dimensional meta-model to combine the output of several methods,
which is generally applicable in every study where several models are possible to use, each
of which gives a probability distribution of the parameter of interest as result. We use
the above two specific topics to demonstrate the capabilities of this hierarchical setup,
and show promising results on both of our examples.

2. Methodology

Assume that x1,...,xx € X represents the data about an object of interest. This
can be the multi-filter photometry of a galaxy, the attribute vector (amplitude, period,
Fourier coefficients, colour, absolute magnitude) characterising a variable star, or any
other informative set of measured values about a target. We wish to make inference
about a parameter f of the object; in the case of the galaxy, 6§ may be the redshift z,
in the case of the variable star, its type. Suppose moreover that we have M alternative
methods, each of which yields a probability distribution function (PDF) of the parameter
0:p1 (0| z1,...,2x),...,pm (0 | x1,...,2x). For photometric redshift estimation, these
methods can be any variants of both the template fitting and the empirical methods,
and for classification of variable stars, any supervised method from Gaussian mixtures
to Random Forest, SVM or neural networks. The outputs p;(6 | x1,...,xx) are the
probability distributions of the parameter of interest, conditioned on the observed data;
point estimates of the parameter and uncertainties can be defined in multiple ways.

Our goal is to learn a new, better PDF peomp (0|21, - - ., 2k ) of the true parameter value
by combining these outputs. We look for a mapping P : p1(0 | z1,...,2x),...,p:m (0 |
Tly.eoy T ) — Peomb (0|21, ..., 2k ). The most commonly used way for this is weighted
averaging of the outputs, often using different weights in different regions of X motivated
by Bayesian Model Averaging (BMA), Bayesian Model Combination (BMC) or other
(e.g. Dahlen et al. 2013; Carrasco Kind & Brunner 2014a). Instead of this, we propose
to learn this mapping by applying a nonparametric machine learning method, similar to
Wolpert’s proposition called “stacking” (Wolpert 1992), which consists of a second-level,
hierarchical training on the predictions from the base methods in a cross-validation-like
setup. Suppose we have a training set, which we divide into two parts, one called T
(training) and the other C' (combination).

Step 1. We train the M base methods on 7. We predict the PDFs on C, obtaining
M output PDFs, p1(0 | x1,...,2k),...,pm (0 | 21,...,2x) for each of our objects in C.
These can be represented each as the vector of values taken by the PDFs over a grid of
6, or in some basis function system (e.g. Carrasco Kind & Brunner 2014c).

Step 2. In the next stage, we train a nonparametric learning method using the con-
catenated PDF's obtained on the objects of C' and the corresponding known values of the
parameter of interest. The output of this second-level model is optimally a new prob-
ability distribution of the parameter. Thus, we learn the mapping leading to the final
estimate peomnb (01, ..., 2k ). Any machine-learning method can in principle be used
here, though there may be technical restrictions on the choice, such as an ability to deal
with high-dimensional data if its input PDFs have a high-dimensional representation.

Step 3. To predict a combined PDF of the parameter of interest of a new object, we
first apply the trained base learners of Step 1 to obtain their output PDF's, then feed the
concatenated PDFs into the trained combination model to obtain the combined result.

Optionally, the partition of the full training set into 7" and C' can be repeated randomly
R times, Steps 1-3 can be performed using the ensemble of the R models, and an average
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Figure 1. An example of the results from two base methods (Method 1 and 2, black solid and
dashed), the average (red), the optimal PDF obtainable with the data (blue), and the true value

(green).

estimate of final combined PDFs may replace the single peomn (0|21, - . ., 2x ). With such a
procedure, as usually with ensemble methods, we can obtain more stable results, and can
gather information about the uncertainty of the estimates due to training set selection.

Why can this hierarchical learning be expected to work better than BMA or BMC?
Figure 1 depicts the main reason. Suppose that we have two base methods (Method 1 and
2) that yield the probability distributions for the photometric redshift of a test galaxy,
shown in black solid and black dashed lines in the figure. The true redshift of the galaxy,
shown as a green spike, may be known from spectroscopic measurements, and indicates
a bias for Method 2 and a catastrophic error for Method 1. Both of these mistakes
can be characteristic of the method used (due perhaps to the chosen template set for
the template-fitting Method 2 and the dominance of low-redshift objects in the training
sample for the empirical Method 1), and not an implication of the data: with an “optimal”
method (better-adapted templates for Method 2, a balanced sample for Method 1 or a
third method), we might be able to reduce the bias and obtain the “best achievable”
estimate with our data (in blue in the figure). Combinations based on averaging can
never leave the grey area delimited by the two base PDFs, and cannot approximate well
the “best achievable” PDF. This remains so using any number of methods, or partitioning
of the input space X into several regions: at each x1,...,xx € X the combined PDF
will remain between the upper and lower envelope of the PDFs from the methods. In
other words, systematics common to the methods cannot be corrected by using a linear
combination. The nonparametric, unconstrained learning proposed above is in principle
able to learn also nonlinear relationships, and thus approximate the nonlinear mapping
from Method 1 and 2 to the “best achievable”.

Moreover, the outputs of the base methods are not independent. They use often the
same or overlapping data, and in many cases, are built on similar principles with possibly
only small differences; an example for this is the template-fitting photometric redshift
estimating methods using principal component decomposition or different pre-determined
sets of templates. Combining two such methods requires accounting for their dependency
as well. This dependence must be modelled when we seek the estimating mapping p (6 |
Tlyeos XK )yee (0] @1, 2x) — p(O]21,...,2K). Averaging does not take into
account this dependence structure, while the above proposed method is able to learn
and thus potentially make use of it. In other words, it may be able to “learn from the
mistakes of all”.
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Figure 2. The performance of the base learners compared to variants of the probabilistic in-
formation combination for variable star classification (left panel) and for photometric redshift
estimation (right panel). Dashed and dash-dotted lines with superposed empty symbols in the
left panel show the classwise accuracies (the fraction of correctly estimated class labels) of the
five base methods, averaged over the validation sets of 1000 random partitions of the Hipparcos
data. The solid lines combined with filled symbols present the performance of an average-based
combination (orange) and the hierarchical combination (red). In the right panel, the fraction
of catastrophic outliers is shown against the normalized median absolute deviation for the es-
timation of the photometric redshifts (for the definitions, see text). The bars represent the
(0.025,0.975) quantiles of the values obtained on the 500 random partitions.

3. Data and applications

We tested our procedure using the following general framework. We selected a known,
thoroughly analysed dataset from the literature for both variable star classification and
photometric redshift estimation, and drew random partitions over them into three equal
parts (T for base training, C' for combination, V for validation of the results) R times (for
variable stars, R = 1000, for photometric redshifts, R = 500). The procedure described
in Section 2 was run on each partition, using a Random Forest learner (Breiman 2001)
for the combination because of its stability, simplicity, insensitivity to tuning parameters
and ability to deal with high-dimensional data. For a fair comparison, we trained the
base methods also on the joined T'U C set, thus providing them the same amount of
training data as to the combination. We compare the combinations to these “doubly-
trained” base classifiers, in order to ensure that the improvement by the combination is
not simply due to the twice as large training set. We also computed a combination based
on weighted averages, where the weights were taken to be proportional of the fraction of
correct predictions by the method on set C'. The results presented are averaged over all
sets V.

3.1. Classification of variable stars

The used complete dataset consists of 1661 stars from the Hipparcos periodic variable
catalog (Perryman et al. 1997; European Space Agency 1997), and used in Dubath et al.
(2011). The class system was simplified to 15 classes, merging some of them (such as
all subtypes of classical Cepheids into CEPCL or Type-1I Cepheids into CEPT2) and
omitting very rare classes, obtaining finally classes that had each at least 20 members.
The objects were characterised by attributes derived from their light curve (period, am-
plitude, Fourier amplitudes and phases, statistical summaries such as skewness and kur-
tosis) complemented by visual and near-infrared colours (for details, see Dubath et al.
2011). We used five base classifiers: C5.0, Random Forest (RF), Gaussian Mixtures (GM),
Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA) (a textbook
summarizing them is Hastie et al. 2009).

https://doi.org/10.1017/51743921317000242 Published online by Cambridge University Press


https://doi.org/10.1017/S1743921317000242

Hierarchical information combination 43

The classwise performances of the base classifiers (trained on T'U C) are shown with
dashed and dash-dotted lines and empty symbols in the left panel of Figure 2. In particu-
lar, the overall weakest performance of LDA and its point of excellence, the classification
of the class EW (contact eclipsing binaries) are visible. An ideal combination should
preserve this excellence of LDA in identifying EW objects, while on the other classes,
maintain the overall good performance of the other classifiers. The hierarchical combi-
nation, shown in red solid line, is very close to achieve this: either it exceeds all the base
classifiers, or is very near to the maximum accuracy, including on the EW class. The
combination by average in comparison is somewhat weaker on several classes. The mean
global accuracies are 82.5% (RF), 81% (C5.0), 79.9% (GM and SVM), 77.9% (LDA) for
the base classifiers, while they are 82.2% for the averaging combination and 85.8% for
the hierarchical combination. This shows an average improvement of 3.3% by the latter
over the best base method. The detailed results on the 1000 random partitions show that
it yields improvement over the best base classifier in all partitions.

3.2. Photometric redshift estimation

The data, containing w, g, 7,1, z,J, H and K, photometry of 3331 galaxies, are a subset
from field D1 of the WIRDS-CHFTLS database (Bielby et al. 2012), having spectroscopic
redshifts from the VIMOS-VLT Deep and UltraDeep surveys (Le Fevre et al. 2005, 2013).
To estimate the redshift of the objects, we implemented a least squares template fitting
algorithm without photometric zero-point calibration, using the COSMOS templates
with no template calibration or added emission lines, and an empirical RF regression,
using only the default tuning parameters proposed by Breiman (2001). We trained these
base methods (both on only T and on T U C), the hierarchical and several average-
based combinations{ on the 500 random partitions. To produce the presented plots, we
computed several point estimates of z from the PDF's provided by the base methods and
by the combinations for all objects when they were in set V', and selected the best of
these (mean of the PDF for the template fit, median of the PDF for the base RF and
the combinations). In what follows, this best point estimate is denoted by z,,, and the
spectroscopic redshift which is considered to be the truth by zq,.

The right panel of Figure 2 shows the catastrophic outlier rate (the fraction of objects
for which |zs, — zpn|/(1 4+ 2zsp) > 0.15) against the normalized median absolute deviation
(defined as oxmap = 1.48 x median|zgp, — Zpn|/(1+ 2sp)). The best methods fall therefore
at the lower left corner of the plot. The base methods have by far the largest scatter,
and the base RF models (both trained on T and T U C) the largest outlier fraction.
The improvement that can be obtained by using a larger training set with the same
single method can be seen when comparing the two RF models: both the scatter and
the outlier fraction decreases notably. Not so much, however, as obtained by variants of
the averaging combination (pink triangle, violet square and yellow dot). The overall best
results, however, are furnished by the hierarchical combination, with a further strong
decrease of the scatter. It is remarkable that even though the second-level method in
the hierarchical combination is an empirical machine-learning one, and therefore just as
hampered by the underrepresentation of high-z objects as the base RF, it still improves
even on the outlier fraction of the template fitting base method.

Figure 3 shows the z-dependent systematic bias of the template fits (left panel) and
the high scatter and outlier rate of the empirical method (middle panel), when compared
to the ideal z,, = 2z line (red). The hierarchical combination (right panel) corrects

1 These included a weighted and a non-weighted mean of the base PDFs trained on 7', and
the median of the two point estimates from the base methods. The weights for the first were
defined to be proportional to the fraction of catastrophic outliers on C' (see the definition later).
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Figure 3. Visualization of the results of hierarchical combination through the best point esti-
mates versus the spectroscopic redshifts. Left panel: template fitting method, with the mean of
the PDFs as z,,. Middle panel: empirical method, with the median of the PDFs as z,,. Right
panel: hierarchical combination, with the median of the PDF's as z,,. The red line corresponds
to zpn = 2zsp. The blue circle emphasizes the neighbourhood where both base methods are biased
downwards, which is visibly decreased by the combination.

the systematic biases of the first, and shrinks the scatter and decreases the number of
catastrophic outliers in the high-z regime of the second. Thus, it is indeed able to pick
the best of both method, while learning to ignore their systematic failures. Moreover, it
is able to do what an averaging method cannot: around redshifts 1.2-1.5, where both base
methods are downward biased (blue circle), it largely removes this bias. The learning here
is based on simultaneous presence of specific patterns in the output of the two methods,
not on a straightforward pointwise averaging.

4. Conclusions

Our paper presents a general hierarchical information combination method, which is
aimed at the efficient extraction of useful information from the data. The first level of the
hierarchy trains several base methods (classifiers, regression models or any other statisti-
cal or machine-learning model) producing each a probability distribution of the parameter
of interest. The second level of the hierarchy consists of training a second nonparametric
machine-learning model (e.g. Random Forest) on the outputs of the base models. The
experiments on variable star classification and photometric redshift estimation show the
following:

e The information in a given training set about a parameter is more efficiently ex-
ploited if the set is divided into two parts in order to train a hierarchical combination
model using several base models than to train a single model with the complete training
set.

e In both of our examples, we achieved always improvement in the global results over
the best single model.

e The hierarchical combination is able also to correct systematics and biases where all
the base models are similarly biased.

e The hierarchical combination is very general: it can be applied for every study where
there are alternative methods providing different views of the data, producing probability
distributions as output.

e The choice of the combiner, though it must be able to model nonparametric relation-
ships and high-dimensional data, is largely free. In our study, we used Random Forest,
which in addition was little sensitive to tuning parameters.
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In conclusion, our study shows on two examples that accepting diversity and unifying its
various strengths into a synthesis appears the best strategy — certainly in astronomical
data analysis.
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