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A logarithmic lower bound for the second
Bohr radius
Nilanjan Das

Abstract. The purpose of this note is to obtain an improved lower bound for the multidimensional
Bohr radius introduced by L. Aizenberg (2000, Proceedings of the American Mathematical Society 128,
1147–1155), by means of a rather simple argument.

Bohr’s theorem [4] states that for each bounded holomorphic self-mapping f (z) =
∑∞k=0 ak zk of the open unit disk D, we have

∞

∑
k=0
∣ak ∣ (

1
3
)

k
≤ 1,

and this quantity 1/3 is the best possible. In an attempt to generalize this result in
higher dimensions, the first Bohr radius K(R) for a bounded complete Reinhardt
domain R ⊂ Cn was defined in [3] by Boas and Khavinson. Namely, K(R) is the
supremum of all r ∈ [0, 1] such that for each holomorphic function f (z) = ∑α aα zα

on R with ∣ f (z)∣ ≤ 1 for all z ∈ R, we have

∑
α
∣aα zα ∣ ≤ 1

for all z ∈ rR. Let us clarify here that a complete Reinhardt domain R inC
n is a domain

such that if z = (z1 , z2 , . . . , zn) ∈ R, then (λ1z1 , λ2z2 , . . . , λnzn) ∈ R for all λ i ∈ D, 1 ≤
i ≤ n. Of particular interest to us are the Reinhardt domains

B�n
p ∶= {z ∈ C

n ∶ ∥z∥p < 1},

where �n
p is the Banach space C

n equipped with the p-norm ∥z∥p ∶= (∑n
k=1 ∣zk ∣p)1/p

for 1 ≤ p < ∞, while ∥z∥∞ ∶=max1≤k≤n ∣zk ∣. Also, we use the standard multi-index
notation: α denotes an n-tuple (α1 , α2 , . . . , αn) of nonnegative integers, ∣α∣ ∶= α1 +
α2 +⋯+ αn , and for z = (z1 , z2 , . . . , zn) ∈ Cn , zα is the product zα1

1 zα2
2 ⋯zαn

n . Indeed,
K(D) = 1/3, and it is known from [3, Theorem 3] that K(R) ≥ K(B�n

∞
) for any

complete Reinhardt domain R. Through the substantial progress made in a series of
papers from 1997 to 2011, it was finally concluded by Defant and Frerick in [5] that
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there exists a constant c ≥ 0 such that for each p ∈ [1,∞],

1
c
( log n

n
)

1− 1
min{p,2}

≤ K(B�n
p) ≤ c ( log n

n
)

1− 1
min{p,2}

(0.1)

for all n > 1.
On the other hand, Aizenberg [1] introduced a second Bohr radius B(R) for a

bounded complete Reinhardt domain R ⊂ Cn , which is the largest r ∈ [0, 1] such that
for each holomorphic function f (z) = ∑α aα zα on R satisfying ∣ f (z)∣ ≤ 1 for all z ∈ R,
we have

∑
α

sup
z∈rR
∣aα zα ∣ ≤ 1.

Clearly, B(D) = 1/3 and B(B�n
∞
) = K(B�n

∞
). It was also shown in [1] that B(R) ≥ 1 −

(2/3)1/n > 1/(3n) for any bounded complete Reinhardt domain R ⊂ Cn(n ≥ 2), and
that

B(B�n
1
) < 0.446663

n
.(0.2)

Further advances were made by Boas in [2], showing that for all p ∈ [1,∞],

1
3
( 1

n
)

1
2+

1
max{p,2}

≤ B(B�n
p) < 4( log n

n
)

1
2+

1
max{p,2}

(n > 1).(0.3)

To the best of our knowledge, except for the subsequent article [6], the problem of
estimating B(B�n

p) has not been considered ever since. This is probably because no
specific application of this second Bohr radius seems to be known. However, we
believe that this is a problem of independent interest. Our aim is to point out that
the results of [2, 5] readily yield a much refined lower bound for B(B�n

p). This bound
shows that analogous to K(B�n

p), B(B�n
p) must also contain a log n term. It may also

be noted that for a variety of bounded complete Reinhardt domains R ⊂ Cn , parts of
our arguments could be adopted to derive results for B(R) from previously known
results for K(R).

To facilitate our discussion, let us now denote by χmon(P(m�n
p)) the unconditional

basis constant associated with the basis consisting of the monomials zα , for the
space P(m�n

p) of m-homogeneous complex-valued polynomials P on �n
p . This space

is equipped with the norm ∥P∥ = sup∥z∥p≤1 ∣P(z)∣. We mention here that a Schauder
basis (xn) of a Banach space X is said to be unconditional if there exists a constant
c ≥ 0 such that

∥
t
∑
k=1

εk αk xk∥ ≤ c ∥
t
∑
k=1

αk xk∥

for all t ∈ N and for all εk , αk ∈ C with ∣εk ∣ ≤ 1, 1 ≤ k ≤ t. The best constant c is called
the unconditional basis constant of (xn). Now, it is known from [6, p. 56] (see also
Lemma 2.1 of [6]) that
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χmon(P(m�n
p)) =

1
(Km(B�n

p))m ,(0.4)

where Km(B�n
p) is the supremum of all r ∈ [0, 1] such that for each m-homogeneous

complex-valued polynomial P(z) = ∑∣α∣=m aα zα with ∣P(z)∣ ≤ 1 for all z ∈ B�n
p , we

have ∑∣α∣=m ∣aα zα ∣ ≤ 1 for all z ∈ rB�n
p . Clearly, Km(B�n

p) ≥ K(B�n
p). These facts are

instrumental in proving Theorem 0.1.

Theorem 0.1 There exists a constant C > 0 such that for each p ∈ [1,∞],

B(B�n
p) ≥ C (log n)1− 1

min{p,2}

n
1
2+

1
max{p,2}

for all n > 1.

Proof It is observed in [2, p. 335] that

B(B�n
p) ≥

B(B�n
∞
)

n
1
p

.

Since B(B�n
∞
) = K(B�n

∞
) ≥ C(

√
log n/

√
n) for some constant C > 0 (see (0.1)), the

proof for the case p ∈ [2,∞] follows immediately from the above inequality.
For the case p ∈ [1, 2), a little more work is needed. Given any holomorphic

function f (z) = ∑α aα zα on B�n
p with ∣ f (z)∣ ≤ 1 for all z ∈ B�n

p , it is evident that for
any fixed z ∈ B�n

p , h(u) ∶= f (uz) = a0 +∑∞m=1 (∑∣α∣=m aα zα)um ∶ D→ D is a holo-
morphic function of u ∈ D. The well-known Wiener’s inequality asserts that

sup
∥z∥p≤1

������������
∑
∣α∣=m

aα zα
������������
≤ 1 − ∣a0∣2

for all m ≥ 1. The definition of χmon(P(m�n
p)) guarantees that for the choices of εαs

such that εα aα = ∣aα ∣,

⎛
⎝ ∑∣α∣=m

∣aα ∣
⎞
⎠

1
n

m
p
= ∑
∣α∣=m
∣aα ∣ (

1
n

1
p
)

α

≤ sup
∥z∥p≤1

������������
∑
∣α∣=m

εα aα zα
������������

≤ χmon(P(m�n
p)) sup

∥z∥p≤1

������������
∑
∣α∣=m

aα zα
������������

≤ (1 − ∣a0∣2)
1

(Km(B�n
p))m

(see (0.4)). That is to say,

∑
∣α∣=m
∣aα ∣ ≤ (1 − ∣a0∣2)

n
m
p

(Km(B�n
p))m ≤ (1 − ∣a0∣2)

n
m
p

(K(B�n
p))m .
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A little computation reveals that

∑
α

sup
z∈rB�n

p

∣aα zα ∣ = ∣a0∣ +
∞

∑
m=1

rm ∑
∣α∣=m
∣aα ∣ (

αα

mm )
1
p

≤ ∣a0∣ +
∞

∑
m=1

rm ∑
∣α∣=m
∣aα ∣

≤ ∣a0∣ + (1 − ∣a0∣2)
∞

∑
m=1

⎛
⎝

rn
1
p

K(B�n
p)
⎞
⎠

m

.

It is clear from the above inequality that∑α supz∈rB�n
p
∣aα zα ∣ ≤ 1 whenever

r ≤ 1
3
(

K(B�n
p)

n
1
p
) ,

i.e., B(B�n
p) ≥ K(B�n

p)/(3n1/p). In view of the inequalities (0.1), this completes the
proof. ∎

Remark 0.2 It should be mentioned that the logarithmic term in the known upper
bound for B(B�n

p) in (0.3) differs from the logarithmic term in the lower bound for
B(B�n

p) obtained in Theorem 0.1. Hence, it remains unknown whether this lower
bound is asymptotically optimal. Let us also note that for p = 1, (0.3) asserts that
B(B�n

1
) is bounded above by (4 log n)/n, but from (0.2) it is clear that the 4 log n term

can be replaced by a constant less than 1. Therefore, it seems that there is room for
improvement on the upper bound of B(B�n

p) in (0.3) as well, at least for a certain
range of p.
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