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Linear fractional self-maps of the unit ball

Michael R. Pilla

Abstract. Determining the range of complex maps plays a fundamental role in the study of several
complex variables and operator theory. In particular, one is often interested in determining when a
given holomorphic function is a self-map of the unit ball. In this paper, we discuss a class of maps in
C

N that generalize linear fractional maps. We then proceed to determine precisely when such a map
is a self-map of the unit ball. In particular, we take a novel approach, obtaining numerous new results
about this class of maps along the way.

1 Introduction

Our goal is to completely characterize which linear fractional transformations map
the ball BN into itself for N > 1. We recall the unit ball is defined as

B
N = {z ∈ CN ∣ ∣z∣ < 1}.

A characterization for N = 1 can be determined by noting that linear fractional
maps (LFMs) in the disk map the boundary of the disk to a dilated and translated
automorphism of the disk. This determination makes critical use of the well-known
fact that LFMs map generalized circles to generalized circles, where a generalized
circle is defined to include lines. This unique feature of LFMs will prevent our results
in this article from generalizing to rational maps of degree greater than 1.

In order to replicate this line of reasoning in higher dimensions, we first produce
some preliminary results about LFMs.

2 LFMs in CN

Recall that a LFM in C is defined as

ϕ(z) = az + b
cz + d

,

where the coefficients a, b, c, and d are complex numbers such that ad − bc ≠ 0
(otherwise, ϕ(z) is a constant function).

Given such a map ϕ, we will find it insightful to make use of its associated matrix,
defined as

mϕ = (a b
c d) .

Received by the editors November 6, 2023; revised November 9, 2023; accepted November 10, 2023.
Published online on Cambridge Core November 15, 2023.
AMS subject classification: 32A10, 32A40, 47B50.
Keywords: Linear fractional maps, unit ball, self-maps.

https://doi.org/10.4153/S0008439523000887 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439523000887
https://orcid.org/0000-0002-3656-6933
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439523000887&domain=pdf
https://doi.org/10.4153/S0008439523000887


Linear fractional self-maps of the unit ball 459

For c ≠ 0, we must have z ≠ − d
c , from which it follows, in order to avoid poles in

the disk, that the inequality

∣d∣2 − ∣c∣2 > 0

must hold. While this is a necessary condition for a LFM to be a self-map of the disk,
it is not sufficient. It turns out a stronger condition holds.

Theorem 2.1 The LFM ϕ(z) = az+b
cz+d is a self-map of the disk if and only if the following

inequality holds:

∣bd − ac∣ + ∣ad − bc∣ ≤ ∣d∣2 − ∣c∣2 .

It appears the most accessible location of the proof, which is relatively simple, can
be found in Martín’s paper [7]. Another location of the proof can be found in [5].
Other than this, it seem to have primarily resided in the mathematical folklore.

We aim to obtain a parallel result in B
N for N > 1. In order to discuss linear

fractional self-maps in higher dimensions, we must first state what it means to be
a LFM in C

N . One remarkable fact about LFMs in C is that they are exactly the linear
transformations in homogeneous coordinates. Taking the perspective that LFMs in
C

N should share this property, we arrive at the following definition. For more details,
see [8].

Definition 2.1 We say ϕ is a LFM in C
N if

ϕ(z) = Az + B
⟨z, C⟩ + D

,(2.1)

where A is an N × N matrix, B and C are column vectors in C
N , D ∈ C, and ⟨⋅, ⋅⟩ is

the standard inner product.

As in the case of the disk, the domain of ϕ is given by {z ∈ CN ∣ ⟨z, C⟩ + D ≠ 0}.
In order to avoid poles in the unit ball, we then require ∣D∣2 > ∣C∣2 since z = − DC

∣C∣2 is a

zero of ⟨z, C⟩ + D which for our case requires ∣− DC
∣C∣2 ∣ > 1.

We define the associated matrix mϕ of the LFM ϕ(z) = Az+B
⟨z ,C⟩+D to be given by

mϕ = ( A B
C∗ D) .

Note that for a LFM inC
N , mϕ will be an (n + 1) × (n + 1) matrix. For LFMs ϕ and

ψ, a routine calculation shows that mϕ○ψ = mϕ mψ and mϕ−1 = (mϕ)−1. Thus, function
composition corresponds to matrix multiplication and mϕ is invertible as a matrix if
and only if the LFM ϕ has an inverse. In order to ensure this, we will presume ϕ is
one-to-one.

In order to generalize the results of Martín, we ask if our LFMs map generalized
spheres to generalized spheres inC

N for N > 1. It turns out this is just a little too much
to ask. We do, however, have the following.
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Theorem 2.2 LFMs in C
N map generalized ellipsoids to generalized ellipsoids.

For LFMs defined on the closed unit ball, this results was proved by Cowen and
MacCluer [3]. For this result, a generalized ellipsoid is defined as the image of BN

under an invertible linear transformation composed with a translation.
We aim to discuss these objects in a more tractable way, demonstrating a novel

proof of the ellipsoid-preserving properties of LFMs, more reminiscent of the proof
in one complex variable. In order to do so, however, we first investigate how to
decompose LFMs into their atomic parts.

3 Decomposition of linear fractional maps

Our goal in this section will be to decompose LFMs into a canon of simpler maps. In
one variable, one obtains a rather nice decomposition through some clever rewriting.
The simplest way to generalize this result is to appeal to decomposition of the
associated matrix. Given an invertible matrix mϕ associated with a LFM ϕ, Bruhat
decomposition tells us we may write mϕ as a (matrix) product of the following:
permutation matrices, upper triangular unipotent matrices, and diagonal matrices.
Here, unipotent means each diagonal entry is 1. See, for example, [4] for more details.

Permutation matrices may be further decomposed into a product of matrices that
permute two of the variables and leave the others fixed. The associated LFMs play
the analog of inversion maps in one variable. In hindsight, perhaps this is what ought
to be expected. If one takes the perspective that, in the complex plane, inversion is
simply reflection about the boundary of the disk, then inversion analogs in higher
dimensions manifesting themselves as reflections permuting two variables is not so
surprising. This motivates the following definition.

Definition 3.1 A LFM from C
N to C

N will be called a reflection if its associated
matrix is a permutation matrix that permutes precisely two variables and fixes the
rest.

These inversion analogs also draw attention to some of the stark differences in
higher dimensions. In C, the map 1

z possesses several useful properties, including the
fact that it inverts the unit disk while mapping its boundary onto itself. The author
shouldn’t need to do much convincing to remind the reader of the countless results
in complex analysis that utilize this fact. Thus, it is worth understanding the nature of
its analogs in several variables.

This also draws attention to the fact that we are making a conscious decision
to first investigate self-maps of the unit ball. The study of one complex variable
bifurcates into the study of C and D since all other simply-connected open subsets
of C are biholomorphically equivalent to D by the Riemann Mapping Theorem. It’s
well-known that this theorem fails spectacularly even in C

2. In fact, even the unit
polydisk, defined by

DN = {z ∈ CN ∣ ∣z j ∣ < 1 ∀ { j}N
1 }

is not biholomorphically equivalent to the unit ball BN for N > 1. With this in mind,
it is interesting to note that our reflections do map the boundary of the polydisk into
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itself. One may also conclude by our decomposition that inversion of BN by a LFM is
unique to the case N = 1.

To handle the upper triangular matrices, we make the following definition.

Definition 3.2 A LFM from C
N to C

N will be called a multi-linear map if it can
be written in the form (⟨z, α1⟩ + c1 , ⟨z, α2⟩ + c2 , . . . , ⟨z, αN⟩ + cN) for some vectors
{αk}N

k=1 and constants {ck}N
k=1.

The below theorem then quickly follows from the Bruhat decomposition of the
associated matrix of the LFM.

Theorem 3.1 Any LFM in C
N can be written as a composition of multi-linear maps

and reflections.

4 Generalized ellipsoids

Now that we have decomposed our LFMs, we may proceed to our desired result. It
suffices to show our results for reflections and multi-linear maps.

Theorem 4.1 Let ϕ be a LFM inB
N . Then ϕ maps generalized ellipsoids to generalized

ellipsoids.

Proof We first show it is true for reflections. It suffices to show that the map

( z1

zN
, z2

zN
, . . . , zN−1

zN
, 1

zN
)

maps generalized ellipsoids to generalized ellipsoids. Recalling that a generalized
ellipsoid is defined as the image of the unit ball under a linear transformation and
translation, without loss of generality, it is clear to see that one may write a generalized
ellipsoid in standard form as

N
∑
i=1

α i ∣z i ∣2 +
N
∑
i=1

β iR(z i) +
N
∑
i=1

γ iI(z i) + δ = 0.

Noting that 1
zN

= zN
∣zN ∣2 , we have

=
N−1
∑
i=1

α i ∣
z i

zN
∣
2
+ αN ∣ 1

zN
∣
2
+

N−1
∑
i=1

β iR( z i zN

∣zN ∣2
) + βNR( zN

∣zN ∣2
)

+
N−1
∑
i=1

γ iI(
z i zN

∣zN ∣2
) + γNI(

zN

∣zN ∣2
) + δ = 0,

which simplifies to
N−1
∑
i=1

α i ∣z i ∣2 + αN +
N−1
∑
i=1

β iR (z i zN) + βNR (zN)

+
N−1
∑
i=1

γ iI (z i zN) + γNI (zN) + δ∣zN ∣2 = 0,
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which simplifies to

=
N−1
∑
i=1

α i ∣z i ∣2 + αN +
N−1
∑
i=1

β iR(z i)R(zN) +
N−1
∑
i=1

β iI(z i)I(zN)

+ βNR (zN) +
N−1
∑
i=1

γ iR(z i)I(zN) −
N−1
∑
i=1

γ iI(z i)R(zN)

− γNI (zN) + δ∣zN ∣2 = 0.

We next note that this is an equation of a generalized ellipsoid in nonstandard
form.

Next, we consider multi-linear maps. Letting zk = xk + iyk , α i j = u jk + iv jk , and
β j = s j + it j , we have

N
∑
j=1

∣β i +
N
∑
k=1

α jk zk∣
2

=
N
∑
j=1

∣s j +
N
∑
k=1

(u jk xk − v jk yk) + i (t j +
N
∑
k=1

(v jk xk + u jk yk))∣
2

=
N
∑
j=1

⎡⎢⎢⎢⎢⎣
(s j +

N
∑
k=1

(u jk xk − v jk yk))
2

+ (t j +
N
∑
k=1

(v jk xk + u jk yk))
2⎤⎥⎥⎥⎥⎦

.

From which it is evident, after expansion, that we will have the form of a general-
ized ellipsoid in nonstandard form. ∎

5 Automorphisms of BN and DN

Recall that for α with ∣α∣ < 1, there is an automorphism of the disk ϕα given by

ϕα(z) = α − z
1 − αz

(5.1)

such that ϕα(0) = α and ϕα(α) = 0.
In fact, all automorphism of the disk can be written as

ϕα(z) = e iθ α − z
1 − αz

(5.2)

for some α in the disk. In particular, note that up to rotation, all automorphisms of
the disk are LFMs. Furthermore, for N = 1, the polydisk and unit ball are equivalent.

One might hope for similar results to be true for BN and D
N when N > 1. It turns

out such hopes are realized, although the group of automorphisms are different for
each.

In the polydisk D
N , the automorphisms consist of automorphisms of the disk such

as those in equation (5.2), composed with permutations of the disks (see Rudin [11]).
Since the polydisk is already a Cartesian product of disks in the complex plane, this
result is not so surprising.

Let ⟨ , ⟩ denote the standard inner product, and for α ∈ BN , let Pα denote the
orthogonal projection of CN onto the span of α and Qα(z) = z − Pα(z) denote the
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projection onto the orthogonal complement of the span of α. Letting P0(z) = 0, we
have

Pα(z) = ⟨z, α⟩
⟨α, α⟩α, α ≠ 0.(5.3)

Next, let sα =
√

1 − ∣α∣2. We define the following map:

ϕα(z) = α − Pα(z) − sα Qα(z)
1 − ⟨z, α⟩(5.4)

for α ∈ BN . Note that this map is an involution and exchanges the points 0 and α.
One may show that all automorphisms of BN are of the form Uϕα , where U is an

n × n unitary matrix (see Rudin [12]). As in the disk, U can be seen as a rotation of
the ball.

Although it would take us too far afield to discuss domains beyond the unit ball
and polydisk, for completion, we state the following result due to Ahn, Byun, and Park
[1]. It turns out, for Hartog-type domains over classical Hermitian symmetric spaces,
the automorphisms consists simply of the classical Lie groups.

6 Linear fractional self-maps of BN

Given a LFM ϕ(z) = Az+B
⟨z ,C⟩+D , the main goal of this section is to study the range of

ϕ on the unit ball. While we are not the first to study this, we will be taking a novel
approach.

The first results in this direction were by Cowen and MacCluer [3] who showed
that a LFM is a self-map of the unit ball if and only if its associated matrix is a Krein
contraction. For z1 inC

N and z2 ≠ 0 inC, we identify z = (z1 , z2) with v = z1
z2

. For v , w
described in this way, define the Krein inner product by [v , w] = ⟨Jv , w⟩, where ⟨ , ⟩
denotes the standard inner product with

J = (I 0
0 −1) .

Thus, a map ϕ is a self-map of BN if and only if

t2[mϕv , mϕv] ≤ [v , v]

for some t > 0. Without a way to determine t, however, this result doesn’t give a
practical way of determining whether a specified LFM is a self-map of the unit
ball. Geometric characterizations were also given by Bisi and Bracci [2] but such
characterizations are not so practical for determining whether a given LFM is a self-
map of the ball.

Cowen and MacCluer’s results were improved upon by Richman [10] who showed
how to determine t in terms of eigenvalues and eigenvectors of mϕ for certain cases.
Richman’s approach depends on the fixed point behavior of ϕ. In particular, if ϕ has
no interior fixed point, it is known that ϕ has a boundary fixed point. In such a case,
the positive multiple t can be determined uniquely. In the case that ϕ has an interior
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464 M.R. Pilla

fixed point, the best results one can obtain is given in terms of bounds (upper and
lower) on t.

Our goal is determine when such a LFM is a self-map of the unit ball in the spirit
of the folklore results codified by Martín without resorting to fixed point behavior.
We aim to give an easily verifiable criterion dependent only on the coefficients of the
LFM. This will extend Richman’s results to the general case of an interior fixed point
and give an alternative criterion of determining when a given LFM is a self-map of
the ball. Our approach will lie in the realization that the image of the unit ball under
a LFM is a translated ellipsoid. After determining the translation, we recognize the
ellipsoid as a perturbation of the unit ball. We thus apply some basic tools from linear
algebra in order to obtain our desired result. We began with a basic lemma about
perturbations.

Lemma 6.1 For α = (α1 , . . . , αN) ∈ BN/{0} and s =
√

1 − ∣α∣2, let ΩN = sβ − sI − β
with β = 1

∣α∣2 (α i α j), where I is the N × N identity matrix and (α i α j) is the N × N
matrix with i jth entry α i α j . Then, we have the following:

Ω−1
N = − 1

s∣α∣2 [∣α∣2I + (s − 1)(α i α j)] .

Proof First, we recall the Sherman–Morrison formula [9] which states that for an
invertible square matrix A and column vectors u, v such that 1 + vT A−1u ≠ 0, we have

(A+ uvT)−1 = A−1 − A−1uvT A−1

1 + vT A−1u
,

where uvT is the outer product of u and v.
We realize that we may write ΩN as the sum of an invertible matrix and outer

product given by

ΩN = −sI + (s − 1)β = −sI + (
√

s − 1
∣α∣ ) α[(

√
s − 1
∣α∣ ) α]

T

,

and we may thus apply the Sherman–Morrison formula. We obtain the following:

Ω−1
N =

⎛
⎜
⎝
−sI + (

√
s − 1
∣α∣ ) α[(

√
s − 1
∣α∣ ) α]

T⎞
⎟
⎠

−1

= − 1
s

I +
− (s−1)

s2 ∣α∣2 (α i α j)

1 − (s−1)
s∣α∣2 ∣α∣2

= − 1
s

I − (s − 1)
s∣α∣2

(α i α j)
(s − (s − 1))

=
−∣α∣2I − (s − 1)(α i α j)

s∣α∣2

= − 1
s∣α∣2 (∣α∣2 + (s − 1)(α i α j)) = − 1 + (s − 1)β

s
. ∎
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We now have the following main result. We presume C ≠ 0 to avoid the linear case
and assume ∣D∣2 > ∣C∣2.

Theorem 6.2 Let M i represent the ith row of the matrix M and s =
√
∣D∣2−∣C∣2
∣D∣ . A LFM

ϕ(z) = Az + B
⟨z, C⟩ + D

(6.1)

is a self-map of BN if and only if

∣BD − AC∣2 + ∣(BC∗ − AD (s + (1 − s)CC∗

∣C∣2 ))
i
∣

2

− 2⟨BD − AC ,(BC∗ − AD (s + (1 − s)CC∗

∣C∣2 ))
i
⟩ ≤ (∣D∣2 − ∣C∣2)2

for all 1 ≤ i ≤ N.

Proof If ϕ is a self-map of BN , then we saw B
N will map onto an ellipsoid inside of

B
N . Hence, ϕ can be written as

ϕ = RUϕα + M ,(6.2)

where U is an N × N unitary matrix, R is a compression matrix, ϕα is equal to
equation (5.4), and M = (m1 , . . . , mN)T is the center of the ellipsoid given by ϕ(BN).

Next, we let β = 1
∣α∣2 (α i α j), where α i α j represents the i jth entry of an N × N

matrix, we note that ϕα(z) = α−(s+β−sβ)z
1−α∗z . A computation shows that we must have

Az + B
C∗z + D

= RU(sβ − s − β)z − �′z + M + RUα
1 − α∗z

,(6.3)

where �′ = (m i α j).
It follows that we must have C = −α and D = 1. Thus ∣α∣2 = ∣C∣2. Let � = −�′ =

(m i c j). Comparing the numerators of 6.3 implies B = M + RUα and A = RU(sβ −
s − β) − �′. Thus, since C = −α, we have M = B + (A− �) (sβ − s − β)−1C which we
may rearrange as

M + �(− 1
s

I − s − 1
s∣C∣2 (c i c j))C = B + A(− 1

s
I − s − 1

s∣C∣2 (c i c j))C .(6.4)

Noting that (c i c j)C = ∣C∣2C, the left-hand side of 6.4 gives us

M − 1
s
�C − s − 1

s∣C∣2 �(c i c j)C = M − ( 1
s
+ s − 1

s
)�C = M − �C = (1 − ∣C∣2) M .

Likewise, after some simplification, we see that the right-hand side of 6.4 gives
B − AC. Thus, we have

(1 − ∣C∣2) M = B − AC ⇒ M = B − AC
1 − ∣C∣2 .
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Next, since � = MC∗ = ( B−AC
1−∣C∣2 )C∗, we have that

RU = (A− �) (sβ − s − β)−1

= (A− �)(− 1
s∣C∣2 [∣C∣2I + (s − 1)(c i c j)])

= − 1
s

A− (s − 1)
s∣C∣2 A(c i c j) +

(s − 1)
s∣C∣2 �(c i c j) +

1
s
�

= − 1
s

A− (s − 1)
s∣C∣2 ACC∗ + �.

= − 1
s

A− (s − 1)
s∣C∣2 ACC∗ + (B − AC

1 − ∣C∣2 )C∗

= − 1
s

A+ BC∗

1 − ∣C∣2 − s − (1 − ∣C∣2)
s∣C∣2(1 − ∣C∣2)ACC∗

=
BC∗ − A(s + (1 − s) CC∗

∣C∣2 )
1 − ∣C∣2 .

Next, we let RU i represent the ith row of RU . We apply the law of cosines to find
the length of the vector connecting the displacement vector M and RU i for each i. In
order to remain in the unit ball, this set of i vectors must each be less than or equal
to 1. That is, we must have

∣M∣2 + ∣RU i ∣2 − 2⟨M , RU i⟩ ≤ 1

for all 1 ≤ i ≤ N .
After multiplying the inequality by 1 − ∣C∣2 and rearranging, we obtain the set of

inequalities

∣B − AC∣2 + ∣(BC∗ − A(s + (1 − s)CC∗

∣C∣2 ))
i
∣

2

− 2⟨B − AC ,(BC∗ − A(s + (1 − s)CC∗

∣C∣2 ))
i
⟩ ≤ (1 − ∣C∣2)2

for all 1 ≤ i ≤ N .
Finally, returning from our normalized case of D ≠ 1, we obtain our results. ∎

The linear case follows quite simply. We have ϕ(z) = Az + b. Let A i represent the
ith row of the matrix A. By the same reasoning as above, we require

∣B∣2 + ∣A i ∣2 − 2⟨B, A i⟩ ≤ 1

for all 1 ≤ i ≤ N .

Example 6.3 Let ϕ be the LFM in two complex variables given by

ϕ(z) = ϕ(z1 , z2) = ( z1 + 1
−z1 + 3

, 2z2

−z1 + 3
) .
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Identifying ⟨z, C⟩ with C∗z, we can write this as

( z1 + 1
−z1 + 3

, 2z2

−z1 + 3
) =

(1 0
0 2)(

z1
z2
) + (1

0)

(−1, 0)T(z1 , z2) + 3
.

Thus, we have A = (1 0
0 2), B = (1, 0)T , C = (−1, 0)T , and D = 3. Hence, BD −

AC = (4, 0)T and

BC∗ − AD (s + (1 − s)CC∗

∣C∣2 ) = (−4 0
0 4

√
2) .

Thus, we have

∣(4, 0)∣2 + ∣(−4, 0)∣2 − 2⟨(4, 0), (−4, 0)⟩ = 64 = (∣D∣2 − ∣C∣2)2

∣(4, 0)∣2 + ∣(0, 4
√

2)∣2 − 2⟨(4, 0), (0, 4
√

2)⟩ = 46 < 64 = (∣D∣2 − ∣C∣2)2 .

Hence, ϕ is a self-map of the unit ball.

One final comment regarding this result. As seen in the example, equality is
achieved precisely when the self-map has no interior fixed points. Thus, the derived
criteria for determining whether a LFM is a self-map of the unit ball also tells us
whether our map has an interior fixed point or not. If there is no interior fixed point,
then it is well known that our map must have a privileged fixed point on the boundary,
known as the Denjoy–Wolff point [6].
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