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ENDS OF SPACES RELATED BY A COVERING MAP 

BY 

GEORG PESCHKE 

Introduction. Consider a covering p : X —> B of connected topological spaces. If 
B is a compact polyhedron, a classical result of H. Hopf [4] says that the end space 
E(X) of X is an invariant of the group G of covering transformations. Thus it becomes 
meaningful to define the end space of the finitely generated group G as E(G) := E{X). 

If B is not compact, then E(X) does not depend on G in such a simple way; e.g. 
consider the covering R x R —» R/Z x R. Yet, under certain assumptions, £(X) is 
completely determined by end space data of B and of G, and the main purpose of this 
paper is to make this relation explicit. See Theorem (3.8). 

The key steps towards Theorem (3.8) are the following: 

STEP 1. For every group H we define functorially an end space E(H), which is 
homeomorphic to Hopf's if H is finitely generated. See §1. 

STEP 2. There is a continuous map k : E(G) —> E(X). If B is compact then k is a 
homeomorphism. This is merely a restatement of Hopf's result [4]. In general, k need 
be neither 1 — 1 nor onto. However, if an end of X does not belong to im k, then it 
can be related to an end of B. Thus E(X) is the union (not necessarily disjoint) of im 
k and 'fibers' of ends of X over the ends of B. See §2. 

STEP 3. G also acts on E(X) and the 'fibers' of ends of X over the ends of B are 
invariant subspaces under this action. In many cases, if e G E(B), the 'fiber' X(e) 
of ends of X over e is a single orbit under this action. The isotropy groups of ends 
6 G X(e) are related to the contributions of the fundamental groups of neighbourhoods 
of e to G. In §3 we make this relation explicit and show that it completely determines 
the end space structure of X. See Theorem (3.8). 

We also draw the reader's attention to Theorem (2.8) which gives a relation between 
the end space of a countable group and the distribution of its infinite cyclic subgroups. 

Our results constitute an extension of the pioneering work of H. Hopf [4]. We give 
some applications in §4. 

The author gratefully acknowledges several useful discussions with K. Varadarajan. 

§1. Ends of groups. It is implicit in Hopf's work [4] that assigning to a f.g. group 
H its end space E(H) actually determines a covariant functor E from the category 
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of f.g. groups and homomorphisms with finite kernel to the category of topological 
spaces and continuous maps. For a combinatorial interpretation of this, see also [3] 
and [7]. 

For every group G,G = lim G\, the direct limit of the system of its f.g. subgroups. 

Every homomorphism of this limiting system is a monomorphism. Thus 

DEFINITION 1.1. The end space of an arbitrary group G is 

E(G):= lim £(GA), 

where the limit is taken over the system of all finitely generated subgroups G\ of G. 

REMARKS 1.2. (i) E is a covariant functor from the category of groups and homo­
morphisms whose kernel has finite intersection with all f.g. subgroups of the domain 
group to the category of topological spaces and continuous maps. 

(ii) If G is f.g. then the directed system of its f.g. subgroups terminates in G. 
Consequently, E(G) as defined in (1.1) is homeomorphic to Hopf's end space of G. 

(iii) If G is not f.g. then E(G) may not be compact; see 2.11. 
(iv) D. Cohen [1] has used a combinatorial method to define the number of ends of 

an arbitrary group G. If G is f.g. this number corresponds to the cardinality of E(G). 
However, for non f.g. groups this correspondence may fail. E.g. the Cohen invariant 
of the rationals is 1, whereas E(Q) = E(Z) is the 2-element discrete space. Compare 
also Stallings [7]. 

(iv) The end spaces of f.g. groups are completely classified; see [4], [1], [7]. There­
fore, the chances of computing end spaces of more general groups are quite good. 
E.g. E(R) = 1-point space; E(G x H) = 1-point space if E(G) and E{H) are both not 
empty, etc. 

§2. Relating E(G) to E(X). The remainder of this paper is dedicated to the inves­
tigation of the end space of X, where p : X —+ B is a regular covering with group 
of covering transformations G. We assume throughout that X and B are connected 
topological spaces of one of the following two types: 

TYPE 1. Locally finite simplicial complexes with at most countably many simplices. 
TYPE 2. Locally finite CW -complexes of finite dimension with at most countably 

many cells. 

In this set-up we exhibit a continuous map k : E(G) —> E(X) and study some of its 
properties; see in particular Proposition 2.5 and Theorem 2.8. 

We recall that a proper map / : X —> F has a continuous extension / : X —+Y over 
the Freudenthal compactifications X, Y of X, Y. Further,/ restricts t o / : E(X) —-> E(Y); 
see [2]. 

DEFINITION 2.1. (i) e G E(X) is a vertical end of X :<& there is a sequence (gn) in 
G such that gn.x —• e for some x G X (and, hence, for all x G X); compare Hopf [4]. 
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(ii) e E E(X) is a horizontal end of X :& there is a proper map e : R —> X with 
e(oo) = e and such that the sequence (pe(n)) converges to some end e£E(B). Here, 
R := [0, oo[ is the ray of non-negative real numbers. 

For (2.1 .ii) it is relevant that E(X) is in bijective correspondence with the set of all 
proper maps R —+ X subject to the following equivalence relation. Two proper maps 
ex• : R x {/} —• X, i = 0,1, are equivalent :<=* there is a proper m a p / : L —> X with 
f\Rxyy = a, where L is the infinite ladder R x {0,1} U N0 x [0,1]. 

DEFINITION 2.2. Let e E E(B). The 'fiber X(e) is the set of all horizontal ends e of 
X having a proper map e : R —• X with ê(oo) = e and pe(n) —> e, for n —> oo. 

Writing 'fiber' is a safety indicator for the fact that 'fibers' over distinct ends of B 
need not be disjoint; consider e.g., the covering p : R x R —» (R/Z) x R, where the 
one and only end of the total space belongs to the 'fibers' of both ends of B. 

REMARK 2.3. If e E E(B), then X(e) ^ 0. This follows by considering lifts of proper 
maps e : R—>B with ê(oo) = e. • 

PROPOSITION 2.4. 77zere /s a continuous map k : E(G) —> E(X). 

PROPOSITION 2.5. E(X) is the union ofimk and the horizontal ends ofX. 

PROOF OF 2.4. The map k comes from the defining universal property of E{G)\ 
see 1.1: For each f.g. subgroup G\ of G take a representation of G as the group of 
covering transformations of a regular covering X\—+B\, where X\, B\ are connected 
1-dimensional locally finite CW-complexes, and B\ is compact. Using Hopf's work 
[4], the inclusion G\ —> G induces a proper equivariant map u\ \X\—*X. The map 
u\ : E(G\) = E(X\) —• E(X) depends only on G A and is functorial with respect to the 
homomorphisms in the limiting diagram of f.g. subgroups of G. This implies 2.4. • 

We remark that the image of k consists of all those vertical ends e E E(X) for which 
there exists a f.g. subgroup G\ of G and a sequence (hn) in G\ so that hn.x —• e for 
all x eX. 

PROOF OF 2.5. Suppose e E E(X) is not in im£. Let e : R —» X be a proper map 
with ê(oo) = e. Then /?e(7?) can not be contained in any compact subspace C of 5 . 
For TT\C is finitely generated, implying that e E im/:; contradiction. Consequently, 
there is a proper strictly increasing sequence (tn) in /? such that (pe(tn)) converges to 
some end eofB. Thus e E X(e). • 

REMARK 2.6. If e E E(X) is not vertical, then e is actually a lift of some end 
e E E(B) in the following sense. For any proper map e : R —> X with ê(oo) = e, 
pe : R -^ B is also proper. Further, if e E X(e'), then e = e;. 
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PROOF. If pe is not proper, there is some closed cell c of B such that e(R)C\p~l(c) 
is not compact. Subjecting e to a suitable proper homotopy, if necessary, we see that 
pe is an infinité sequence of based loops in B. These yield an infinite sequence (gn) in 
G satisfying gn. * —> e, for a suitable lift * of the base point of B. Thus e is a vertical 
end; contradiction. 

To see the uniqueness of e, apply a similar argument to a proper map / : L —• X, 
with/(oo) = e. 

For later use, we need the following definition, based on 2.6. 

DEFINITION 2.7. (i) e G E(X) has property (L) :<^ there is a proper map e : R—> B 
with ë(oo) = e,for some lift ë of e. 

(ii) p has property (L) :*> every horizontal end ofX has property (L). 

A monomorphism a : Z —> G induces the map â : £(Z) —• E(G). We call an 
end e G £(G) primitive, if it is in the image of some map a : E(Z) —• E(G), where 
a : Z —• G is a monomorphism. The following theorem relates in some sense the 
distribution of infinite cyclic subgroups of G to the end space of G. 

THEOREM 2.8. If G has an element of infinite order, then the space of primitive 
vertical ends ofX is dense in the space of vertical ends ofX. 

COROLLARY 2.9. If G has an element of infinite order, then 
(i) The image of k : E(G) —• E(X) is dense in the space of vertical ends ofX. 
(ii) If in addition E(G) is compact, then the image of k : E(G) —• E(X) is equal to 

the space of vertical ends of X. D 

PROOF OF 2.8. Let e be a vertical end of X and let (gn) be a sequence in G with 
gn.x —> e, for all x G X. For a neighbourhood V of e in E(X), there is a compact 
connected set C in X such that 

(i) all connected components U\,...,Uk of X — C are unbounded; 
(ii) all ends of the closure Û\ of U\ in X correspond to ends of X in V under the 

inclusion Û\—*X. 
As C is compact, there is N G N with g„.C C f/i, for all n ^ Af. Consequently, 

gN-CnC — 0 = g^1.CflC. As C is connected, g^l.C is contained in precisely one 
of the components f/i , . . . , £/*. 

CASE 1. ^ . C f l f / i = 0. Then C f l ^ . t / i = 0. As U\ is connected, gN. U\ is 
contained in precisely one of the components ( / i , . . . , UK> AS d£/i C C and g#. C C 
f/i, it follows that gN.U\C.U\. 

Now g := gN has infinite order. If not, g r = 1 for some r â 2. As g - 1 = gr~l, 
we get 0 = g - 1 . C H U\ = (gN~l>C) D U\ 7̂  0; contradiction. Thus (gw) determines a 
primitive vertical end of the closure of U\ in X and, hence, one of V. 

CASE 2. gûl.C C £/i. By hypothesis, there is an element t G G of infinite order. 
Now, r determines a primitive vertical end e+ of X. If e+ belongs to V, then we are done. 
Else, e+ is an end of the closure of Ui in X, say. As gûl.C C £/i, g#. Ui n C = 0. 
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Consequently, gN-^2 C U\. In particular, |yv(e+) G V. This means that gutn.x —> 
#v(e+)+ : e\ for all x G I . In particular, gNtn.(g^l.x) —> e', for all x e X. Thus 
# := g^jtg^1 determines a primitive vertical end of V. D 

The following example (2.10) shows that X may have vertical ends which are not 
in the image of k : E(G) —• E(X). 

EXAMPLE 2.10. Let G be the free group with basis gi,g2, Let B denote the 
non-negative real ray with a loop attached at every integer. Take p : X —• # to be 
the universal covering. Choosing 0 G 5 as a base point, there is a representation of 
gw by the path in B that runs from 0 to n, then once around the loop at n (according 
to a chosen orientation), then back from n to 0. Then the sequence (gn) determines a 
vertical end of X which is not in im k. 

As the group G of (2.10) satisfies the hypotheses of (2.9)ii, we get 

REMARK 2.11. E(G) is not always compact. 

§3. The structure of E(X). Given a regular covering p : X —» B, as in §2, we now 
describe the end space E(X) in terms of the end space E(G) of the group of covering 
transformations of X and end data of B. From 2.5, we already know that E(X) is the 
union of the image of k : E(G) —• E(X) and the 'fibers' X(e) over the ends of B. 
Accordingly, we seek to understand the behaviour of the map k and the structure of 
the 'fibers' X(e). We now sketch our approach. 

Corresponding to a neighbourhood bases U\ D Ui D • • •, see [2], of an end e of B, 
there is an inverse sequence p~xU\ D p~xUi D • • •. The path connectedness relation 
yields an inverse system Comp(/?-1£/i) <— Comp(p-1f/2) *— • • • of discrete spaces, 
and there is an equivariant map from the resulting inverse limit A to X(e). We then 
show: 

(1). If the fundamental groups of the sequence (JJn) contribute to G in a stable way, 
then A is homeomorphic to the quotient of G by any of certain conjugate subgroups 
{H,} of G. 

If, in addition, all ends of X(e) have property (L), then (2) and (3) below also hold. 
(2). The map A —• X(e) is onto. 
(3). For e,e' G £(G), k(e) = k(ef) & there is an e G E(B) with k(e) - k(ef) G 

X(e) & for some //, e and e' are in the image of the map £(7/^) —» £(G). 
We also give conditions for the map A —» X(e) to be a bijection. A precise formu­

lation of these results is given in Theorem 3.8. 

LEMMA 3.1. Suppose that k(e) — k(ef) for two distinct ends e,e; G E(G). Then k(e) 
is also a horizontal end ofX. 

PROOF. The assumption that k{e) is not a horizontal end of X leads to the existence 
of a f.g. subgroup H of G and an end S of H such that the induced map E(H) —» E(G) 
sends £ to 6 as well as to e'. This is absurd. • 
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As the homeomorphisms by which G acts on X extend to homeomorphisms of the 
Freudenthal compactification of X, G also acts on E(X). Clearly, 

LEMMA 3.2. For every e G E(B), X(e) is invariant under the action of G on 
E(X). D 

In order to exploit further the action of G on X, we need some preparations: If 
a, /3 are composible (homotopy classes of) paths in a space, we write a/3 for the path 
running first along a, then along /3. Associated with the fundamental groupoid of a 
space Y is the fundamental system oY. Its objects are the groups 7Ti(Y,y), y G Y. Its 
(iso-)morphisms a(p : 7ri(F,y) —» TT\(Y',/) are induced by homotopy classes of paths 
a joining y to y'. Thus oY is also a groupoid. The pull back f*aY of oY along a map 
/ : W —> Y has as its objects all pairs (7ri(F,/(w)), w), H> G VF. The (iso-)morphisms 
o f / V F are all (/«)</? • (7n0%/(w)),w>)—> (7Ti(Y,/"(>/)), w'), a joining w to w'. Thus 
f*aY is also a groupoid. 

Using standard covering space theory, we see that our covering p : X —> B deter­
mines a 'representation' r : p*aB —> G. The 'image' of r is G. The 'kernel' of r is 
<JX. 

A subspace S of B yields the map ps : /?-1S —* S. By composition we get a 
representation 

TS : /?Jo\S —+ p*aB —* G. 

If S is connected, the 'image' of rs is a class of conjugate subgroups of G. 

DEFINITION 3.3. An end eofB is G-stable : ^ there is a neighbourhood basis (Un) 
of e such that the decreasing sequence G D im T\JX D im Tu2 D • • • of classes of 
conjugate subgroups of G becomes constant. 

Thus e is G-stable if and only if there is a connected open neighbourhood U of e with 
compact frontier such that for any other such neighbourhood U' C U,imru' = imrj/. 
We refer to U as a G-stable neighbourhood of e if it has this property. 

We also remark that if B is semistable at e, then e is G-stable; compare [6]. 
Given a G-stable neighbourhood U of e, consider a connected component V of the 

open subset p~lU of X. Since G acts transitively on the set Comp(p-1£/) of connected 
components of p~lU, we have 

LEMMA 3.4. Comp(p~lU) is in bijective correspondence with G/Gy, where Gy is 
the maximal subgroup of G having V as an invariant subspace. • 

We now relate these facts to the horizontal ends of X. Let e G E(B) be a G-stable end 
with G-stable neighbourhood U. We know, see [5], that E(X) = limComp(X — C\) <— 
Comp(X — C2) <—•••, where C\ C C2 C • • • is an expanding sequence of compact 
connected subspaces of X whose union is X. For large «, dU C p(Cn). Hence, any 
unbounded component of B — p(Cn) is either contained in U or has empty intersection 
with U. Therefore, every connected component of p~l(U— pCn) is contained in exactly 
one component of X — Cn. Thus we get a commuting diagram (V is a connected 
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component of p XU)\ 

3.5 G/Gv = Comp p~\U - pCn) <— Comp p~\U - pCn+l) <-

Comp (X - Cn) <— Comp (X - CB+1) < 

inducing a map À : G/Gy —+ £(X). Note that Gy represents the conjugacy class im 
Tu in G. 

LEMMA 3.6. (i) The map A constructed above takes values in X(e) and is equivariant. 
(ii) If all ends ofX(e) have property (L), then im A = X(e). 

PROOF. This follows straight from the definitions. • 

REMARK 3.7. If Gy has finite index in G, then all ends of X(e) have property (L). 

PROOF. For k è «, let A^ C Comp(X—Q) be the set of connected components which 
are neighbourhoods of some e G X(e). Then im A* = A^. If (Y*) is the neighbourhood 
basis in X of a fixed e G X(e), corresponding to the sequence (Q), let Zk := A^"1^)-
Then Z* D Z +̂i D • • • and, since each Z* is finite and not empty, HZk ^ 0. If z belongs 
to that intersection, A(z) = e, by commutativity of (3.5). This implies 3.7. • 

We are now ready to state the main result of this chapter. 

THEOREM 3.8. Let p : X —• B be a regular covering of the kind described in the 
beginning o/§2. Suppose that p has property (L) and that every end of B is G-stable. 
Let e G E(B) with G-stable neighbourhood U and let e G X(e). Then 

(i) X(e) is the orbit of e under the action of G on E(X). 
(ii) Let V be a connected component of p~lU such that X(V) = e. Then Gy is 

contained in the isotropy group Ge of e. 
(iii) If Gy is finite, then Gy — Ge. 
(iv) Let e' be a vertical end of X. Then e — ef <=> there is a sequence (hn) in Gy 

such that hn.x —• e', for all x E X. Thus k~l{e'} — im(E(Gy) —• E(G)). 

PROOF, (i) and (ii) follow from (3.6). 
(iii) If Gy is finite, it follows that the connected components of p~xU have com­

pact boundary, hence are neighbourhoods of distinct ends of X(e). Therefore, A is a 
bijection. As A is equivariant, Gy = Ge. 

(iv) "=>" Let e : R —• B be a proper map with ê(oo) = e. As p has property (L), 
there is a lift ë : R —• X with ë(f) G V, for large t. Thus £(oo) = e. As e = ef is 
vertical, there is a sequence (gn) in G with gn.x —+ e, for all JC G X. Hence, there 
is a proper map / : L —+ X (L is the infinite ladder [0, oo[x{0,1} U N0 x /) with 
/j[o,oo[x{o} — e a n d / ( « , 1) — gn-e(Q), for all n. For technical convenience, we may 
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assume that e(0) £ U and that e and/ take values in the 1-skeleta of B, respectively 
X. (If X,B are CW-complexes, it is at this point where we need the "finite dimension" 
hypothesis.) 

It follows that for n sufficiently large, pf{n} x / D dU ^ 0. dU is compact and 
can be assumed to be a finite subcomplex of B. Thus there exists a vertex v G dU, an 
infinite strictly increasing sequence «/ G N and a corresponding sequence ti G / , such 
that p/(n,-, f,-) = v. The sequence/(w;, u) converges to e. Further, pf yields loops // in 
U, based at v, corresponding to a sequence (hi) in 7Ti(£/, V) with /i/./(«o? *o) = /(#/? U). 

"<£=" Let (&„) be a sequence in Gy with /in.3t —> e', for all JC G X. Let e : [0, oo[—> V 
be a proper map, with pe proper and pe(oo) = e. To show that e = e', we construct 
a proper map / : L —• X with/(w, 1) = A„./(0,1) and/j[0)00[x{o} = *• 

Let U =: Uo D U\ D Ui D • • • be a neighbourhood basis of e. Then V =: 
Yo D V\ D Vi D - - • is a decreasing sequence of closed subsets of X, with empty 
intersection; where Vk := p~lÛk D V. These induce the sequence of maps of end 
spaces E(X) <— £(V) <— E(V\) < . There exists a proper increasing sequence (tk) 
in [0, oo[ such that e(tk) G p~l(Uk) H V. For every &, there is a subsequence (/**) of 
(hn) such that hk

n.e(tu) converges to some end e'k G E(Vk), for w —• oo. Hence, there 
exist proper maps ek : [0, oo[x{&} —• î \ with e*(w) = hk

n.e(tk). Since Vo ^ V'i D • • • 
induces e' <—i ê  <—i e'2 <—i • • •, there exist proper maps fk : [0, oo[x{tk, tk+\} U N 0 x 
fob tk+\] -> V*, extending the e*'s, with/£|{0}x[^+l ] = el[t^k+l]. 

The maps/: combine to a proper map F : [0, oo[x{f* : k G N0}U N0 x [0, oo[—• X. 
The desired map / can now be derived from F. D 

§4. Applications, Examples. We give some applications of the general results of 
Section 3. 

EXAMPLE 4.1. Consider the covering p : X := R x R -> R/l x R =: B. Then X 
has exactly one end and this end is both vertical and horizontal. We wish to see how 
Theorem 3.8 explains this from the covering space point of view. 

Clearly, G = Z. Now, B has two ends ±e corresponding to the ends ±oo of R. 
So E(X) = im(k : E(T) —• E(X))UX(+e)UX(-e). Both ends ±e are G-stable and 
the stable groups are equal to G. By 3.7, p has property (L). By 3.8.i, ii, X(+e) and 
X(-e) consist of one element each. By 3.8.iv, X(-e) = k(E(G)) = X(+e). 

Sometimes the end structure of X is understood and allows to infer the end structure 
of B, as in the following example. 

EXAMPLE 4.2. Let Y be a connected compact CW-complex. Let £ = (/?, 7r, y) be a 
real line bundle over Y. Then 

B has two ends ^ w\(Q — 0 (1st Stiefel Whitney class) 

B has one end & wi(0 = 1-

PROOF. If w\(Q = 0, then B = Y x R has two ends. Since w\(Q G Z/2, it now 
suffices to show 'Vi(0 = 1 implies that 5 has one end." This follows by applying 3.8 
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to the connected double cover p : I : = 7 ' x R - > f i , where Y' —-> Y is the connected 
principal Z/2-bundle associated with Ç • 

(4.2) can be useful when dealing with the normal bundle of a closed connected 
submanifold C of codimension 1 in a connected C°°-manifold M. 

PROPOSITION 4.3. (i) M — C has at most two connected components. 
(ii) If M — C has two connected components then v is trivial. 

PROOF, (i) Let D denote a normal unit disc bundle of C in M with respect to some 
Riemannian metric on v. Since the inclusion (M — D) —-> (M — C) is a deformation 
retract, we get a bijection Comp(M — D) —» Comp(M — C). Further, the inclusion 
(D — C) —• (M — C) induces an onto map Comp(£) — C) —-> Comp(M — C). By 
4.2, Comp(Z) — C) is in bijective correspondence with E(i/), which has at most two 
elements. 

(ii) The proof of (i) shows that if (M — C) has two components, then v has two 
ends. By 4.2, v is trivial. • 
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