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On Convolutions of Convex Sets and
Related Problems

Tomasz Schoen

Abstract. We prove some results concerning convolutions, additive energies, and sumsets of convex
sets and their generalizations. In particular, we show that if a set A = {a1, . . . , an}< ⊆ R has the
property that for every fixed 1 ≤ d < n, all differences ai − ai−d, d < i < n, are distinct, then

|A + A| � |A|3/2+c for a constant c > 0.

1 Introduction

We say that a set A = {a1, . . . , an} of real numbers is convex if

ai − ai−1 < ai+1 − ai

for every 1 < i < n. It is known that sumsets of convex sets are large, see [2–8]. The
current best bounds

|A− A| ≥ |A|8/5−o(1) and |A + A| ≥ |A|14/9−o(1)

were proved in [11]. Furthermore, it was proved in [3, 8], that the additive energy of
every convex set A satisfies E(A)� |A|5/2. Very recently it was improved by Shkredov
[12], who showed that

E(A)� |A|32/13+o(1).

Solymosi [13] proposed to consider the following wide generalization of a convex
set. We call a monotone increasing set A = {a1, . . . , an} ⊆ R a dcd-set (distinct
consecutive differences) if all consecutive differences of A are distinct i.e., ai−ai−1 =
a j − a j−1 implies i = j. Solymosi [13] proved that if A is dcd-set, then for every set
B we have

|A + B| � |A||B|1/2.

As showed by Ruzsa [13], the above bound is best possible. However, Solymosi con-
jectured that |A + A| � |A|3/2+c. One cannot extend the method used in [11] for
dcd-sets for many reasons. The simplest one is that there exist dcd-sets with large
additive energy. Let us consider the following example of a dcd-set: A = P1 ∪ P2,
where

P1 = {n, 2n, . . . , (n/2)n},
P2 = {n− 1, 2(n− 1), . . . , (n/2)(n− 1)},
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and n is an even integer. Since P1 and P2 are arithmetic progressions, we have
E(A)� |A|3.

Here we consider another generalization of convex sets. We impose a stronger
condition than Solymosis’s, which has a combinatorial nature rather than a geomet-
ric one. We call a monotone increasing set A = {a1, . . . , an} ⊆ R, a tdcd-set (to-
taly distinct consecutive differences) if for every fixed 1 ≤ d < n, all differences
ai − ai−d, d < i < n, are distinct. However, such sets have also a geometric mo-
tivation. In the well-known Szemerédi-Trotter theorem [14] one considers a system
of pseudo-lines i.e., a family of continuous plane curves with the property that each
two curves share at most one point in common. Every convex set of reals generates a
convex curve in a natural way; it is enough to take the graph of any convex function
with f (i) = ai . Then, clearly any family of shifts of a convex curve is a pseudo-line
system. If we consider a discrete version of the above construction, then a family of
shifts of discrete graph (i, f (i)) + (α, β), (α, β) ∈ X, is a discrete pseudo-line system
if for all (α, β), (α′, β′) ∈ X there is at most one solution to the equation(

i, f (i)
)

+ (α, β) =
(

j, f ( j)
)

+ (α′, β′),

which is equivalent to being f (i) a tdcd-set.
We shows that there is a deeper difference in additive behavior of dcd-sets and

tdcd-sets. We prove that for a tdcd-set A we have even E(A)� |A|5/2−c for a constant
c > 0, which clearly implies that |A± A| � |A|3/2+c.

Furthermore, we will also study the additive energy of sets introduced by Bochka-
rev in [1]. For a given α > 0, we call a set A = {a1, . . . , an}, α-set if for every i > j
the equation ai − a j = ar− as with r > s ≥ j has O((i− j)α) solutions. Hence if i =
j +1, there are O(1) solutions, so every α-set is almost a dcd-set for any α. Bochkarev,
among other things, proved that if A is any α-set then E(A)� |A|3− 1

1+α .We improve
this estimate for α ≥ 1 by showing that E(A) � |A|3− 1

1+α−c for a constant c > 0
depending on α only.

Notation By A(x) we denote the indicator function of a set A ⊆ R. Let

(A ∗ A)(x) =
∑

t
A(t)A(x − t),

(A ◦ A)(x) =
∑

t
A(t)A(x + t).

The additive energy of a set A is defined by

E(A) =
∑

x
(A ◦ A)(x)2 =

∑
x

(A ∗ A)(x)2.

We will also use higher additive energy introduced in [9, 11]

E3(A) =
∑

x
(A ◦ A)(x)3.

2 Auxiliary Results

Let A = {a1, . . . , an} be a set of real numbers, ai > ai−1. Let A − A = {x1, . . . , xs}
and

(A ◦ A)(x1) ≥ (A ◦ A)(x2) ≥ · · · ≥ (A ◦ A)(xs).
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The first result we will use is a version of Garaev’s result (see [4, Theorem 2]), who
used it to bound the additive energy of convex sets. Let JH denote the number of
solutions to

(2.1) ai − a j = ai+h1 − a j+h2 , 1 ≤ h1, h2 ≤ H.

Lemma 2.1 Let A ⊆ R be a finite set. Then for every H

(A ◦ A)(xr)�
n

H
+

JH

r
.

Lemma 2.2 Let A ⊆ R be a finite tdcd-set. Then (A ◦ A)(xr) � |A|/r1/3. In
particular, E(A)� |A|5/2 and E3(A)� |A|3 log |A|.

Proof By the definition it follows that for fixed i, h1, and h2 there is at most one j
such that

ai − a j = ai+h1 − a j+h2 , 1 ≤ h1, h2 ≤ H.

Thus, we have at most≤ H2n solutions to (2.1), hence by Lemma 2.1,

(A ◦ A)(xr)�
n

H
+

H2n

r
.

Putting H = dr1/3e, we obtain the required bound.

Lemma 2.3 Let A ⊆ R be a finite α-set. Then

(A ◦ A)(xr)� |A|/r1/(1+α).

In particular E(A)� |A|3− 1
1+α and E2+α(A)� |A|2+α log |A|.

Proof The number of solutions to (2.1) equals the number of solutions to

ai+h1 − ai = a j+h2 − a j , 1 ≤ h1, h2 ≤ H.

Again, by the definition, assuming i > j, for fixed j and h2 there are O(hα2 ) = O(Hα)
such solutions, so that by Lemma 2.1

(A ◦ A)(xr)�
n

H
+

H1+αn

r
.

Putting H = dr1/1+αe, we obtain the required bound.

It is easy to observe that Lemma 2.2 holds for (A ∗ A) as well.
By a consecutive difference in a set A = {a1, . . . , an}< we mean any difference of

the form ai − ai−1. The next result can be easily extracted from the main theorem
of [13].

Lemma 2.4 Suppose that A ⊆ R has δ|A| distinct consecutive differences. Then for
every finite set B ⊆ R, |A + B| � δ|A||B|1/2.

As mentioned in the introduction, for any α, each α-set A has Ω(|A|) distinct con-
secutive differences and therefore by Lemma 2.4, for every finite set B ⊆ R

|A + B| � |A||B|1/2.
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Lemma 2.5 Let A ⊆ R be a finite set and suppose that A′ ⊆ A, |A′| = δ|A|. If A is a
tdcd-set, then A′ has at least 1

2δ|A
′| − 1 distinct consecutive differences. If A is an α-set

then A′ has at least Ω((δ/2)α( 1
2δ|A

′| − 1)) distinct consecutive differences.

Proof Write A′ = {ai1 , . . . , ait}, then {i1, . . . , it} ⊆ [n], t ≥ δn. Since

t∑
k=2

(ik − ik−1) ≤ n,

it follows that at least 1
2 t − 1 differences ik − ik−1 are less than 2/δ. Therefore, there

exist 1 ≤ d ≤ 2/δ and a set S ⊆ [t] such that |S| ≥ 1
2δt − 1, and for every consec-

utive elements s and s′ in S we have is − is′ = d. If A is a tdcd-set, then clearly, the
consecutive differences ais − ais′ are distinct.

Next, if A is an α-set, then each consecutive difference has O((is − is′)α) =
O((2/δ)α) representations in the form ais − ais′ and therefore A′ has

Ω((δ/2)α(
1

2
δ|A′| − 1))

distinct consecutive differences.

The next two lemmas that we will use in the proof of our main theorems were proved
in [12, Theorem 34] and [10, Theorem 54], respectively.

Lemma 2.6 Let A be a subset of an abelian group. Suppose that E(A) = |A|3/K and
E3(A) = M |A|4/K2. Then there exists A′ ⊆ A such that

|A′| � |A|/M11 and |kA′ − lA′| � M60(k+l)K|A′|,

for every k, l ∈ N.

Lemma 2.7 Let A be a subset of an abelian group and α > 1. Suppose that E(A) =
|A|3/K and E2+α(A) = M|A|3+α/K1+α. Then there exists A′ ⊆ A such that

|A′| � M−
6α−3
α(α−1) |A| and |kA′ − lA′| � M6(k+l) 4α−1

α(α−1) K|A′|

for every k, l ∈ N.

3 Proofs of the Main Results

Theorem 3.1 Let A ⊆ R be a finite tdcd-set. Then there exists a positive constant c
such that E(A)� |A|5/2−c.

Proof Write E(A) = |A|3/K and M = K2|A|−1 log |A|. Then by Lemma 2.6 there
exists A′ ⊆ A such that

|A′| � |A|/M11 and |kA′| � M70kK|A′|,

for every k ∈ N. By Lemma 2.5 the set A′ has at least Ω(|A′|/M11) distinct consecutive
differences. By a straightforward induction and Lemma 2.4 we infer that

|kA′| � M−22|A′|2−2−k+1

,
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for every k ∈ N. Comparing the upper and the lower bound on |3A′| we obtain that
K ≥ |A|1/2+c for some positive constant c.

As an immediate consequence we obtain that there exists a constant c > 0 such
that for every finite tdcd-set A ⊆ R, we have |A± A| � |A|3/2+c.

Theorem 3.2 Let α ≥ 1. Then there exists a positive constant c = c(α) such that for
every α-set, A ⊆ R E(A)� |A|3− 1

1+α−c.

Proof Write E(A) = |A|3/K and M = K1+α|A|−1 log |A|. For α = 1 we apply
Lemma 2.6 as in Theorem 3.1, so we can assume that α > 0. Then by Lemma 2.7
there exists A′ ⊆ A such that

|A′| � M−
6α−3
α(α−1) |A| and |kA′| � M7k 4α−1

α(α−1) K|A′|,

for every k ∈ N. By Lemma 2.5 the set A′ has at least Ω((2M)−1− 6α−3
α−1 |A′|) distinct

consecutive differences. By a straightforward induction and Lemma 2.4 we infer that

|kA′| � (2M)−2− 12α−6
α−1 |A′|2−2−k+1

,

for every k ∈ N. Again, comparing the upper and the lower bound on |3A′|we obtain
that K ≥ |A| 1

1+α +c for some positive constant c, and the proof is completed.

Using a standard argument we get an estimate on L1-norm of exponential sums
over tdcd-sets and α-sets.

Corollary 3.3 Let A ⊆ R be a finite tdcd-set. Then there exists a constant c > 0 such
that for arbitrary coefficients γ(a), |γ(a)| = 1,∫ 1

0

∣∣∣∑
a∈A

γ(a)e2πiax
∣∣∣dx� |A|1/4+c.

If A ⊆ R be a finite α-set, then there exists a constant c = c(α) > 0 such that for
arbitrary coefficients γ(a), |γ(a)| = 1∫ 1

0

∣∣∣∑
a∈A

γ(a)e2πiax
∣∣∣dx� |A|

1
2(1+α) +c.

Proof By the Parseval formula and Hölder’s inequality we have

|A| =
∫ 1

0

∣∣∣∑
a∈A

γ(a)e2πiax
∣∣∣ 2

dx

≤
( ∫ 1

0

∣∣∣∑
a∈A

γ(a)e2πiax
∣∣∣ 4) 1/3( ∫ 1

0

∣∣∣∑
a∈A

γ(a)e2πiax
∣∣∣dx
) 2/3

≤ E(A)1/3
( ∫ 1

0

∣∣∣∑
a∈A

γ(a)e2πiax
∣∣∣dx
) 2/3

.

Now the required inequality follows from Theorem 3.1. The second assertion can be
proved in the same way.
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4 Maximal Value of Convolution of Convex Sets

Here we are interested in the largest number of representation of a number as a sum
of two elements from a convex set A. In particular, our bound improves Lemma 2.2
for r � |A|; however, it does not provide any better estimate for the additive energies.

Theorem 4.1 Let A ⊆ R be a finite convex-set. Then for every x, we have

(A ∗ A)(x)� |A|2/3.

Proof Suppose that x ∈ R has t distinct representations in A + A,

x = ai1 + a j1 = · · · = ait + a jt ,

where i1 < · · · < it and i1 ≤ j1, . . . , it ≤ jt . Observe also that iu − iv ≥ ju − jv for
all u > v. Arguing as in Lemma 2.5, there exist 1 ≤ d ≤ 2n/t and a set S ⊆ [t] such

that |S| ≥ t2

2n − 1 and for all s ∈ S we have is − is−1 = d. Thus, there are m � t2/n
numbers ki−1 < ki ≤ li and l′i < li < li−1, i = 2, . . . ,m such that

x = aki + ali = aki +d + al′i
.

Observe that by convexity

al′i−1
− ali−1 = aki−1+d − aki−1 < aki +d − aki = al′i

− ali ,

so that l′i−1 − li−1 < l′i − li . Therefore, we have

d = (km + d)− km ≥ lm − l′m > · · · > l1 − l′1 > 0,

hence t2/n� m ≤ d ≤ 2n/t, and the assertion follows.

Unlike Lemma 2.2, the above theorem does not hold for the convolution
(A ◦ A)(x). To see this consider the following simple example. Let k, l,m ∈ N be
such that

kl + 2

(
k− 1

2

)
−
(

k− 2

2

)
< m < kl +

(
k− 1

2

)
+ l + 1

and let ai = il +
(i−1

2

)
. Put

A = {a1, . . . ak} ∪ {m + a1,m + a3, . . . ,m + at},
where t = 2dk/2e−1. Then clearly A is a convex set, and (A◦A)(m) = dk/2e � |A|.

Furthermore, Theorem 4.1 cannot be extended for tdcd-sets. Indeed, let k and m
be positive integers such that 22k < m and let

A = {1, 2, 22, . . . , 22(k−1)} ∪ {m− 22(k−1),m− 22(k−2), . . . ,m− 22,m− 1}.
We denote by X and Y the first and the second parts of the set A, respectively. Inside X
and Y all differences are distinct, so it is enough to check the tdcd condition between
X and Y . If ai , ai+d ∈ X and a j , a j+d ∈ Y , then

ai+d − ai = 2i+d − 2i 6= 22(2k− j) − 22(2k− j−d) = a j+d − a j

for d > 0. Next, if ai , a j ∈ X and ai+d, a j+d ∈ Y then it is easy to see that

ai+d − ai = m− 22(2k−i−d) − 2i 6= m− 22(2k− j−d) − 2 j = a j+d − a j .
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The condition is also satisfied for ai , a j , ai+d ∈ X and a j+d ∈ Y or ai ∈ X
and a j , a j+d, ai+d ∈ Y , because m > 22k. Thus, A is a tdcd-set, and clearly
(A ∗ A)(m)� |A|.
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[14] E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry. Combinatorica 3(1983),

no. 3–4, 381–392. http://dx.doi.org/10.1007/BF02579194

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań,
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