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ENDS OF SPACES RELATED BY A COVERING MAP

BY
GEORG PESCHKE

Introduction. Consider a covering p : X — B of connected topological spaces. If
B is a compact polyhedron, a classical result of H. Hopf [4] says that the end space
E(X) of X is an invariant of the group G of covering transformations. Thus it becomes
meaningful to define the end space of the finitely generated group G as E(G) := E(X).

If B is not compact, then E(X) does not depend on G in such a simple way; e.g.
consider the covering R X R — R / 7 x R. Yet, under certain assumptions, E(X) is
completely determined by end space data of B and of G, and the main purpose of this
paper is to make this relation explicit. See Theorem (3.8).

The key steps towards Theorem (3.8) are the following:

Step 1. For every group H we define functorially an end space E(H), which is
homeomorphic to Hopf’s if H is finitely generated. See §1.

Step 2. There is a continuous map & : E(G) — E(X). If B is compact then k is a
homeomorphism. This is merely a restatement of Hopf’s result [4]. In general, k need
be neither 1 — 1 nor onto. However, if an end of X does not belong to im k, then it
can be related to an end of B. Thus E(X) is the union (not necessarily disjoint) of im
k and ‘fibers’ of ends of X over the ends of B. See §2.

StEP 3. G also acts on E(X) and the ‘fibers’ of ends of X over the ends of B are
invariant subspaces under this action. In many cases, if ¢ € E(B), the ‘fiber’ X(¢)
of ends of X over € is a single orbit under this action. The isotropy groups of ends
€ € X(e) are related to the contributions of the fundamental groups of neighbourhoods
of € to G. In §3 we make this relation explicit and show that it completely determines
the end space structure of X. See Theorem (3.8).

We also draw the reader’s attention to Theorem (2.8) which gives a relation between
the end space of a countable group and the distribution of its infinite cyclic subgroups.

Our results constitute an extension of the pioneering work of H. Hopf [4]. We give
some applications in §4.

The author gratefully acknowledges several useful discussions with K. Varadarajan.

§1. Ends of groups. It is implicit in Hopf’s work [4] that assigning to a f.g. group
H its end space E(H) actually determines a covariant functor E from the category
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of f.g. groups and homomorphisms with finite kernel to the category of topological
spaces and continuous maps. For a combinatorial interpretation of this, see also [3]
and [7].

For every group G, G = lEn G, the direct limit of the system of its f.g. subgroups.
Every homomorphism of this limiting system is a monomorphism. Thus

DerINITION 1.1. The end space of an arbitrary group G is
E(G) := lim E(G)),

where the limit is taken over the system of all finitely generated subgroups Gy of G.

ReMArks 1.2. (i) E is a covariant functor from the category of groups and homo-
morphisms whose kernel has finite intersection with all f.g. subgroups of the domain
group to the category of topological spaces and continuous maps.

(i) If G is f.g. then the directed system of its f.g. subgroups terminates in G.
Consequently, E(G) as defined in (1.1) is homeomorphic to Hopf’s end space of G.

(iii) If G is not f.g. then E(G) may not be compact; see 2.11.

(iv) D. Cohen [1] has used a combinatorial method to define the number of ends of
an arbitrary group G. If G is f.g. this number corresponds to the cardinality of E(G).
However, for non f.g. groups this correspondence may fail. E.g. the Cohen invariant
of the rationals is 1, whereas E(Q) = E(Z) is the 2-element discrete space. Compare
also Stallings [7].

(iv) The end spaces of f.g. groups are completely classified; see [4], [1], [7]. There-
fore, the chances of computing end spaces of more general groups are quite good.
E.g. E(R) = 1-point space; E(G x H) = 1-point space if E(G) and E(H) are both not
empty, etc. '

§2. Relating E(G) to E(X). The remainder of this paper is dedicated to the inves-
tigation of the end space of X, where p : X — B is a regular covering with group
of covering transformations G. We assume throughout that X and B are connected
topological spaces of one of the following two types:

Type 1. Locally finite simplicial complexes with at most countably many simplices.

Type 2. Locally finite CW-complexes of finite dimension with at most countably
many cells.

In this set-up we exhibit a continuous map £ : E(G) — E(X) and study some of its
properties; see in particular Proposition 2.5 and Theorem 2.8.

We recall that a proper map f : X — Y has a continuous extension f : X — ¥ over
the Freudenthal compactifications X, ¥ of X, Y. Further, f restrictsto f : E(X) — E(Y);
see [2].

DerINITION 2.1. (i) € € E(X) is a vertical end of X & there is a sequence (g,) in
G such that g,.x — € for some x € X (and, hence, for all x € X); compare Hopf [4].
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(ii) € € E(X) is a horizontal end of X 4> there is a proper map e : R — X with
é(00) = € and such that the sequence (pe(n)) converges to some end € € E(B). Here,
R := [0, 00[ is the ray of non-negative real numbers.

For (2.1.ii) it is relevant that £(X) is in bijective correspondence with the set of all
proper maps R — X subject to the following equivalence relation. Two proper maps
e, : Rx{i} — X, i=0,1, are equivalent :& there is a proper map f : L — X with
firx{iy = €i, where L is the infinite ladder R X {0,1} UNg x [0, 1].

DEerINITION 2.2. Let € € E(B). The ‘fiber’ X(e) is the set of all horizontal ends € of
X having a proper map e : R — X with é(00) = € and pe(n) — €, for n — 00.

Writing ‘fiber’ is a safety indicator for the fact that ‘fibers’ over distinct ends of B
need not be disjoint; consider e.g., the covering p : R X R — (R / 7) x R, where the
one and only end of the total space belongs to the ‘fibers’ of both ends of B.

REMARK 2.3. If € € E(B), then X (¢) # (). This follows by considering lifts of proper
maps e : R — B with é(00) = ¢. O

PrOPOSITION 2.4. There is a continuous map k : E(G) — E(X).
ProposiTiON 2.5. E(X) is the union of imk and the horizontal ends of X .

ProoF oF 2.4. The map k comes from the defining universal property of E(G);
see 1.1: For each f.g. subgroup G, of G take a representation of G as the group of
covering transformations of a regular covering X, — B), where X, B, are connected
1-dimensional locally finite CW -complexes, and B) is compact. Using Hopf’s work
[4], the inclusion Gy — G induces a proper equivariant map u) : X, — X. The map
ity : E(Gy) = E(X)) — E(X) depends only on G, and is functorial with respect to the
homomorphisms in the limiting diagram of f.g. subgroups of G. This implies 2.4. O

We remark that the image of & consists of all those vertical ends € € E(X) for which
there exists a f.g. subgroup G, of G and a sequence (k,) in Gy so that h,.x — € for
all x € X.

ProoF ofF 2.5. Suppose € € E(X) is not in imk. Let e : R — X be a proper map
with é(co) = €. Then pe(R) can not be contained in any compact subspace C of B.
For mC is finitely generated, implying that ¢ € imk; contradiction. Consequently,
there is a proper strictly increasing sequence (¢,) in R such that (pe(t,)) converges to
some end € of B. Thus € € X(¢). O

Remark 2.6. If € € E(X) is not vertical, then € is actually a lift of some end
€ € E(B) in the following sense. For any proper map e : R — X with &(0c0) = e,
pe : R — B is also proper. Further, if € € X(¢'), then € = €.
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Proor. If pe is not proper, there is some closed cell ¢ of B such that e(R) N 2 (9)
is not compact. Subjecting e to a suitable proper homotopy, if necessary, we see that
pe is an infinite sequence of based loops in B. These yield an infinite sequence (g,) in
G satisfying g,. ¥ — ¢, for a suitable lift ¥ of the base point of B. Thus € is a vertical
end; contradiction.

To see the uniqueness of €, apply a similar argument to a proper map f : L — X,
with f(c0) = e.

For later use, we need the following definition, based on 2.6.

DEFINITION 2.7. (i) € € E(X) has property (L) :& there is a proper map e : R — B
with é(00) = €, for some lift & of e.
(ii) p has property (L) :4<> every horizontal end of X has property (L).

A monomorphism a : Z — G induces the map a : E(Z) — E(G). We call an
end € € E(G) primitive, if it is in the image of some map a : E(Z) — E(G), where
a : Z — G is a monomorphism. The following theorem relates in some sense the
distribution of infinite cyclic subgroups of G to the end space of G.

THEOREM 2.8. If G has an element of infinite order, then the space of primitive
vertical ends of X is dense in the space of vertical ends of X.

COROLLARY 2.9. If G has an element of infinite order, then

(i) The image of k : E(G) — E(X) is dense in the space of vertical ends of X.

(ii) If in addition E(G) is compact, then the image of k : E(G) — E(X) is equal to
the space of vertical ends of X. 0

Proor OF 2.8. Let € be a vertical end of X and let (g,) be a sequence in G with
gn.x — ¢, for all x € X. For a neighbourhood V of € in E(X), there is a compact
connected set C in X such that

(i) all connected components Uy, ...,U; of X — C are unbounded;

(i) all ends of the closure U; of U; in X correspond to ends of X in V under the
inclusion U; — X.

As C is compact, there is N € N with g,.C C U, for all n 2 N. Consequently,
gv.CNC =0 =gy'.CNC. As C is connected, gy'.C is contained in precisely one

of the components U, ..., U.

Case 1. gy'.CNU; = 0. Then C Ngy.U; = B. As U, is connected, gy. U, is
contained in precisely one of the components Uy,...,Ux. As 0U; C C and gy.C C
U,, it follows that gy.U; C U,.

Now g := gy has infinite order. If not, g” = 1 for some r = 2. As g~} = g1,

we get § =g~ 1.CNU, = (g '.C)NU, # B; contradiction. Thus (g") determines a
primitive vertical end of the closure of U, in X and, hence, one of V.

Case 2. gy'.C C Uj. By hypothesis, there is an element ¢ € G of infinite order.
Now, ¢ determines a primitive vertical end €, of X. If €, belongs to V, then we are done.
Else, €, is an end of the closure of U, in X, say. As gy'.C C Uy, gn.UpNC = 0.
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Consequently, gy.U, C U,. In particular, gy(e.) € V. This means that gyt".x —
gn(e)+ : €, for all x € X. In particular, gyt".(gy'.x) — €, for all x € X. Thus
g 1= gntgy ' determines a primitive vertical end of V. 0

The following example (2.10) shows that X may have vertical ends which are not
in the image of k : E(G) — E(X).

ExampLE 2.10. Let G be the free group with basis g, g2,.... Let B denote the
non-negative real ray with a loop attached at every integer. Take p : X — B to be
the universal covering. Choosing 0 € B as a base point, there is a representation of
gn by the path in B that runs from O to n, then once around the loop at n (according
to a chosen orientation), then back from » to 0. Then the sequence (g,) determines a
vertical end of X which is not in imk.

As the group G of (2.10) satisfies the hypotheses of (2.9)ii, we get

ReMARK 2.11. E(G) is not always compact.

83. The structure of E(X). Given a regular covering p : X — B, as in §2, we now
describe the end space E(X) in terms of the end space E(G) of the group of covering
transformations of X and end data of B. From 2.5, we already know that E(X) is the
union of the image of k : E(G) — E(X) and the ‘fibers’ X(¢) over the ends of B.
Accordingly, we seek to understand the behaviour of the map k and the structure of
the ‘fibers” X(e). We now sketch our approach.

Corresponding to a neighbourhood bases U; D U, D - - -, see [2], of an end € of B,
there is an inverse sequence p~'U; D p~'U, D ---. The path connectedness relation
yields an inverse system Comp(p~'U;) « Comp(p~'U,) « --- of discrete spaces,
and there is an equivariant map from the resulting inverse limit A to X(e). We then
show:

(1). If the fundamental groups of the sequence (U,) contribute to G in a stable way,
then A is homeomorphic to the quotient of G by any of certain conjugate subgroups
{H,} of G.

If, in addition, all ends of X(¢) have property (L), then (2) and (3) below also hold.

(2). The map A — X(¢) is onto.

(3). For ¢,€¢ € E(G), k(¢) = k(¢') & there is an ¢ € E(B) with k(e) = k(') €
X(e) < for some i, e and € are in the image of the map E(H,) — E(G).

We also give conditions for the map A — X(e) to be a bijection. A precise formu-
lation of these results is given in Theorem 3.8.

Lemma 3.1. Suppose that k(e) = k(€') for two distinct ends e,¢' € E(G). Then k(e)
is also a horizontal end of X.

Proor. The assumption that k(¢) is not a horizontal end of X leads to the existence
of a f.g. subgroup H of G and an end é of H such that the induced map E(H) — E(G)
sends & to € as well as to €. This is absurd. O
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As the homeomorphisms by which G acts on X extend to homeomorphisms of the
Freudenthal compactification of X, G also acts on E(X). Clearly,

Lemma 3.2. For every ¢ € E(B), X(¢) is invariant under the action of G on
EX). O

In order to exploit further the action of G on X, we need some preparations: If
a, 3 are composible (homotopy classes of) paths in a space, we write a3 for the path
running first along «, then along 3. Associated with the fundamental groupoid of a
space Y is the fundamental system oY . Its objects are the groups m;(Y,y), y € Y. Its
(iso-)morphisms 4 : m(Y,y) — m(Y,y’) are induced by homotopy classes of paths
«a joining y to y’. Thus oY is also a groupoid. The pull back f*oY of oY along a map
f : W —Y has as its objects all pairs (7(Y,f(w)),w), w € W. The (iso-)morphisms
of f*aY are all (soyp : (M (Y ,f(W)),w) — (mi(Y,f (W), w'),  joining w to w’. Thus
f*aY is also a groupoid.

Using standard covering space theory, we see that our covering p : X — B deter-
mines a ‘representation’ 7 : p*oB — G. The ‘image’ of 7 is G. The ‘kernel’ of 7 is
oX.

A subspace S of B yields the map ps : p~'S — S. By composition we get a
representation

Ts : psoS — p*oB — G.

If S is connected, the ‘image’ of 75 is'a class of conjugate subgroups of G.

DERNITION 3.3. An end € of B is G-stable &> there is a neighbourhood basis (U,)
of € such that the decreasing sequence G D imTy, D imTy, D --- of classes of
conjugate subgroups of G becomes constant.

Thus € is G-stable if and only if there is a connected open neighbourhood U of ¢ with
compact frontier such that for any other such neighbourhood U’ C U, im 7y = im1y.
We refer to U as a G-stable neighbourhood of e if it has this property.

We also remark that if B is semistable at ¢, then € is G-stable; compare [6].

Given a G-stable neighbourhood U of ¢, consider a connected component V' of the
open subset p~!U of X. Since G acts transitively on the set Comp(p~'U) of connected
components of p“U , we have

Lemma 3.4. Comp(p~'U) is in bijective correspondence with G |Gy, where Gy is
the maximal subgroup of G having V as an invariant subspace. a

We now relate these facts to the horizontal ends of X. Let ¢ € E(B) be a G-stable end
with G-stable neighbourhood U. We know, see [5], that E(X) = l‘il_n Comp(X —C)) «—
Comp(X — Cy) « -+, where C; C C, C --- is an expanding sequence of compact
connected subspaces of X whose union is X. For large n,dU C p(C,). Hence, any
unbounded component of B —p(C,) is either contained in U or has empty intersection
with U .. Therefore, every connected component of p~!(U —pC,) is contained in exactly
one component of X — C,. Thus we get a commuting diagram (V is a connected
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component of p~'U);

3.5 GI/Gy = Comp p~ (U — pC,) — Comp p~ (U — pCprs1) — ..
)\n }\n+1

Comp (X — C,) «——————— Comp (X — Cpy1) < **°

inducing a map A : G/Gy — E(X). Note that Gy represents the conjugacy class im
TU in G.

LemMA 3.6. (i) The map A constructed above takes values in X (€) and is equivariant.
(1) If all ends of X(€) have property (L), then im A = X (e).

Proor. This follows straight from the definitions. O
RemArk 3.7. If Gy has finite index in G, then all ends of X(e) have property (L).

ProoF. For k = n, let Ay C Comp(X —C}) be the set of connected components which
are neighbourhoods of some € € X(¢). Then im )\, = A;. If (¥}) is the neighbourhood
basis in X of a fixed € € X(e), corresponding to the sequence (Cy), let Z; := /\k"(Yk).
Then Z; D Z;+1 D - - - and, since each Z; is finite and not empty, NZ; # . If z belongs
to that intersection, A(z) = €, by commutativity of (3.5). This implies 3.7. O

We are now ready to state the main result of this chapter.

THEOREM 3.8. Let p : X — B be a regular covering of the kind described in the
beginning of §2. Suppose that p has property (L) and that every end of B is G-stable.
Let € € E(B) with G-stable neighbourhood U and let ¢ € X(¢). Then

(i) X(e) is the orbit of € under the action of G on E(X).

(ii) Let V be a connected component of p~'U such that \(V) = €. Then Gy is
contained in the isotropy group G, of €.

(iii) If Gy is finite, then Gy = G..

(iv) Let € be a vertical end of X. Then € = € < there is a sequence (hy,) in Gy
such that h,.x — €, for all x € X. Thus k" '{€'} = im(E(Gy) — E(G)).

Prookr. (i) and (ii) follow from (3.6).

(iii) If Gy is finite, it follows that the connected components of p~'U have com-
pact boundary, hence are neighbourhoods of distinct ends of X(¢). Therefore, A is a
bijection. As A is equivariant, Gy = G..

(iv) “=” Let e : R — B be a proper map with é(co) = €. As p has property (L),
there is a lift & : R — X with é(¢t) € V, for large ¢. Thus é(oo) =€ Ase=¢€is
vertical, there is a sequence (g,) in G with g,.x — ¢, for all x € X. Hence, there
is a proper map f : L — X (L is the infinite ladder [0, 00[x{0,1} U Ng X I) with
fito,00ixfoy = € and f(n,1) = g,.e(0), for all n. For technical convenience, we may
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assume that ¢(0) € U and that e and f take values in the 1-skeleta of B, respectively
X. (If X, B are CW -complexes, it is at this point where we need the “finite dimension”
hypothesis.)

It follows that for n sufficiently large, pf{n} x I N oU # 0. oU is compact and
can be assumed to be a finite subcomplex of B. Thus there exists a vertex v € oU, an
infinite strictly increasing sequence n; € N and a corresponding sequence ¢; € I, such
that pf(n;,t;) = v. The sequence f(n;, ;) converges to €. Further, pf yields loops /; in
U, based at v, corresponding to a sequence (#;) in 71 (U, v) with h;.f (ng, to) = f(n;, t;).

“<" Let (h,) be a sequence in Gy with h,.x — €, forall x € X. Lete : [0,00[— V
be a proper map, with pe proper and pé(co) = ¢. To show that € = €/, we construct
a proper map f : L — X with f(n, 1) = h,.f(0, 1) and fjjo oo[x{0} = -

Let U =: Uy D U; D U, D --- be a neighbourhood basis of €. Then V =:
Vo D Vi DV, D---is a decreasing sequence of closed subsets of X, with empty
intersection; where V; := p~'U; N V. These induce the sequence of maps of end
spaces E(X) «— E(V) « E(V,) « ---. There exists a proper increasing sequence (#;)
in [0, oo[ such that e(#) € p‘l(Uk) N V. For every k, there is a subsequence (hﬁ) of
(h,) such that K. e(t;) converges to some end €, € E(Vy), for n — oo. Hence, there
exist proper maps ¢; : [0, 00[x{k} — V; with e;(n) = hX.e(#). Since Vo DV, D ---
induces € «i €| « €}, < ---, there exist proper maps f; : [0, 00[ X {t, %x+1} U Ng X
[tes tis1] — Vk, extending the e;’s, with fkl{o}x[fk,lm] = €l o]

The maps f; combine to a proper map F : [0, 00[ x{t : k € No}UNp X [0, co[— X.
The desired map f can now be derived from F. O

§4. Applications, Examples. We give some applications of the general results of
Section 3.

ExampLE 4.1. Consider the covering p : X := R x R — R/Z x R =: B. Then X
has exactly one end and this end is both vertical and horizontal. We wish to see how
Theorem 3.8 explains this from the covering space point of view.

Clearly, G = Z. Now, B has two ends ¢ corresponding to the ends oo of R.
So E(X) = im(k : E(Z) — E(X)) UX(+€¢) U X(—¢). Both ends +¢ are G-stable and
the stable groups are equal to G. By 3.7, p has property (L). By 3.8.i, ii, X(+¢) and
X(—e¢) consist of one element each. By 3.8.iv, X(—¢) = k(E(G)) = X(+¢€).

Sometimes the end structure of X is understood and allows to infer the end structure
of B, as in the following example.

ExampLE 4.2. Let Y be a connected compact CW -complex. Let { = (B, w,Y) be a
real line bundle over Y. Then

B hastwoends < w;(() =0 (1st Stiefel Whitney class)
B hasoneend & wi(Q)=1.

Proor. If wi({) = 0, then B = Y X R has two ends. Since w;({) € Z/2, it now
suffices to show “w;(¢) = 1 implies that B has one end.” This follows by applying 3.8
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to the connected double cover p : X := Y’ X R — B, where Y’ — Y is the connected
principal Z /2-bundle associated with . a

(4.2) can be useful when dealing with the normal bundle of a closed connected
submanifold C of codimension 1 in a connected C*-manifold M.

ProposiTiON 4.3. (i) M — C has at most two connected components.
@ii) If M — C has two connected components then v is trivial.

ProoF. (i) Let D denote a normal unit disc bundle of C in M with respect to some
Riemannian metric on v. Since the inclusion (M — D) — (M — C) is a deformation
retract, we get a bijection Comp(M — D) — Comp(M — C). Further, the inclusion
(D —C) —- (M — C) induces an onto map Comp(D — C) — Comp(M — C). By
4.2, Comp(D — C) is in bijective correspondence with E(v), which has at most two
elements.

(ii) The proof of (i) shows that if (M — C) has two components, then v has two
ends. By 4.2, v is trivial. O
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