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Abstract

Various genetic models have been proposed for the supergiant Proterozoic Broken Hill Pb–Zn–
Ag deposit largely based on geological and geochronological evidence. Here we present Zn, Cd
and S isotope compositions as well as Zn/Cd ratios of sphalerite from Broken Hill and minor
Broken Hill-type deposits (Australia) to help constrain these models but focus on syngenetic
and magmatic–hydrothermal processes, since epigenetic models can be rejected because the
orebodies were deformed and metamorphosed by the Olarian Orogeny. Values of δ34SVCDT,
δ66ZnAA-ETH and δ114CdNIST SRM 3108 for sphalerite from Broken Hill range from þ0.27 to
þ4.73‰, −1.15 to þ0.46‰ and −0.48 to þ0.01‰, respectively, while those for the smaller
Broken Hill-type deposits range from −5.11 to þ1.28‰, −0.97 to þ0.10‰ and −1.02 to
þ2.59‰, respectively. By combining published S isotope data of sulfides from the Broken
Hill district with those obtained here, the sources of sulfur via thermochemical sulfate reduc-
tion, bacterial sulfate reduction and amagmatic origin cannot be distinguished. However, when
the S isotope compositions are considered along with the broad range of Cd and Zn isotope data
for sphalerite, which are among the lightest and heaviest yet reported for a sulfide deposit, the
isotopic datasets are consistent with low-temperature biogenic processes associated with syn-
genetic deposition of sulfides. Cadmium isotope compositions when coupled with Zn/Cd ratios
of sphalerite have previously been used to classify Pb–Zn deposits, including low-temperature,
high-temperature and exhalative ores. However, the Zn/Cd ratios of sphalerite from Broken
Hill cannot be used for such classification purposes.

1. Introduction

The Broken Hill Pb–Zn–Ag deposit (280 Mt of 10.0 % Pb, 8.5 % Zn and 148 g/t Ag; Huston et al.
2006) is the world’s largest massive sulfide deposit. It occurs in the southern Curnamona prov-
ince, New South Wales (Australia), along with hundreds of minor Broken Hill-type (BHT)
deposits. They are hosted in the Palaeoproterozoic Willyama Supergroup in an ~7 km thick
package of multi-deformed and metamorphosed clastic sediments, bimodal (felsic and mafic)
volcanic and volcaniclastic rocks, chemical sediments and granitoids (Fig. 1) (Willis et al. 1983;
Burton, 1994). Metamorphic conditions reached granulite facies. Given the high metamorphic
grade and extreme deformation, which have largely removed primary textures in the ore, a vari-
ety of origins have been proposed for the formation of the deposit. These ore deposit models are
summarized in Greenfield (2003) and include: (1) syngenesis in which the deposit was consid-
ered to have formed by submarine exhalative/inhalative processes (Plimer, 1979; Wright et al.
1987; Parr & Plimer, 1993); (2) syntectonic (Katz, 1976; Findlay, 1994; Nutman & Ehlers, 1998);
(3) post-tectonic (Andrews, 1922;Williams et al. 1996); (4) magmatic–hydrothermal (Crawford
& Maas, 2009); and (5) partial melting (Mavrogenes et al. 2001; Frost et al. 2011).

In attempting to add clarity to how the Broken Hill deposit formed, we evaluate sulfur, zinc
and cadmium isotopes of sphalerite along with the Zn/Cd ratios of sphalerite. Although various
zinc isotopic studies have been conducted on several types of ore deposits including, Mississippi
Valley-type Pb–Zn (MVT) (e.g. Pašava et al. 2014;Wen et al. 2016; Zhu et al. 2018, 2021; Li et al.
2019), Irish-type Pb–Zn (Wilkinson et al. 2005; Gagnevin et al. 2012, 2014); volcanogenic mas-
sive sulfide (VMS) (Mason et al. 2005), sedimentary exhalative (Sedex) (e.g. Kelley et al. 2009;
Gao et al. 2018; Baumgartner et al. 2021; Wang et al. 2021) and active hydrothermal vents (e.g.
John et al. 2008), Zn isotope studies of sphalerite in regionally metamorphosed ore deposits are
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restricted to those of Matt et al. (2020, 2022) on sphalerite and zinc
oxides (zincite and franklinite) from the carbonate- and evaporate-
hosted Balmat Zn deposit (New York) and the marble-hosted
Franklin Zn deposit, New Jersey. A preliminary Zn isotope study
was also made on sphalerite from the Gamsberg Sedex Zn deposit
(South Africa) by S. E. Foulkes (unpub. M.Sc. thesis, Rhodes Univ.,
2014), which, along with the Balmat deposit, was metamorphosed
to the amphibolite facies. The Franklin district mines, like the

Broken Hill district, were metamorphosed to the granulite facies.
Although not part of this study, the Zn isotope composition of
galena from various unmetamorphosed Chinese Pb–Zn deposits
were obtained by Wang et al. (2020, 2021).

Cadmium isotopes have been used to evaluate the source of Cd
in rocks, ore deposits, unconsolidated sediments, seawater, mete-
orites and biological samples (e.g. Wohmbacher et al. 2003, 2004;
Lacan et al. 2006; Zhu et al. 2016, 2021; Hohl et al. 2017), and to
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understand geochemical processes. Wen et al. (2016) suggested
that Cd isotope compositions of sphalerite when coupled with
Zn/Cd ratios of sphalerite can be used to classify Pb–Zn deposits.
They identified three classes of ore systems: high-temperature (i.e.
skarn, VMS, porphyry, magmatic–hydrothermal), low-tempera-
ture (i.e. MVT) and exhalative (i.e. Sedex, seafloor hydrothermal).
To date, no Cd isotope study has been done on an ore deposit sub-
ject to regional metamorphism. The criteria for deposit classifica-
tion as applied by Wen et al. (2016) is discussed further in
Section 5.b.

Several sulfur isotope studies have been conducted on sulfides
from Broken Hill and the smaller BHT deposits (Lawrence &
Rafter, 1962; Stanton & Rafter, 1966, 1967; Both & Smith, 1975;
Dong et al. 1987; Spry, 1987; Parr, 1992, 1994a; Huston et al.
1995), while the major-element composition of sphalerite was
determined by, for example, Both (1973), Hodgson (1975) and
Lockington et al. (2014). Trace-element compositions of sphalerite
are largely restricted to the studies of Both (1973) and Lockington
et al. (2014). Both (1973) determined the trace-element content
(including Cd) of sphalerite separates from each orebody using
X-ray fluorescence spectrographic techniques, while Lockington
et al. (2014) analysed two samples of sphalerite using a laser abla-
tion inductively coupled plasma mass spectrometer. We have
obtained newmajor- and trace-element compositions of sphalerite
because individual sphalerite compositions were not provided by
Both (1973) and Hodgson (1975) and only two samples were
obtained by Lockington et al. (2014). Both (1973) plotted the com-
positions to show the ranges of Cd in sphalerite for each orebody,
which is unusable for our purposes, while Hodgson (1975) ana-
lysed Zn, Mn, Fe and S but not Cd. The new sphalerite composi-
tions obtained here, along with Cd isotope analyses from the
Broken Hill deposit, are used to evaluate the origin of the
Broken Hill deposit given the classification scheme of Wen et al.
(2016). These geochemical parameters along with Zn isotope com-
position of sphalerite have not previously been applied to lead–
zinc–silver mineralization in the Broken Hill district. The study
of Zn isotopes of sphalerite from Broken Hill is particularly rel-
evant given the partial melt model of Mavrogenes et al. (2001)
and Frost et al. (2011) for the formation of the deposit, which
was recently applied to the metamorphosed Balmat deposit by
Matt et al., 2020) to explain the fractionation of Zn isotopes in
some orebodies. The aim of the study is to utilize Zn, Cd and S
isotopes and the Zn/Cd ratios of sphalerite to shed light on the con-
troversy surrounding the origin of the Broken Hill deposit and
minor BHT deposits in the Broken Hill district.

2. Geological setting

Depositional ages of the Willyama Supergroup are ~1720–
1640 Ma, with the Broken Hill Group, which hosts the Broken
Hill deposit, having formed at ~1695–1685 Ma (Page & Laing,
1992; Page et al. 2005) (Fig. 2). Metamorphic conditions in and
adjacent to the BrokenHill deposit were ~700–800 °C and 5–6 kbar
(Phillips & Wall, 1981; Powell & Downes, 1990; White et al. 2004)
but decreased to the amphibolite facies in the northern part of the
Willyama Domain. The minor BHT deposits studied here (11:30,
Flying Doctor, Esmeralda, Henry George, Globe, Pinnacles) were
all subjected to the granulite facies. The deposits were intensely
deformed and affected by at least three periods of deformation.
Two of these deformational episodes resulted in the Broken Hill
deposit being subject to two isoclinal fold events (Laing et al.
1978; Willis et al. 1983) with the structural data of Laing et al.

(1978) suggesting that the deposit and the contained orebodies
were overturned. The Broken Hill deposit is 8 km long and consists
of at least six separate orebodies (from stratigraphic bottom to the
top, they are C, B andA lodes and 1, 2 and 3 lenses; Figs 3, 4) each of
which has a characteristic gangue mineralogy and metal ratio.
Details of the vast array of minerals (>350) found in the Broken
Hill deposit are given in Plimer (1984) and Birch (1999). The main
metallic minerals consist of sphalerite and galena, with minor
amounts of pyrrhotite, chalcopyrite, arsenopyrite, löllingite, tetra-
hedrite and various sulfosalts. The most abundant silver-bearing
minerals are galena and tetrahedrite with pyrargyrite, polybasite,
stephanite, argentite, antimonial silver, allargentum, dyscrasite,
argentopyrite and native silver occurring in lesser amounts
(Lawrence, 1968; Both & Stumpfl, 1987). The dominant gangue
minerals in each orebody are rhodonite, fluorite, quartz (3 lens),
calcite, rhodonite, wollastonite (2 lens), quartz, calcite, wollastonite
(1 lens), rhodonite, manganoan hedenbergite (A lode), quartz (B
lode) and quartz (C lode). Based, in part, on Laing et al’s (1978)
assumption that the deposit was structurally overturned, Groves
et al. (2008) identified a feeder zone system in the C lode, with
cross-cutting blue quartz-gahnite ± garnet rocks serving as the
metamorphosed alteration zone. However, some workers (e.g.
Mavrogenes et al. 2001; Webster, 2006; Frost et al. 2011) suggested
that the deposit was not overturned so that the orebodies are the
correct way up with 3 lens being at the stratigraphic base of the
deposit and C lode at the top. The C, B and A lodes and 1 lens
are characterized by Zn > Pb, whereas the 2 and 3 lenses have
Pb ≥ Zn. By invoking major partial melting of the deposit,
Mavrogenes et al. (2001) and Frost et al. (2011) argued that the
zinc lodes (i.e. A, B and C lodes and 1 lens) are restites of Pb-rich
sulfide melts implying that these melts migrated through the stra-
tigraphy to form the Pb-rich orebodies (i.e. 2 and 3 lenses).

The Broken Hill deposit is intimately associated with a package
of rocks that Johnson & Klingner (1975) referred to as the ‘lode
horizon’, which consists of quartz garnetite, garnetite, blue quartz
and blue quartz-gahnite rocks, and ‘lode’ pegmatite (Spry &
Wonder, 1989; O’Brien et al. 2015). Apart from metasedimentary
rocks, blue quartz-gahnite rocks and quartz garnetite are the two
most common rock types spatially associated with minor BHT
deposits (Barnes et al. 1983). A summary of the geological setting
for the deposits from which samples were analysed is given in
Table 1.

3. Samples and analytical methods

3.a. Cadmium and zinc isotopes

Thirty-one samples were collected from drill core and from under-
ground locations at the Broken Hill and Pinnacles deposits. Some
of the samples were used previously in the studies of Spry &
Wonder (1989) and O’Brien et al. (2015). Approximately 50 mg
of sphalerite powder was dissolved in 4 ml of ultrapure heated
(80 °C) aqua regia for 8 hours. Complete dissolution was visually
confirmed. The solution was cut into two equal aliquots and used
for chromatographic separation. The procedure for the prepara-
tion of the Cd and Zn isotopes is identical to that given by
Wang et al. (2020, 2021). All reported results show mass
dependence.

The Cd isotopic compositions were measured on a Neptune
multicollector inductively coupled plasma mass spectrometer
(MS-ICP-MS) at Rutgers University. Cadmium was purified using
the anion exchange chromatograph (Cloquet et al. 2005) with
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volumetric yields for the samples greater than 94 % after two
rounds of column chromatography. Yield checks were measured
on an Agilent 5900 ICP-optical emission spectrometer (ICP-
OES) at Juniata College. Zinc and Cd concentrations were deter-
mined with standard calibration curves that ranged from 0.5 to
20 ppm, and yttrium was used as an internal standard for analysis.

The chromatography for Cd involved 2 ml of wet BioRad AG
MP-1 resin chloride form (100–200 mesh), which was added to a
10 ml BioRad chromatography column. The resin was sequentially
cleaned with 10 ml of 2 % HNO3, 10 ml of MQ water (18.2 W) and
5 ml of 1.2 molar HCl. The sample was loaded onto the resin with
1 ml of 1.2 molar HCl and the unwanted ions were sequentially
eluted with lower molality HCl and the Cd was collected in
17 ml of 0.0012 molar HCL. This process was repeated with the
use of new resin for the second column to eliminate Sn. The chro-
matography was effective, as no 115Sn voltages were recorded above
the 2 mV background. The 115Sn mass was monitored in H4 cup,
with 107Ag in L4 cup, 109Ag in L2 cup, 110Cd in L1 cup, 111Cd in Ax
cup, 112Cd in H1 cup, 113Cd in H2 cup, 114Cd in H3 cup and 115Sn in
H4 cup. Instrumentation setup and introduction was similar to

that of Wasylenki et al. (2014). All samples were doped with
150 ppb NIST 987 Ag isotope standard, which was used to correct
for mass bias using the exponential fractionation correction
(Maréchal et al. 1999). The 107Ag/109Ag of the NIST 987 Ag isotope
standard is reported as 1.07638. Solutions were measured at 200
ppb Cd, with on-peak blank subtraction in one block of 30 ratios.
The reported values are an average of two separate measurements,
and the data are presented relative to the NIST SRM 3108 Cd stan-
dard in per mil notation defined as: δ114/110Cd (‰) = ((114Cd/
110Cd)sample/(114Cd/110Cd)NIST SRM 3108− 1) × 1000 (Abouchami
et al. 2013). All data cited here from the literature are converted
relative to the NIST SRM 3108 standard (δ114CdNIST SRM

3108 = δ114CdNancy SPEX – 0.11‰; Xu et al. 2020).
Measured errors of ratios were in the fifth or sixth decimal and

do not represent a conservative estimation of error. Errors for the
measured values are constrained in two ways. The variation of
NIST SRM 3108 throughout the measuring session was 0.05 ‰
(2s, n= 27). The second means for error estimation was by meas-
uring a High Purity Standard ICP-MS standard during the two ses-
sions. The value of the standard is δ114Cd = −0.53‰ ± 0.06 (2s,
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n= 10) and is considered the error of measurements. All duplicate
measurements fall within reported errors.

The chromatography for Zn also involved the BioRad MP-1
anion exchange resin using the protocol defined by Maréchal
et al. (1999). Yields from the columns were tested volumetrically
and were all greater than 95 %. The mass bias corrections for Zn
using Cu (NIST 976) were employed for these samples and then
the corrected values were bracketed by the standards (Archer &
Vance, 2004; Chapman et al. 2004, 2006; Peel et al. 2008).
Solutions were measured at 150 ppb Cu and 200 ppb Zn
(63Cu= 7V and 66Zn= 4V). One block was 30 ratios in the analyti-
cal session, and the Zn isotope values are reported in traditional per
mil notation relative to the AA–ETH standard: δ66Zn
(‰) = ((66Zn/64Zn)sample/(66Zn/64Zn)AA−ETH− 1) × 1000. All the
data cited here from the literature were converted relative to the
AA–ETH standard (δ66ZnAA–ETH = δ66ZnJMC3–0749L – 0.28‰;
Archer et al. 2017).

Errors for Zn isotopes are calculated in a similar manner to that
discussed above for Cd isotopes. Throughout the analytical ses-
sions, the reference material AA–ETH standard compared with
itself (n= 14) yielded two standard deviations of 0.06‰ (2σ)

for δ66Zn, which is larger than the error for each sample during
the run. The value of USGS BVHO-2 δ66ZnAA–ETH is
þ0.02‰ ± 0.04 (2s, n= 3). The largest error between the two
methods is that of the variation of the standard in comparison
to itself and is considered the error for reported samples.

3.b. Sulfur isotopes

Sphalerite was separated from ore samples by hand picking under a
binocular microscope or was drilled out with a Dremel tool with a
1 mm drill tip. We followed the procedure for sulfur isotope analy-
sis as described by Grassineau (2006). Sphalerite was pulverized in
an agate mortar to a powder (1.5 mg), which was then loaded into
tin capsules and burned using a Thermo Scientific Flash IRMS
IsoLInk elemental analyser. The Sn capsules oxidized at ~1020 °
C, and when oxygen was added it flash combusted at 1800 °C
(Grassineau, 2006). The oxygen was added at a rate of 300 ml/
minute for three seconds. The SO2 gas produced was purified
through a gas chromatography column and then introduced via
a Conflo IVUniversal Interface system into a continuous flow-type
dual-inlet Thermo Scientific Delta V Series Isotope Ratio mass
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spectrometer under He flow. The analysis time was ~420 seconds.
The δ34SVCDT values were calculated using calibration curves
obtained for the following standards, some of which were obtained
from the Queen’s Facility for Isotope Research (QFIR), Queen’s
University, Canada: NBS 127 barite = þ20.3‰ (±0.3‰),
IAEA-SO-6 barite = −34.1‰, QFIR pyrite = −0.5‰, IAEA-
SO-5 barite = þ0.5‰, MRC pyrite = þ0.7‰, Q-GEMA
pyrite=þ3.0‰, M6801 barite =þ12.5‰, and two internal stan-
dards provided by Thermo Scientific: peat = −13.15‰ (±0.3‰)
and sulfanilimide=−1.24‰ (±0.2‰). These values are relative to
the internationally recognized sulfur isotope standard Cañon
Diablo troilite (FeS). The analytical precision of the data is ±0.1‰.

3.c. Major- and trace-element composition of sphalerite

Part of the dissolved separates of sphalerite in solution that were
analysed for Zn and Cd isotopes from the Broken Hill deposit
as well as smaller BHT deposits (11:30, Esmeralda, Flying
Doctor, Henry George) were also analysed for Ag, Cd, Cu, Fe
and Zn using an Agilent 5900 ICP-OES at Juniata College.
Quantitative analyses of sphalerite were also performed on a
JEOL JXA-8530FPlus electron microprobe at the University of
Minnesota. Analytical conditions for determining sphalerite

compositions used an accelerating voltage of 15 kV, beam current
of 50 nA and a beam diameter of 5 microns. Elements were
acquired using analysing crystals LIFL for Zn kα, Mn kα, Fe kα
and Cu kα, PETL for Cd lα, and PETJ for S kα and Ag lα. The stan-
dards were Mn-olivine and synthetic Mn2SiO4 for Mn, Cu metal
for Cu, pyrite for Fe, sphalerite for Zn and S, hessite for Ag and
cadmium sulfide (CdS) for Cd. The on-peak counting time was
10 seconds for Zn kα, Mn kα, Fe kα, Cu kα and S kα, 40 seconds
for Ag lα and 60 seconds for Cd lα. The mean atomic number
(MAN) background intensity method was used instead of the tra-
ditional off-peak background acquisition (Donovan & Tingle,
1996; Donovan et al. 2016). The MAN background intensity data
was calibrated and continuum absorption corrected for Cd lα, Zn
kα, Mn kα, Fe kα, Cu kα, S kα and Ag lα. Unknown and standard
intensities were corrected for dead-time. The Phi-Rho-Z matrix
correction algorithm Armstrong/Love Scott (CitZAF) was used
along with the mass absorption coefficients dataset FFAST
(Chantler et al. 2005).

4. Results

4.a. Sulfur isotopes

Sulfur isotope compositions of 31 samples of sphalerite are in
Table 2. The values of δ34S from Broken Hill range from þ0.27
to þ4.73‰ (n= 19), while those for the following smaller BHT
deposits are: Pinnacles (−3.08 to −0.94‰, n= 3), Esmeralda
(þ1.24 to þ1.28‰, n= 2), Henry George (−1.06 to þ1.17‰,
n= 4), 11:30 (−5.11‰, n= 2) and Flying Doctor (−0.36‰, n= 1)
(Fig. 5). Sulfur isotope compositions of sulfides from these minor
deposits had not previously been obtained, except for the Pinnacles
deposit, the second largest Pb–Zn–Ag deposit in the Willyama
Domain, where Parr (1992, 1994a) reported a range of
δ34S = −3.5 to þ3.7‰. Other sulfur isotope studies of sulfides
from the Broken Hill area include analyses of sphalerite, galena,
pyrrhotite and chalcopyrite. Both & Smith (1975) recorded δ34S
values of between −2.1 and þ2.4‰ per mil and between −3.8
and þ5.4‰ for sulfides from the main Broken Hill lode and 26
minor BHT deposits (including Pinnacles), respectively, while
Spry (1987) showed a broader isotopic range for the Broken Hill
deposit of −3.3 to þ6.7‰. The isotopic compositions obtained
by Lawrence & Rafter (1962; δ34S = þ0.4 to þ1.7‰) and
Stanton & Rafter (1966; δ34S = −2.2 to þ4.7‰, 1967;
δ34S = −1.5 toþ2.8‰) for Broken Hill fall within the range given
by Spry (1987).

By combining the S isotope data for sphalerite, galena, pyrrho-
tite and chalcopyrite of Both & Smith (1975) and Spry (1987), the
latter proposed that there may be a weak increase in isotopic values
from the stratigraphic footwall (C lode) through to the hanging
wall (3 lens). However, by adding the S isotope data for sphalerite
obtained here with these two studies it is apparent that there is no
systematic increase from the footwall to the hanging wall. Instead,
there is an increase in the average isotopic compositions for sphal-
erite in C lode (δ34S= 0 ‰) to the top of the Zn lodes (i.e. 1 lens;
δ34S = þ2.2 ‰) with a slight decrease to 1‰ in 3 lens (Fig. 6a).
Although galena was not analysed here, the combined data of Both
& Smith (1975) and Spry (1987) show a steady increase in the aver-
age δ34S galena composition from C lode (−1.4‰) to 2 lens
(þ1.3‰) and 3 lens (þ1.2‰). Data for the Zn mineralization
from the North mine is shown in Figure 6a but was not included
owing to uncertainty in its stratigraphic position (possibly 1 lens or

Western
Longitudinal

0 150metres

C lode
B lode

A lode

1 lens

2 lens

10 level

12 level

14 level

16 level

18 level

20 level

22 level

Depth between levels is ~ 100 m

Fig. 4. Cross-section (No. 62) through the New Broken Hill Consolidated mine haul-
age shaft, looking south l8 degrees east, Broken Hill deposit. Note that the orebodies
are structurally overturned with C lode occurring at the stratigraphic base of the
deposit. The 3 lens orebody is not shown here as it only occurs in the central and
northern parts of the deposit, where it occurs at the stratigraphic top. The figure
has been modified after Pratten (1965).
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Table 1. Summary of geological characteristics of Broken Hill and BHT deposits (modified after O’Brien et al. 2015)

Deposit: Lat.,
Long. Grade, drilling data, tonnage*, metallic minerals† Gangue minerals Lode and country rocks References

Broken Hill
−31.982244,
141.450679

300 Mt of 10.0 % Pb, 8.5 % Zn, 0.14 % Cu and 148 g/t Ag:
Gn–Sp–Ccp ± Asp ± Po ± Lo

Qz–Ghn–Rhd–
Grt ±Ms ± Sil ± Amp ± Ap ± Fsp

Qz–Grt and Qz–Ghn rocks envelope orebodies in psammitic–
psammopelitic–pelitic metasediments (Hores Gneiss) and
quartzofeldspathic gneiss (Potosi Gneiss); Ghn–Qz ± Grt rocks are most
abundant in the structural hanging wall, spatially associated with BIF

Johnson & Klingner
(1975); Parr &
Plimer (1993);
Webster (2006)

11:30 (BHT)
−31.997688,
141.350647

0.2 Mt @ 1% Pb, 12 % Zn, 7 g/t Ag; Sp ± Py ± Po ± Asp
± Gn

Ghn–Qz–Grt–Bt ± Fsp Qz–Ghn–Grt lode rocks in psammite–psammopelitic metasediment
(Broken Hill Group) occur between two plagioclase gneiss units; locally
intersected by a mafic amphibolite

Perilya (2008);
O’Brien et al. (2015)

Esmeralda
(BHT)
−32.01528,
141.34667

Unknown tonnage, 5–7 % Pbþ Zn (up to 5 m drill
intersection); Sp ± Po ± Py

Qz-Cal-Pmt-Wo-Grt-Mag Qz–Cal lode rocks in psammite–psammopelitic metasediment (lower
Broken Hill Group) and is also associated with amphibolites, calc-
silicate units and rare Potosi Gneiss

Heimann et al.
(2013); D. Rogers
(pers. comm. 2022)

Flying Doctor
(BHT)
−31.917398,
141.524643

1.5 Mt @ 4% Pb, 3 % Zn, 44g/t Ag; Gn–Sp–Asp–
Po ± Ccp ± Py

Qz–Ghn ± Grt ± Bt ± Chl ± Ap Qz–Ghn–sulphide ± Grt lode rock in pelitic to psammopelitic
metasediments (Broken Hill Group)

Burton (1994);
Teale et al. (2006)

Globe (BHT)
−31.910304,
141.542916

2686 t produced, with 502 kg Ag and 512 t Pb recorded;
Cer–Gn–Sp ±Mlc ± Po

Fsp–Qz ± Chl ±Ms ± Grt ± Tur Qz–Ghn lode rock in pelitic–psammitic metasediments (Purnamoota
Subgroup) and Potosi Gneiss

Burton (1994)

Henry George
(BHT)
−32.030166,

141.350771

1.3 Mt @ 1% Pb, 8 % Zn, 14 g/t Ag; Sp–Po–Py–Gn ± Asp Qz–Ghn–Fsp–Bt ± Grt Qz–Ghn lode rock in pelitic to psammopelitic metasediment with
minor pegmatitic segregations (Broken Hill group). Lode rocks occur
adjacent to amphibolite and ultramafic dyke

Perilya (2008)

North Mine
Zinc Lode
−31.9142,

141.5384

Also known as the ‘Fitzpatrick Zinc Lode’. Past production
0.04 Mt @ 9.6 % Zn, 4.6 % Pb, 187 g/t Ag; reserves: 1 Mt @
9.0 % Pb, 7.0 % Zn, 140 g/t Ag: Sp–Po ± Gn ± Py ± Ccp

Qz–Grt–Ghn ± Sil ± Bt Po–Sp-bearing Grt–Qz lode rocks bounded by Grt–Sil-bearing
psammites–psammopelites and pelitic metasediments

Widdop (1983);
Webster (2006)

Pinnacles
(BHT)
−32.052049,

141.328716

Second largest Broken Hill deposit. 2 Mt @ 6–11 wt % Pb,
2.5 wt % Zn, 300–500 g/t Ag; Gn–Sp–Py–
Sp ± Asp ± Lo ± Ttr ± Po

Fsp–Ghn–Amp–Grt–Mag–Qz–
Ghn ± Bt ±Ms

Three sulfide-bearing lode (two Pb and one Zn) with associated
Qz–Ghn and Qz–Grt lode rock occur in pelitic and psammitic
metasediment (Cues Formation)

Parr (1994a)

*Estimates of grades and tonnage supplied by Perilya Ltd for North Mine Zinc Lode, Henry George and 11:30.
†Mineral abbreviations after Whitney & Evans (2010); Amp – amphibole; Ap – apatite; Asp – arsenopyrite; Az – azurite; Bt – biotite; BHT – Broken Hill-type; BIF – banded iron formation; Cal - calcite; Cer – cerussite; Ccp – chalcopyrite; Chl – chlorite; Di – diopside;
Fsp – feldspar; Ghn – gahnite; Gn – galena; Grt – garnet; Lo – löllingite; Mag –magnetite; Mlc –malachite; Ms –muscovite; Pmt - piemontite; Po – pyrrhotite; Py – pyrite; Rhd – rhodonite; Qz – quartz; Sil – sillimanite; Sp – sphalerite; Ttr – tetrahedrite; Tur –
tourmaline; Wo – wollastonite.
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Table 2. Zn, Cd and S isotope data and major–trace-element contents of sphalerite (ppm) from Broken Hill and minor BHT deposits

Sample
no. Deposit

Ore
body

Location or drill
core δ34S‰ δ66Zn‰ δ114Cd‰ Ag Cd Cu Fe Zn

Zn/
Cd

BH-1 Broken
Hill

3 lens Blackwoods pit 2.02 −1.15 −0.23 2842 2769 4255 83768 607189 219

BH-2 Broken
Hill

3 lens North mine 0.27 0.04 −0.14 386 2439 545 75201 1024854 420

GT-1 Broken
Hill

3 lens North mine 37
level

0.66 0.04 −0.04 155 10345 151369 769324 3040252 294

532-502 Broken
Hill

3 lens North mine garnet
rim

1.83 −0.35 −0.25 70 3060 16818 142770 1131631 370

6542
92.1 m

Broken
Hill

3 lens North mine 2.17 −0.08 −0.44 403 2381 2063 155596 780859 328

Z3590
66.9 m

Broken
Hill

2 lens 1.22 −0.09 0.01 581 2451 10266 162487 915607 374

532-331 Broken
Hill

1 lens 4.73

Z3590
0.6 m

Broken
Hill

A lode 2.20 −0.04 −0.36 144 10882 16083 937588 3050190 280

Z3590
15.6

Broken
Hill

A lode 4.47 0.46 −0.08 32 181 1145 286924 214846 1189

7254
88.7 m

Broken
Hill

A lode 1.66 −0.07 −0.48 156 7882 45109 841379 2433570 309

7318
100.5 m

Broken
Hill

A lode 2.24 −0.39 −0.12 17 2529 0 326292 1167979 462

6303
6.2 m

Broken
Hill

SA
lode

1.29 0.30 −0.23 17 1435 11284 170209 784061 546

JB-10-82 Broken
Hill

Zinc
lode

North mine 1.07 −0.02 −0.35 343 3232 7195 234246 1034944 320

JB-10-83 Broken
Hill

Zinc
lode

North mine, 10783
281 m

1.22 0.08 −0.33 18 5322 474 265437 1203836 226

JB-10-87 Broken
Hill

Zinc
lode

North mine, 10783
322 m

1.54 −0.77 −0.12 324 2284 3619 245641 1001814 439

6220
20.0 m

Broken
Hill

C lode NBHC 1.48 −0.22 −0.26 790 574 469 146801 383575 668

532-299 Broken
Hill

C lode NBHC 0.98 0.22 17 2656 2246 244523 815529 307

532-300 Broken
Hill

C lode NBHC 1.38 0.25 −0.04 77 2242 1353 234689 682008 304

532-302 Broken
Hill

C lode NBHC 1.66 0.03 −0.24 169 2360 2151 354074 1001871 424

JB-10-52 Esmeralda PPN133 142.5 m 1.28 −0.76 −0.35 81 2960 1664 222735 908574 307

JB-10-53 Esmeralda PPN133 143.1 m 1.24 −0.97 −0.03 18 2123 2928 263498 995789 469

JB-10-100 Flying
Doctor

3538 39.3 m −0.36 0.10 −0.77 196 4100 2684 331625 916657 224

JB-10-X Henry
George

PPN94 295 m −0.24 −0.24 −0.28 412 1950 2464 147419 865877 444

JB-10-23 Henry
George

PPN94 295.7 m −1.06 −0.33 −1.02 29 2210 3563 197197 943294 427

JB-10-27 Henry
George

PPN94 300.1 m 0.11 −0.38 −0.15 8 2068 576 188590 1118626 541

JB-10-34 Henry
George

PPN95 308.4 m 1.17 −0.25 −0.38 532 1961 592 209415 727040 371

JB-10-43 11:30 PPN106 172.2 m −5.11 −0.26 −0.04 57 2154 0 190561 933566 433

JB-10-46 11:30 PPN109 208.3 m −5.11 −0.19 2.59 55 1803 0 173889 935901 519

(Continued)
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A lode; Plimer, 1979). It yields the highest average sulfur isotopic
composition for sphalerite and galena for any of the orebodies.

4.b. Zinc isotopes

Values of δ66Zn range from −1.15 to þ0.46‰ (n= 19) for the
Broken Hill deposit and from −0.97 to þ0.10‰ (n= 9) for the
smaller BHT deposits (Table 2). The isotopically lightest value
for the smaller BHT deposits is sample JB-10-53

(δ66Zn = −0.97‰) from the Esmeralda deposit, while the isotopi-
cally heaviest sample is δ66Zn = þ0.10‰ for sample JB-10-100
from the Flying Doctor deposit. Sample JB-10-53, along with sam-
ples BH-1 (3 lens), JB-10-87 (Zinc lode, North mine) and JB-10-52
(Esmeralda) have values of δ66Zn of −1.15, −0.77 and −0.76‰,
respectively, which are among the most negative values for sphal-
erite ever reported for an ore deposit, with that from sample BH-1
being the lowest value yet recorded. There appears to be no system-
atic variation of Zn isotopes from the stratigraphic footwall to the
hanging wall of the Broken Hill deposit (Fig. 6b).

Table 2. (Continued )

Sample
no. Deposit

Ore
body

Location or drill
core δ34S‰ δ66Zn‰ δ114Cd‰ Ag Cd Cu Fe Zn

Zn/
Cd

BH-109 Pinnacles Consols Lead lode −3.08

BH-113 Pinnacles 2 level −0.94

BH-115 Pinnacles 2 level Zinc lode −1.04

±0.14‰ ±0.09‰
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Fig. 5. (Colour online) Histogram of sulfur isotope compositions of sphalerite (this
study) from the Broken Hill deposit and minor Broken Hill-type deposits (P –
Pinnacles; HG – Henry George; FD – Flying Doctor; 11 – 11:30). Also shown as bar lines
are the ranges of previously published sulfur isotope studies by Lawrence & Rafter
(1962), Stanton & Rafter (1966, 1967), Both & Smith (1975), Spry (1987), Parr (1992,
1994a) and Huston et al. (1995). Sulfur isotope compositions of sulfides from the
Pinnacles deposit, minor BHT deposits and Broken Hill from these studies are shown
as orange, brown and red bar lines, respectively.
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4.c. Cadmium isotopes

Values of δ114Cd for sphalerite from Broken Hill and smaller BHT
deposits range from −0.48 toþ0.01‰ for the Broken Hill deposit
and from −1.02 to þ2.59‰ for the smaller BHT deposits
(Table 2). The isotopically lightest value is from the Henry
George deposit, while the heaviest is from the 11:30 deposit.
The range observed here for the BHT deposits are the most neg-
ative and positive yet reported for sphalerite from an ore deposit.
Although it should be noted that Cd isotope compositions of
galena from the unmetamorphosed Zhaxikang and Keyue
Sedex deposits, Tibet, show the isotopically lightest
(δ114Cd=−2.19‰, Zhaxikang; Wang et al. 2020) and the heaviest
(δ114Cd =þ3.17‰, Keyue; Wang et al. 2021) for a sulfide deposit
reported to date. At first glance, the extraordinarily heavy sample
from the 11:30 deposit of þ2.59‰ may appear to be due to ana-
lytical error. However, it should be noted that the sample was ana-
lysed twice and yielded the same value (Table 2). Moreover, this
same sample yielded the most isotopically light sulfur isotope value

)−5.11 ‰) of any sample yet reported in the Broken Hill district.
Like the Zn isotope compositions of sphalerite, there appears to be
no systematic variation of Cd isotopes from the stratigraphic foot-
wall to the hanging wall of the Broken Hill deposit for the limited
number of data obtained here (Fig. 6c).

4.d. Composition of sphalerite and Zn/Cd ratios

Samples were analysed for Ag, Cd, Cu, Fe and Zn using the Agilent
5900 ICP-OES but only the Ag, Cd and Cu concentrations are
accurate since the Zn and Fe are major elements (per cent levels)
and thus not suitable for analysis by ICP-OES analysis, given the
ppm level concentrations of Zn and Fe in the standard. The Ag, Cd
and Cu concentrations of sphalerite from Broken Hill (17–
2842 ppm Ag, 181–10 882 ppm Cd, 0–151 369 ppm Cu),
Esmeralda (18–81 ppm Ag, 2123–2960 ppm Cd, 1664–
2928 ppm Cu), Flying Doctor (196 ppm Ag, 4100 ppm Cd,
2684 ppm Cu) and Henry George (8–532 ppm Ag, 1950–2210
Cd, 576–3563 ppm Cu). To further explore the concentrations
of both major- (Zn, Fe and S) and trace-element (Ag, Cd, Cu
andMn) compositions of sphalerite, a suite of ore samples contain-
ing sphalerite from the main Broken Hill deposit, as well as minor
BHT deposits (Flying Doctor, Globe, Henry George) were analysed
by electron microprobe (Fig. 7; Table 3). Note that samples ana-
lysed here are not the same as those analysed for Zn, Cd and S iso-
topes owing to the limited sample size. The Zn and Cd
concentrations in sphalerite from 14 samples from the Broken
Hill deposit range from 52.93 to 58.73 wt % Zn and 1740 to
2810 ppm Cd, respectively, for Zn/Cd ratios of 203 to 303 with
an average of 220 (Fig. 7). The narrow range of ratios obtained
by electron microprobe analysis is remarkable given the enormous
size of the deposit and that the samples were collected from widely
spaced localities. Samples of sphalerite were analysed from Globe
(n= 1), Flying Doctor (n= 2) and Henry George (n= 1) and yield
compositions considerably more variable than those from Broken
Hill (i.e. Globe, 56.99–58.63 wt % Zn, 42–70 ppm (average Zn/Cd
ratio of 1111); Flying Doctor, 51.05–56.66 wt % Zn, 2400–
3420 ppm (average Zn/Cd ratios of 153 to 226); Henry George,
54.94–55.44 wt % Zn, 2410–2550 ppm Cd (average Zn/Cd ratio
of 221)). The Zn/Cd ratio of 1111 for the Globe sample is anoma-
lous relative to all other samples of sphalerite from the Broken Hill
district. This is likely due to the low Fe content of the sphalerite,
which is consistent with sphalerite not being buffered by a member
of the system Fe–S. The Fe,Mn and Cu concentrations of sphalerite

from Broken Hill range from 7.12 to 11.89 wt % Fe (average
= 10.35 wt %), 0.08 to 1.02 wt % Mn (average= 0.34 wt %) and
0 to 0.09 wt % Cu (average = 0.03 wt %). Up to 0.08 wt % Ag
was also obtained. The range of concentrations of Fe, Cu and
Ag in sphalerite is similar to the ranges of these elements in the
minor BHT deposits (6.85 to 12.93 wt % Fe, 0 to 0.04 wt % Cu,
up to 0.06 wt % Ag). However, the Mn concentration is consider-
able lower (0.01 to 0.08 wt % Mn) in the minor BHT occurrences.
The concentrations of Cd and the Zn/Cd ratios derived from elec-
tron microprobe analysis are evaluated further in this contribution
rather than those obtained by ICP-OES.

5. Discussion

5.a. Previous genetic models

The origin of the Broken Hill deposit and the minor BHT deposits
is controversial with a variety of origins having been proposed in
the vast literature on the deposit (see Greenfield, 2003). Essentially
these disparate views can be distilled down to syngenetic, epige-
netic and magmatic–hydrothermal models. For the syngenetic
models, sulfide formed by subaqueous hydrothermal processes
and subsequently underwent high-grade metamorphism, defor-
mation and possibly partial melting (e.g. Johnson & Klingner,
1975; Laing et al. 1978; Mavrogenes et al. 2001). For the syngenetic
models, there has been debate regarding whether or not the BHT
deposits are Sedex deposits (e.g. Goodfellow et al. 1993; Sangster,
2020), a separate class of deposit (e.g. Walters, 1996; Walters et al.
2002; Spry & Teale, 2021) or deposits that are possibly transitional
between Sedex and VMS deposits (e.g. Walters, 1998; Leach et al.
2005; Spry et al. 2010).

Epigenetic models revolve around the introduction of metals
during peak metamorphism or by post-tectonic replacement
(e.g. Nutman & Ehlers, 1998; Gibson & Nutman, 2004).
Crawford & Maas (2009) proposed a magmatic–hydrothermal
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Fig. 7. (Colour online) Box and whisker plot of Zn/Cd ratios for sphalerite from the
Broken Hill deposit and minor BHT deposits (Henry George and Flying Doctor). Data
from the single sample from the Globe BHT deposit gave an anomalous average value
of 1100 due to the low Fe content of the sphalerite, which is commensurate with sphal-
erite not being buffered by a member of the system Fe–S; see Table 3) Data are shown
for MVT deposits: Fule, Dadongla, Jinding (Wen et al. 2016) and Jinding, Nanchang,
Beichang (Li et al. 2019); VMS deposits: Cayeli (Revan et al. 2014), Bankshapa,
Bhuyari, Biskhan, Jangaldheri (Mishra et al. 2021), Bukit Ketaya, Bukit Botol (Basori
et al. 2021), Gacun (Wen et al. 2016); and Sedex deposits: Langshan (Wen et al.
2016), Mt Isa (Cave et al. 2020), Sullivan (Lydon & Reardon, 2000).
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model where they argued that the ore-forming components were
derived from fractionated rift-related ferrotholeiite magmas in
which fractional crystallization of Fe-rich oxide gabbros separated
Cu from Pb and Zn. They suggested that magmatic fluid evolved
from these magmas transported Pb and Zn in a saline-rich hydro-
thermal fluid and deposited metals below the seafloor.

Of these models, the epigenetic (i.e. syntectonic and post-tec-
tonicmodels) of formation can be rejected since the orebodies were
deformed and metamorphosed by the Olarian Orogeny. However,
the syngenetic and magmatic–hydrothermal models will be con-
sidered further based on the geochemical data obtained here.

5.b. Zn/Cd ratios and Cd isotopes of sphalerite as an
indicator of ore genesis

Wen et al. (2016) pointed out that the Cd content of sphalerite is
dependent on a variety of physicochemical parameters including
temperature (T), the nature and concentration of ligands in the
ore fluid that bond to Zn and Cd, pH and the total sulfur in sol-
ution. Wen et al. classified Pb–Zn deposits into three groups: low-
temperature (i.e. MVT deposits), high-temperature (i.e. porphyry,
magmatic–hydrothermal, skarn and VMS deposits) and exhalative
systems (i.e. Sedex, seafloor hydrothermal sulfides). Distinctions
between the three classes of deposits were based on Cd concentra-
tions and Zn/Cd ratios in sphalerite as well as a plot of Cd isotopes
versus Zn/Cd ratios. However, an issue with Wen et al.’s study is
that it was based on only ten occurrences, four of which were MVT

deposits with single examples of a Sedex (i.e. Langshan) and a VMS
deposit (i.e. Gacun).

There are several difficulties with the categorization technique
proposed by Wen et al. (2016). Their study evaluated low- and
high-temperature classes of deposits, which include different types
of deposits that form under very different ore-forming conditions.
For example, Wen et al.’s (2016) high-temperature deposits
include both VMS and porphyry-style deposits, yet VMS deposits
form at much lower temperatures (up to ~400 °C) than those of
porphyry-style deposits that form above magmatic solidus temper-
atures (~600–750 °C) (Franklin et al. 2005; Seedorff et al. 2005).
Volcanogenic massive sulfide deposits also generally form from
low salinity fluids (i.e. equivalent to seawater compositions),
although higher salinity fluids are reported in some deposits that
have a magmatic component (Franklin et al. 2005). Metals from
porphyry-style deposits are either carried in the vapour phase or
from highly saline fluids (commonly >50 wt % NaCl). Finally,
Wen et al. (2016) also provided a simplistic set of physicochemical
conditions of formation for Sedex deposits proposing that they
formed under reducing conditions, which is characteristic of
Selwyn-type Pb–Zn Sedex deposits. Cooke et al. (2000) recognized
the McArthur River-type Sedex deposits form from more oxidized
fluids at T generally <200 °C, while Selwyn-type deposits form
from reduced fluids at T >200 °C. These concerns notwithstand-
ing,Wen et al. (2016) demonstrated that competing physicochemi-
cal conditions produce different Cd concentrations and Zn/Cd
ratios.

Table 3. Zn and Cd concentrations and Zn/Cd ratios of sphalerite from Broken Hill and BHT deposits

Deposit Sample no. No. analyses Zn (wt %) Cd (ppm) Zn/Cd (average)

Broken Hill

Broken Hill C lode, NBHC JB10-140A 6 54.10–54.26 2260–2370 234

Broken Hill B lode, NBHC JB10-125 6 53.51–54.89 1740–1860 303

Broken Hill Zinc lode, NM JB10-82 18 53.70–54.70 2300–2610 221

Broken Hill A lode, ZC S76-308 6 58.09–58.73 2470–2550 233

Broken Hill A lode, ZC 532-313 6 52.93–53.68 2080–2190 280

Broken Hill A Lode NBHC 532-283 6 53.70–54.33 1850–1990 280

Broken Hill SE A Lode JB10-130A 6 53.68–54.23 1840–1950 287

Broken Hill 1 lens, NBHC 532-11 C 6 56.51–56.70 2220–2290 254

Broken Hill Lead lode, NBHC 532-35H 6 58.09–58.73 2450–2550 233

Broken Hill Lead lode, NBHC 532-34 6 54.80–55.23 2290–2430 234

Broken Hill 3 lens, NBHC 532-357 6 54.78–56.07 2640–2790 204

Broken Hill 3 lens, NBHC 532-35 6 56.40–56.89 2470–2570 225

Broken Hill 3 lens, NM 532-45 3 55.80–55.97 2420–2480 227

Broken Hill 3 lens, NM 532-73 6 53.60–54.10 2530–2810 203

Broken Hill-type

Globe JB10-65C 6 56.99–58.63 42–70 1111

Flying Doctor JB10-100 6 51.05–52.19 3300–3420 153

Flying Doctor JB10-101 6 55.39–56.66 2400–2510 226

Henry George JB10-34 6 54.94–55.44 2410–2550 221

NBHC – New Broken Hill Consolidated mine; NM – North mine; ZC – Zinc Corporation mine.
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Figure 8 shows a plot of the Cd isotope composition versus Zn/
Cd ratios of the fourMVT deposits, along with the Langshan Sedex
deposit and the Gacun VMS deposit of Wen et al. (2016), and
recent data from the Jinding MVT deposit (Li et al. 2019), the
Keyue and Zhaxikang Sedex deposits (Wang et al. 2020, 2021)
and the Xiaobaliang VMS deposit (Yang et al. 2022). Also shown
are data from the Broken Hill and minor BHT deposits. Although
the data of Wen et al. (2016) for the MVT, Sedex (Langshan) and
VMS (Gacun) deposits suggest that these three deposit types can be
discriminated, with MVT deposits showing the lowest Zn/Cd
ratios and the Sedex deposit showing the highest Zn/Cd ratio, with
the VMS deposit somewhere in between, it is clear when data for
the Keyue and Zhaxikang Sedex deposits and the Xiaobaliang VMS
deposits are added that these two classes of deposits overlap and
cannot be distinguished. Although Cd isotope data were not
obtained, Zn/Cd ratios of published sphalerite from several
Sedex (Kanmantoo, Mt Isa, Gamsberg, Bleikvassli, Aclare,
Sullivan) and VMS (Bankshapa, Jangaldheri, Biskan, Bhuyari,
Bukit Botol, Arminius, Attu, Pontide) further show that the Zn/
Cd ratios of sphalerite overlap (see Table 4) are not a useful dis-
criminator of Wen et al.’s (2016) ‘high-temperature’ and ‘exhala-
tive’ deposits.

Since the Broken Hill deposit has been regarded as a Sedex
deposit by, for example, Sangster (2020), the focus here is to see

if there are differences in these concentrations and ratios between
sphalerite in Sedex and VMS deposits. Table 3 lists the Cd concen-
trations and Zn/Cd ratios of sphalerite in the Broken Hill area that
were analysed by electron microprobe. The highest concentrations
of Cd are generally associated with the 3 lens and Lead lode (i.e.
undifferentiated 2 and 3 lenses), which is consistent with the find-
ings of Both (1973) who determined the trace-element composi-
tions of sphalerite concentrate in the Broken Hill orebodies.
Although the Cd concentrations overlap in the current study for
the various orebodies, Both (1973) found a decline in Cd content
of sphalerite from 3 lens to A lode. This was not observed in the
current study but is likely a result of the fewer number of samples
analysed here. Given that Broken Hill and minor BHT deposits
occur in metasedimentary rocks spatially associated with meta-
igneous rocks, it is not surprising that both sets of data for these
deposits have Cd isotope compositions and Zn/Cd ratios that over-
lap the compositions of both Sedex and VMS deposits (Figs 7, 8).
The only magmatic–hydrothermal deposit for which there are Cd
isotope compositions and Zn/Cd ratio data is the Shagou deposit,
China, which has Zn/Cd ratios of 154–191 and values of
δ114Cd = −0.05 to 0‰. These values overlap those for MVT
deposits with the Zn/Cd ratios being lower than the range observed
for the Broken Hill and the minor BHT deposits. Although the
number of data are limited, the range of values obtained by
Wen et al. (2016) cannot be used to support a magmatic–hydro-
thermal model for the Broken Hill and minor BHT deposits.

5.c. Cd, Zn and S isotopes and the origin of Broken Hill and
minor BHT deposits

By incorporating data from the present study with those of
Lawrence & Rafter (1962), Stanton & Rafter (1966, 1967), Both
& Smith (1975), Spry (1987), Parr (1992, 1994a) and Huston
et al. (1995), sulfur isotope compositions of sulfides in the
Broken Hill and minor BHT deposits show ranges of
δ34S = −3.3 to þ6.7‰ and −5.1 to þ5.4‰, respectively.
Plimer (1985), in recognizing that the sulfur isotope compositions
were centred around 0‰, proposed a single primordial source of
sulfur, while Parr (1992) suggested that the values near 0‰ were
the result of sulfide formation from a modified magmatic–hydro-
thermal source of sulfur in which hydrothermal fluids mixed with
reduced sulfur source or that magmatic sulfur was oxidized. The
scenarios proposed by Plimer (1985) and Parr (1992) are support-
ive of a magmatic source associated with the magmatic–hydrother-
mal model of Crawford & Maas (2009).

Alternatively, Spry (1987) suggested an inorganic source of sul-
fur in which thermochemical considerations at a T of ~350 °C
show that the range of isotopic compositions observed for
Broken Hill and the minor BHT deposits occur along the pyrrho-
tite–magnetite join, which is the dominant assemblage in the sys-
tem Fe–S–O in the Broken Hill district, although rare primary
pyrite is also present (e.g. Parr, 1994b). A log fO2–pH diagram
incorporates the current S isotope data along with those of previ-
ously published S isotope data (Fig. 9). The temperature used here
is higher than that proposed by Large et al. (1996) who suggested
that BHT deposits were derived from slightly acid or near neutral,
high salinity fluids between 100 and 250 °C. The upper tempera-
ture limit was largely based on solubility constraints of chalcopy-
rite. However, it should be emphasized that minor amounts of
chalcopyrite are present throughout the deposit but its paucity
may simply be due to the limited amount of Cu in the source rocks.
Regardless, if thermochemical sulfate reduction (TSR) is assumed,
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it is not possible to obtain the observed range of isotopic compo-
sitions along the pyrrhotite–magnetite join for geologically reason-
able values of ionic concentrations, pH and δ34SΣS for the ore fluid
at the temperatures proposed by Large et al. (1996). While the
range of sulfur isotope values can be explained by TSR, the range
in isotope data can also be accounted for by reduced sulfur pro-
duced by TSR that is mixed with magmatic sulfur or that sulfate
from seawater was reduced by biogenic processes at low

temperatures (Spry, 1987). It should be noted that Both &
Smith (1975) suggested that sulfur isotopic differences among
BHT deposits are due to differences in the relative proportion of
biogenic sulfur contributed to each deposit.

In an attempt to further evaluate ore-forming processes that
may be gleaned from the sulfur isotopes obtained here, we plotted
δ34S versus δ114Cd (Fig. 10) and δ66Zn versus δ34S (Fig. 11).
However, these isotope pairs involving S show no systematic

Table 4. Cd concentrations and Zn/Cd ratios of sphalerite in MVT, VMS and Sedex deposits

Deposit Type

No. analy-
ses (sam-
ples) Zn (wt %) Cd (ppm) Zn/Cd (average) References

Fule MVT 14 (8) 51.7–62.8 5238–34981 17.0–119.9 (43) Wen et al. (2016)

Tianbaoshan MVT 28 (3) 39.3–49.5 1998–4887 93.8–228.1 (140) Wen et al. (2016)

Jinding MVT 5 (4) 54.1–66.3 3184–22826 24–189 (126) Wen et al. (2016)

Dadongla MVT 5 (4) 58.7–65.1 16536–26215 24–36 (30) Wen et al. (2016)

Fankou MVT 10 (7) 55.97–62.27 1400–2700 216–389 (324) Xuesin (1984)

Beichang MVT 23 (23) 51.5–60.3 3160–14695 38–189 (84) Li et al. (2019)

Nanchang MVT 9 (9) 54.0–58.4 5625–22750 24–96 (46) Li et al. (2019)

Maoping MVT 23 47–61 1869–3344 156–294 Wu et al. (2021)

Gacun VMS 4 (4) 51.5–63.9 2828–3476 169–213 (193) Wen et al. (2016)

Bankshapa VMS 5 60.24–62.12 1518–1569 391–407 (398) Mishra et al. (2021)

Jangaldheri VMS 9 56.30–57.62 378–1217 470–674 (558) Mishra et al. (2021)

Biskhan VMS 5 55.57–57.64 1070–1168 477–512 (498) Mishra et al. (2021)

Bhuyari VMS 6 54.53–56.07 1036–1187 463–530 (492) Mishra et al. (2021)

Bukit Botol VMS (massive) 54 (7) 65.72–66.13 5100–5700 115–130 (123) Basori et al. (2021)

Bukit Botol VMS (stringer) 24 (7) 53.48–62.35 2200–2800 216–267 (240) Basori et al. (2021)

Bukit Ketaya VMS (massive) 45 (9) 64.70–66.63 1800–2500 265–371 (320) Basori et al. (2021)

Bukit Ketaya VMS (stringer) 48 (8) 64.57–66.08 2700–5200 125–246 (218) Basori et al. (2021)

Arminius VMS 16 (8) 57.80–67.00 1000–3000* 195–670 (274) D. J. Sandhaus (unpub. MS thesis, Virginia
Polytechnic Institute and State Univ., 1981)

Cofer VMS 35 (20) 55.80–64.70 1000–3100* 77–656 (312) D. J. Sandhaus (unpub. MS thesis, Virginia
Polytechnic Institute and State Univ., 1981)

Geco VMS 14 (2) 58.54–58.72 2400–4700 125–244 (185) P. G. Spry (unpub. Ph.D. thesis, Univ.
Toronto, 1984)

Attu VMS 25(10) 55.83 1900 294 Hangala (1987)

Pontide VMS (Zone A) 16 (2) 61.80–66.40 2639–8957 78–249 (177) Revan et al. (2014)

Pontide VMS (Zone B) 1 (1) 62.7 2773 226 (226) Revan et al. (2014)

Pontide VMS (Zone C) 2 (10) 61.84–66.00 2260–3765 174–278 (219) Revan et al. (2014)

Langshan Sedex 4 (3) 1.1–34.2 34–996 316–393 (350) Wen et al. (2016)

Bleikvassli Sedex ? 58.4 1100 531 Vokes (1976)

Aclare Sedex 1 (1) 57.4 2000 287 Spry et al. (1988)

Kanmantoo Sedex 29 (4) 51.94–56.99 1200–2800 198–461 (320) H. Arbon (unpub. B.Sc. Hons thesis, Univ.
Adelaide, 2011)

Mt Isa Sedex 357 (13) 53.08–63.86 1464–4492 135–436 (264) Cave et al. (2020)

Sullivan Sedex 222 (5) 56.20–59.72 500–3200† 180–983 (345) Lydon & Reardon (2000)

Gamsberg Sedex 8 (8) 51.48–52.46 900–1700 326–580 (393) Höhn et al. (2021)

* below detection limits (0.11 wt % Cd) were not included.
† below detection limits (0.05 wt % Cd) were not included.
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variation suggesting that Zn, Cd and S were decoupled from each
other. This is further demonstrated by the lack of correlation
between δ66Zn and δ114Cd (Fig. 12). Two exceptions exist for
one sample (Z3590 15.6 m) from A lode at Broken Hill and one
from 11:30. The former shows the highest Zn (δ66Zn =
þ0.46‰) and S (δ34S = þ4.47‰) isotope compositions in the
deposit, while sample JB-10-46 from 11:30 shows the highest Cd
(δ114Cd= 2.59‰) and lowest S (δ34S = −5.11‰) isotope values
for the samples analysed here.

The range of δ66Zn for sphalerite from the Broken Hill deposit
is among the largest (1.61‰) yet reported, being exceeded only by
sphalerite from the Yuhuang-1 hydrothermal field (1.67‰; Liao
et al. 2019). Fourteen of the 18 samples of sphalerite samples from
Broken Hill have values of δ66Zn that range from −0.39 to
þ0.46‰, which overlap most Zn isotope compositions reported
from previous studies of MVT, Sedex and VMS deposits
(Fig. 13), as well as the compositions of most igneous and sedimen-
tary rocks (e.g. Maréchal et al. 2000; Toutain et al. 2008; Telus et al.
2012). A question remains as to why the remaining four Zn isotope
isotopic compositions, two from Broken Hill and two from the
Esmeralda deposit, yield the very negative values of δ66Zn between
−1.15 and −0.76‰.

Variations in Zn isotopes in a given hydrothermal orebody can
result from a variety of processes including (Li et al. 2019):
Rayleigh fractionation (e.g. Wilkinson et al. 2005; Kelley et al.

2009; Wang et al. 2020); biological processes (Li et al. 2019); equi-
librium fractionation related to T (Mason et al. 2005); different Zn
species in the hydrothermal fluid (Fuji et al. 2011); volatilization/
evaporation/boiling (e.g. Paniello et al. 2012; Wang et al. 2021);
and mixing of different sources of Zn (Wilkinson et al. 2005).
Although the effects of metamorphism on the fractionation of
Zn isotope compositions in natural systems have received limited
attention, Xu et al. (2021) showed that basalts metamorphosed to
the greenschist, amphibolite and eclogite facies showed no detect-
able fractionation. This contrasts with the observations of Pons
et al. (2016) who showed that small isotopic variations (up to
0.16‰) occur in subducted Alpine serpentinites that were meta-
morphosed from greenschist to blueschist through to the eclogite
facies. They ascribed the decrease in δ66Zn to the release of oxidized
Zn sulfate-rich fluids to the mantle wedge. Regardless, metamor-
phism to high grades would appear to only produce a very small
amount (i.e. <0.2‰) of fractionation. Relatively small isotopic
ranges were reported by S. E. Foulkes (unpub. M.Sc. thesis,
Rhodes Univ., 2014) for sphalerite from the Gamsberg
(δ66Zn = −0.22 to −0.08‰, n= 7) and by Matt et al., (2020)
for sphalerite from the Balmat deposits (δ66Zn = −0.30 to 0.28,
n= 47) that were both metamorphosed to the amphibolite facies.
This further supports the idea that the metamorphism does not
modify the original Zn isotopes in the Broken Hill district and
is not the cause for the wide isotopic range in the Broken Hill dis-
trict. Owing to the intense deformation at Balmat, Matt et al.,
(2020) showed there was a δ66Zn fraction of up to 0.4‰ down
the length of some ore bodies. They ascribed this to syntectonic
isotopic fractionation that resulted from the interaction between
the ore and sulfide melts that were fluxed by H2S. Peak metamor-
phic conditions at Balmat reached ~640 °C and 6.5 kbar. However,
given that sulfide in the Balmat deposit primarily consists of
sphalerite with only minor to trace amounts of other sulfides/
sulfosalts (e.g. arsenopyrite, bournonite, tetrahedrite, galena,
pyrite, tennantite, chalcopyrite, jordanite, realgar; P. Matt, unpub.
MS thesis, City Univ. New York, 2019) to potentially lower the
melting point of a sulfide mix, there is some question regarding
whether or not there was sufficient quantity of these minerals to
lower the melting point to the metamorphic conditions reached
at Balmat given the high melting point of sphalerite (i.e. 1827 °C).
Regardless of whether or not there was a sulfide melt, or whether
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the light Zn isotopes fractionate due to deformation in a fluid-
bearing or fluid-free environment remains uncertain. However,
a similar question was raised by Spry et al. (2008) regarding
whether a partial sulfide melt was produced at Broken Hill and
whether or not it was possible to produce the Pb lode ore bodies
as a result of sulfide migration from the restite Zn lodes as pro-
posed by Mavrogenes et al. (2001). Despite these uncertainties,
fractionation of S isotopes in veins due to deformation was
reported by Spry (1987) at Broken Hill and it may be the same
mechanism that is responsible for some of the light Zn isotopes
in the Broken Hill district where isoclinal folding exists for the
first two phases of deformation that affected the Broken Hill
deposit and which caused the migration of sulfides into fold hinges
(e.g. Laing et al. 1978; Parr & Plimer, 1993).

Mechanisms involving Rayleigh fractionation may not produce
the large fractionation in Zn isotopes observed in the Broken Hill
and the minor BHT deposits, although it may account for the Zn
isotopic compositions >0‰ at Broken Hill. Nonetheless, ab initio
calculations by Fuji et al. (2011) show that negative values of δ66Zn
of up to 0.6‰ can occur in sulfides in high pH fluids (likely asso-
ciated with carbonates) at low temperatures but a considerably
smaller fractionation occurs under neutral to acidic fluids at higher
temperatures. Regardless, Rayleigh fractionation is inconsistent
with the isotopic compositions in the Esmeralda deposit and
two samples from Broken Hill that have values of
δ66Zn < −0.7‰ since they are hosted in clastic metasedimentary
rocks rather than marbles (although carbonates are relatively
common in 2 lens at BrokenHill). It is, therefore, unlikely that high
pH ore fluids were associated with the formation of deposits in the
BrokenHill district (including BrokenHill) and cannot account for
the observed wide isotopic range.

The largest Zn isotopic variations in the solar system are asso-
ciated with devolatilization processes related to the formation of
terrestrial bodies where variations of several per mil have been
reported (e.g. Luck et al. 2005; Creech & Moynier 2019). Wang
et al. (2021), in evaluating the Zn isotopic compositions of sphal-
erite in the Keyue and Zhaxikang Sedex deposits, showed that
vapour–liquid–solid partitioning from hydrothermal fluids would
result in lighter Zn and Cd isotopes in the vapour and heavier Zn
and Cd isotopes in the solid phase (i.e. sphalerite). Given the pos-
sibility that the Broken Hill and minor BHT deposits may have
formed from magmatic–hydrothermal fluids (i.e. possibly in the
range of 400–700 °C, see Williams-Jones & Heinrich, 2005) rather
than the lower temperature fluids (i.e.<350 °C) associated with the
previously discussed syngenetic model, then a vapour phase may
have been generated. However,Wang et al. (2021) also showed that
when the fraction of the initial Zn and Cd partitioned into the vol-
atile phase is extremely high (i.e.>0.8), the resultant sphalerite pre-
cipitated from the vapour can produce very light isotopic values.
This scenario could conceivably account for the very negative
Zn isotopes observed in sphalerite from the Esmeralda deposit
and two samples from the Broken Hill deposit even though such
high partitioning of metals such as Zn and Pb into the vapour
seems far-fetched. Such an extraordinarily high value is unlikely
to produce the enormous amount of sphalerite in the supergiant
deposit. Therefore, vaporization of the ore-forming fluid poten-
tially associated with the magmatic–hydrothermal model does
not appear to be a likely scenario to account for compositions of
the Zn or Cd isotopes observed in the Broken Hill district.

Fractionation of Cd isotopes can be large with extreme values of
between ~ −8 andþ16‰ being reported for meteorites as a result
of condensation and evaporation processes (e.g. Wohmbacher
et al. 2003, 2004, 2008). Previous studies of hydrothermal ore
deposits show ranges of −0.74 to þ1.01‰ in sphalerite based
on studies of the Zhaxikang VMS and Fule MVT deposits (Wen
et al. 2016; Wang et al. 2020). Cadmium isotope compositions
of igneous and sedimentary rocks are essentially indistinguishable
with δ114Cd values generally around 0 ± 0.2‰ (e.g. Wohmbacher
et al. 2003; Schmitt et al. 2009; Liu et al. 2019). Values of δ114Cd for
sphalerite from Broken Hill and smaller BHT deposits range from
−0.48 to þ0.01‰ for the Broken Hill deposit and from
δ114Cd = −1.02 to 2.59‰ for the smaller BHT deposits
(Fig. 14). Although values of δ114Cd for sphalerite from Broken
Hill overlap those of igneous and sedimentary rocks, 10 of the
17 samples analysed range from δ114Cd = −0.48 to −0.23‰ sug-
gesting that some mechanism other than hydrothermal processes,
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where Cd was extracted from the meta-igneous and metasedimen-
tary package associated with the Zn–Pb deposits in the Broken Hill
district, was responsible. In a Cd, S and Zn isotope study of the
Xiaobaliang VMS deposit, Yang et al. (2022) proposed that the val-
ues of δ114CdNIST-3108 values for sphalerite, which range from
−0.74 to −0.08‰, are the result of biological processes that enrich
the fluid in the light Cd isotope, resulting in the precipitation of
sulfides with light values of δ114Cd. Such processes are considered
here.

5.d. A biological syndepositional model for the formation of
the Broken Hill deposit and minor BHT deposits

Although the S isotopic compositions of sphalerite can be inter-
preted in the light of a magmatic–hydrothermal or a syngenetic
model, where TSR occurs at a temperature of around 350 °C, nei-
ther model can account for the wide range of Zn and Cd isotope
compositions of sphalerite.Microbiallymediated dissimilatory sul-
fate reduction to H2S produces isotopically light H2S with
Δ34SSO4-H2S up to 72‰ (e.g. Canfield & Teske, 1996; Balci et al.

2007). However, biological processes are also likely to be important
for Zn and Cd (e.g. Li et al. 2019). Although fractionation factors
associated with biological processes are not large (1.0002 to 1.0008;
Abouchami et al. 2013), biological partial assimilation of Cd from
seawater can generate a range of δ114Cd of 7‰ in surface waters as
a result of the uptake of dissolved Cd by photosynthesis (e.g. Lacan
et al. 2006; Ripperger et al. 2007; Schmitt et al. 2009; Wen et al.
2016), while a range of δ66Zn of up to ~0.7‰ occurs as a result
of biological processes (e.g. Conway & John, 2014; John &
Conway 2014; Zhao et al. 2014) (Fig. 15). Theoretical calculations
and experimental studies of Fuji et al. (2011) and Marković et al.
(2017), respectively, show that organic compounds (e.g. Zn-car-
boxylate) generally have heavier isotopic compositions than
Zn2þ, which can result in sphalerite having very low δ66Zn values
in a low T solution (i.e.<100 °C). Li et al. (2019) suggested that Cd,
like Zn, may have bonded to carboxylate molecules in hydrother-
mal solutions resulting in light isotopic values for sphalerite.

However, two features of the Zn and Cd isotope ranges for
sphalerite from Broken Hill need to be addressed: why there is
no apparent linear relationship between Zn and Cd isotopic
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compositions (see Fig. 12) and why the range of isotopic values for
Cd is smaller than that for Zn isotopes. Cadmium and Zn behave
differently with regards to biological productivity. While Zn can be
adsorbed and assimilated by phytoplankton, the scavenging of

isotopically heavy Zn onto biological particles, which sink through
the water column, leave the remaining fluid characterized by
lighter Zn isotope compositions (John et al. 2017). Scavenging/
adsorption can lower the Zn isotope compositions by −0.3 to
−0.6‰ (Li et al. 2019). Therefore, the sum of values related to
preferential uptake of light isotopes during biological processes
is as much as −1.3‰ (i.e. the sum of values for biological assimi-
lation (up to 0.7‰; Conway & John, 2014; John & Conway, 2014)
and scavenging/adsorption (−0.3 to −0.6‰; Li et al. 2019)). On
the other hand, Cd is not scavenged by biological particles but is
controlled by biological assimilation as it substitutes for P. If Zn
in the Broken Hill area was released from organic material during
decay to form sphalerite this process could result in the light iso-
topic composition of both Zn and Cd. Alternately, sphalerite for-
mation from the residual seawater would not account for the Cd
isotope composition because surface seawater trends to high values
of δ114Cd.

A similar explanation for the small range in Cd isotopes com-
pared to Zn isotopes, a feature observed in sphalerite from the
Broken Hill area, was proposed by John et al. (2017) for the
Neoproterozoic dolostones from the Nuccaleena Formation,
South Australia. In the Nuccaleena dolostone, Cd was buried in
biological material (i.e. phytoplankton) to produce light Cd isotope
compositions, while scavenging of heavy Zn left surface seawater
with light Zn isotope compositions. Organic matter formed in sur-
face seawater when buried will produce a larger isotopic range for
Zn than Cd.

A mechanism involving Zn and Cd being bonded to organic
molecules best accounts for the light Zn and Cd isotopic compo-
sitions in the BrokenHill district, including the light isotopic values
from the Flying Doctor (δ114Cd = −0.77‰) and Henry George
(δ114Cd = −1.02‰). This scenario is analogous to biogenic proc-
esses proposed by Li et al. (2019) to explain similar Zn, Cd and S
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isotope compositions for sulfides from the giant Jinding MVT
deposit, China, and by Yang et al. (2022) to account for the isotopi-
cally light Cd and S isotope values of sphalerite in the Xiaobaliang
Cu–Au VMS deposit, China. Fractionation by biogenic sulfate
reduction (BSR) is consistent with the process proposed by Both
& Smith (1975) to explain the differences in S isotopes in the dis-
trict. To this end, Heimann et al. (2013) also reported C and O iso-
topes values in calcite from the Esmeralda and BrokenHill deposits
(the two deposits that show the most negative values of δ66Zn;
Table 2), which range from −25 to −21‰ for δ13CVPDB and
þ10 to þ11.0‰ for δ18OSMOW, respectively. The low carbon iso-
tope values also overlap (δ13CVPDB = −26 to −14‰) for graphite
in graphitic schists in the southern Curnamona province (includ-
ing the Broken Hill deposit) and calcite at the RW Iron Clad and
Little Broken Hill BHT prospects (M. Schuler et al., The Broken
Hill Line of Lode Study, unpub. report to Pasminco Mining
Company, 1993; Bierlein et al. 1996). Biogenic processes occur
at low temperatures (i.e. <100 °C). Notwithstanding the proposal
here that biological processes are important in producing the Zn,
Cd and S isotopic compositions reported for sphalerite in the
Broken Hill district, the cause of the outlier value of
δ114Cd = þ2.59‰, coupled with the isotopically lightest value
of δ34S of −5.11‰, for the samples studied here from the small
11:30 deposit remains unknown. However, these anomalous iso-
topic values may be due to kinetic and/or equilibrium effects sim-
ilar to those responsible for the isotopically anomalous value of
δ66Zn > þ1‰ reported by John et al. (2008) for sulfides in active
hydrothermal vents on the seafloor.

6. Conclusions

Geological and geochemical considerations suggest that the
Broken Hill deposit as well as minor BHT deposits likely formed
by either syngenetic processes at T <350 °C or from magmatic–
hydrothermal fluids at a T of between 400 and 700 °C. Although
S isotope studies are compatible with either process, Cd and Zn
isotope studies are incompatible with high T processes because
both the lighter isotopes for both isotopic systems will fractionate
into the vapour phase leaving sphalerite exhibiting heavy isotopic
compositions. Even though the S, Cd and Zn isotope values show
no correlation with each other, suggesting they were decoupled, the
isotopic ranges are commensurate with fractionation being caused
by low-temperature biogenic processes.

The Zn and Cd isotope variations for sphalerite from the
Broken Hill deposit andminor BHT deposits are among the largest
yet reported. Although biogenic processes appear to be the most
likely explanation for the isotopically light values reported for both
isotopes, fractionation caused by mechanical processes whereby
the lighter isotope Zn and Cd isotopes migrate more easily in a
fluid assisted or depleted system is uncertain, but this remains a
possibility given the extreme deformation that resulted in two iso-
clinal fold episodes at Broken Hill and the migration of sulfides
into fold hinges.

Syngenetic scenarios for the Broken Hill deposit have previ-
ously considered it being a VMS or Sedex deposit. Although Cd
isotopes have been combined with the Zn/Cd isotope ratio of
sphalerite to classify Pb–Zn deposits in the past and may have
helped in distinguishing these two deposit models, such an exercise
is fraught with problems. Although MVT deposits tend to have
lower Zn/Cd ratios in sphalerite than those formed by high-tem-
perature (e.g. VMS) and exhalative (Sedex) systems, the Zn/Cd
ratios for VMS and Sedex deposits overlap and cannot be used

to distinguish between these deposit types. Sphalerite from the
BrokenHill and BHT deposits have average Zn/Cd ratios for sphal-
erite that range from 203 to 303 and fit within the overlap region
for Sedex and VMS deposits. This is hardly surprising given the
spatial association of sulfide mineralization with bimodal mafic
and felsic igneous rocks within a thick package of metasedimentary
rocks.
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