

A logarithmic lower bound for the second Bohr radius

Nilanjan Das

Abstract. The purpose of this note is to obtain an improved lower bound for the multidimensional Bohr radius introduced by L. Aizenberg (2000, *Proceedings of the American Mathematical Society* 128, 1147–1155), by means of a rather simple argument.

Bohr's theorem [\[4\]](#page-3-0) states that for each bounded holomorphic self-mapping $f(z)$ = $\sum_{k=0}^{\infty} a_k z^k$ of the open unit disk \mathbb{D} , we have

$$
\sum_{k=0}^{\infty} |a_k| \left(\frac{1}{3}\right)^k \le 1,
$$

and this quantity $1/3$ is the best possible. In an attempt to generalize this result in higher dimensions, the *first Bohr radius K*(*R*) for a bounded complete Reinhardt domain $R \subset \mathbb{C}^n$ was defined in [\[3\]](#page-3-1) by Boas and Khavinson. Namely, $K(R)$ is the supremum of all $r \in [0,1]$ such that for each holomorphic function $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$ on *R* with $|f(z)|$ ≤ 1 for all $z \in R$, we have

$$
\sum_{\alpha} |a_{\alpha} z^{\alpha}| \le 1
$$

for all $z \in rR$. Let us clarify here that a complete Reinhardt domain *R* in \mathbb{C}^n is a domain such that if $z = (z_1, z_2, \ldots, z_n) \in R$, then $(\lambda_1 z_1, \lambda_2 z_2, \ldots, \lambda_n z_n) \in R$ for all $\lambda_i \in \overline{\mathbb{D}}, 1 \leq$ $i \leq n$. Of particular interest to us are the Reinhardt domains

$$
B_{\ell_p^n} := \{ z \in \mathbb{C}^n : ||z||_p < 1 \},\
$$

where ℓ_p^n is the Banach space \mathbb{C}^n equipped with the *p*-norm $||z||_p := (\sum_{k=1}^n |z_k|^p)^{1/p}$ for $1 \le p < \infty$, while $||z||_{\infty} := \max_{1 \le k \le n} |z_k|$. Also, we use the standard multi-index notation: *α* denotes an *n*-tuple $(α_1, α_2, ..., α_n)$ of nonnegative integers, $|α| := α_1 +$ $\alpha_2 + \cdots + \alpha_n$, and for $z = (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n$, z^{α} is the product $z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_n^{\alpha_n}$. Indeed, *K*(\mathbb{D}) = 1/3, and it is known from [\[3,](#page-3-1) Theorem 3] that *K*(*R*) ≥ *K*($B_{\ell_{\infty}}$) for any complete Reinhardt domain *R*. Through the substantial progress made in a series of papers from 1997 to 2011, it was finally concluded by Defant and Frerick in [\[5\]](#page-3-2) that

Received by the editors June 16, 2023; revised June 20, 2023; accepted June 21, 2023. Published online on Cambridge Core June 27, 2023.

The author of this article is supported by a Research Associateship provided by the Stat-Math Unit of ISI Kolkata.

AMS subject classification: **32A05**, **32A10**.

Keywords: Bohr's theorem, holomorphic functions, Minkowski spaces.

there exists a constant $c \ge 0$ such that for each $p \in [1, \infty]$,

$$
(0.1) \qquad \frac{1}{c} \left(\frac{\log n}{n} \right)^{1 - \frac{1}{\min\{p, 2\}}} \le K(B_{\ell_p^n}) \le c \left(\frac{\log n}{n} \right)^{1 - \frac{1}{\min\{p, 2\}}}
$$

for all $n > 1$.

On the other hand, Aizenberg [\[1\]](#page-3-3) introduced a *second Bohr radius B*(*R*) for a bounded complete Reinhardt domain $R \subset \mathbb{C}^n$, which is the largest $r \in [0,1]$ such that for each holomorphic function $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$ on *R* satisfying $|f(z)| \le 1$ for all $z \in R$, we have

$$
\sum_{\alpha} \sup_{z \in rR} |a_{\alpha} z^{\alpha}| \leq 1.
$$

Clearly, $B(\mathbb{D}) = 1/3$ and $B(B_{\ell_{\infty}^n}) = K(B_{\ell_{\infty}^n})$. It was also shown in [\[1\]](#page-3-3) that $B(R) \ge 1 - \ell_{\infty}$ $(2/3)^{1/n}$ > 1/(3*n*) for any bounded complete Reinhardt domain $R \subset \mathbb{C}^n$ (*n* ≥ 2), and that

(0.2)
$$
B(B_{\ell_1^n}) < \frac{0.446663}{n}.
$$

Further advances were made by Boas in [\[2\]](#page-3-4), showing that for all $p \in [1, \infty]$,

$$
(0.3) \qquad \frac{1}{3}\left(\frac{1}{n}\right)^{\frac{1}{2}+\frac{1}{\max\{p,2\}}}\leq B(B_{\ell_p^n})<4\left(\frac{\log n}{n}\right)^{\frac{1}{2}+\frac{1}{\max\{p,2\}}}(n>1).
$$

To the best of our knowledge, except for the subsequent article [\[6\]](#page-3-5), the problem of estimating $B(B_{\ell_p^n})$ has not been considered ever since. This is probably because no specific application of this second Bohr radius seems to be known. However, we believe that this is a problem of independent interest. Our aim is to point out that the results of [\[2,](#page-3-4) [5\]](#page-3-2) readily yield a much refined lower bound for *B*(*B*-**n ^p**). This bound shows that analogous to $K(B_{\ell_p^n}),$ $B(B_{\ell_p^n})$ must also contain a log n term. It may also be noted that for a variety of bounded complete Reinhardt domains $R \subset \mathbb{C}^n$, parts of our arguments could be adopted to derive results for *B*(*R*) from previously known results for $K(R)$.

To facilitate our discussion, let us now denote by $\chi_{\rm mon}(\mathcal{P}(^m\ell_p^n))$ the unconditional basis constant associated with the basis consisting of the monomials *z^α*, for the space $\mathcal{P}(m \ell_p^n)$ of *m*-homogeneous complex-valued polynomials *P* on ℓ_p^n . This space is equipped with the norm $||P|| = \sup_{||z||_p \leq 1} |P(z)|$. We mention here that a Schauder basis (x_n) of a Banach space *X* is said to be unconditional if there exists a constant $c \geq 0$ such that

$$
\left\| \sum_{k=1}^t \varepsilon_k \alpha_k x_k \right\| \leq c \left\| \sum_{k=1}^t \alpha_k x_k \right\|
$$

for all $t \in \mathbb{N}$ and for all ε_k , $\alpha_k \in \mathbb{C}$ with $|\varepsilon_k| \leq 1, 1 \leq k \leq t$. The best constant *c* is called the unconditional basis constant of (x_n) . Now, it is known from [\[6,](#page-3-5) p. 56] (see also Lemma 2.1 of $[6]$) that

92 N. Das

(0.4)
$$
\chi_{\text{mon}}(\mathcal{P}(m \ell_p^n)) = \frac{1}{(K_m(B_{\ell_p^n}))^m},
$$

where $K_m(B_{\ell_p^n})$ is the supremum of all $r \in [0,1]$ such that for each m -homogeneous complex-valued polynomial $P(z) = \sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ with $|P(z)| \le 1$ for all $z \in B_{\ell_p^n}$, we have $\sum_{|\alpha|=m} |a_{\alpha}z^{\alpha}| \le 1$ for all $z \in rB_{\ell_{p}^{n}}$. Clearly, $K_{m}(B_{\ell_{p}^{n}}) \ge K(B_{\ell_{p}^{n}})$. These facts are instrumental in proving Theorem [0.1.](#page-2-0)

Theorem 0.1 *There exists a constant* $C > 0$ *such that for each* $p \in [1, \infty]$ *,*

$$
B(B_{\ell_p^n}) \geq C \frac{(\log n)^{1-\frac{1}{\min\{p,2\}}}}{n^{\frac{1}{2}+\frac{1}{\max\{p,2\}}}}
$$

for all $n > 1$ *.*

Proof It is observed in [\[2,](#page-3-4) p. 335] that

$$
B(B_{\ell_p^n})\geq \frac{B(B_{\ell_\infty^n})}{n^{\frac{1}{p}}}.
$$

Since $B(B_{\ell_{\infty}^{n}}) = K(B_{\ell_{\infty}^{n}}) \ge C(\sqrt{\log n}/\sqrt{n})$ for some constant $C > 0$ (see [\(0.1\)](#page-1-0)), the proof for the case $p \in [2, \infty]$ follows immediately from the above inequality.

For the case $p \in [1, 2)$, a little more work is needed. Given any holomorphic function $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$ on $B_{\ell_p^n}$ with $|f(z)| \le 1$ for all $z \in B_{\ell_p^n}$, it is evident that for any fixed $z \in B_{\ell_p^n}$, $h(u) := f(uz) = a_0 + \sum_{m=1}^{\infty} (\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}) u^m : \mathbb{D} \to \overline{\mathbb{D}}$ is a holomorphic function of $u \in \mathbb{D}$. The well-known Wiener's inequality asserts that

$$
\sup_{\|z\|_p\leq 1} \left|\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}\right| \leq 1-|a_0|^2
$$

for all $m \ge 1$. The definition of $\chi_{\text{mon}}(\mathcal{P}(m \ell_p^n))$ guarantees that for the choices of $\varepsilon_\alpha s$ such that $\varepsilon_{\alpha} a_{\alpha} = |a_{\alpha}|$,

$$
\left(\sum_{|\alpha|=m} |a_{\alpha}|\right) \frac{1}{n^{\frac{m}{p}}} = \sum_{|\alpha|=m} |a_{\alpha}| \left(\frac{1}{n^{\frac{1}{p}}}\right)^{\alpha} \le \sup_{\|z\|_{p} \le 1} \left|\sum_{|\alpha|=m} \varepsilon_{\alpha} a_{\alpha} z^{\alpha}\right|
$$

$$
\le \chi_{\text{mon}}(\mathcal{P}(m \ell_{p}^{n})) \sup_{\|z\|_{p} \le 1} \left|\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}\right|
$$

$$
\le (1-|a_{0}|^{2}) \frac{1}{(K_{m}(B_{\ell_{p}^{n}}))^{m}}
$$

(see (0.4)). That is to say,

$$
\sum_{|\alpha|=m}|a_{\alpha}| \leq (1-|a_0|^2)\frac{n^{\frac{m}{p}}}{(K_m(B_{\ell_p^n}))^m} \leq (1-|a_0|^2)\frac{n^{\frac{m}{p}}}{(K(B_{\ell_p^n}))^m}.
$$

A little computation reveals that

$$
\sum_{\alpha} \sup_{z \in rB_{\ell_p^n}} |a_{\alpha} z^{\alpha}| = |a_0| + \sum_{m=1}^{\infty} r^m \sum_{|\alpha| = m} |a_{\alpha}| \left(\frac{\alpha^{\alpha}}{m^m}\right)^{\frac{1}{p}}
$$

$$
\leq |a_0| + \sum_{m=1}^{\infty} r^m \sum_{|\alpha| = m} |a_{\alpha}|
$$

$$
\leq |a_0| + (1 - |a_0|^2) \sum_{m=1}^{\infty} \left(\frac{rn^{\frac{1}{p}}}{K(B_{\ell_p^n})}\right)^m.
$$

It is clear from the above inequality that $\sum_{\alpha} \sup_{z \in rB_{\ell_p^n}} |a_{\alpha} z^{\alpha}| \leq 1$ whenever

$$
r\leq \frac{1}{3}\left(\frac{K(B_{\ell_p^n})}{n^{\frac{1}{p}}}\right),\,
$$

i.e., $B(B_{\ell_p^n}) \ge K(B_{\ell_p^n})/(3n^{1/p})$. In view of the inequalities [\(0.1\)](#page-1-0), this completes the \blacksquare

Remark 0.2 It should be mentioned that the logarithmic term in the known upper bound for $B(B_{\ell_p^n})$ in [\(0.3\)](#page-1-2) differs from the logarithmic term in the lower bound for $B(B_{\ell_{p}^{n}})$ obtained in Theorem [0.1.](#page-2-0) Hence, it remains unknown whether this lower bound is asymptotically optimal. Let us also note that for $p = 1$, [\(0.3\)](#page-1-2) asserts that $B(B_{\ell_1^n})$ is bounded above by $(4\log n)/n$, but from [\(0.2\)](#page-1-3) it is clear that the $4\log n$ term can be replaced by a constant less than 1. Therefore, it seems that there is room for improvement on the upper bound of $B(B_{\ell_p^n})$ in [\(0.3\)](#page-1-2) as well, at least for a certain range of *p*.

Acknowledgments The author thanks the reviewer for many constructive comments and suggestions.

References

- [1] L. Aizenberg, *Multidimensional analogues of Bohr's theorem on power series*. Proc. Amer. Math. Soc. **128**(2000), no. 4, 1147–1155.
- [2] H. P. Boas, *Majorant series. Several complex variables (Seoul, 1998)*. J. Korean Math. Soc. **37**(2000), no. 2, 321–337.
- [3] H. P. Boas and D. Khavinson, *Bohr's power series theorem in several variables*. Proc. Amer. Math. Soc. **125**(1997), no. 10, 2975–2979.
- [4] H. Bohr, *A theorem concerning power series*. Proc. Lond. Math. Soc. **13**(1914), no. 2, 1–5.
- [5] A. Defant and L. Frerick, *The Bohr radius of the unit ball of* ℓ_p^n . J. Reine Angew. Math. **660**(2011), 131–147.
- [6] A. Defant, D. García, and M. Maestre, *Estimates for the first and second Bohr radii of Reinhardt domains*. J. Approx. Theory **128**(2004), no. 1, 53–68.

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute Kolkata, Kolkata 700108, India e-mail: nilanjand7@gmail.com