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Abstract
Equilibrium configurations of the internal magnetic field of a pulsar play a key role in modelling astrophysical phenomena from glitches
to gravitational wave emission. In this paper, we present a numerical scheme for solving the Grad–Shafranov equation and calculating
equilibrium configurations of pulsars, accounting for superconductivity in the core of the neutron star, and for the Hall effect in the crust
of the star. Our numerical code uses a finite difference method in which the source term appearing in the Grad–Shafranov equation, which
is used to model the magnetic equilibrium is non-linear. We obtain solutions by linearising the source and applying an under-relaxation
scheme at each step of computation to improve the solver’s convergence. We have developed our code in both C++ and Python, and
our numerical algorithm can further be adapted to solve any non-linear PDEs appearing in other areas of computational astrophysics. We
produce mixed toroidal–poloidal field configurations, and extend the portion of parameter space that can be investigated with respect
to previous studies. We find that in even in the more extreme cases, the magnetic energy in the toroidal component does not exceed
approximately 5% of the total. We also find that if the core of the star is superconducting, the toroidal component is entirely confined
to the crust of the star, which has important implications for pulsar glitch models which rely on the presence of a strong toroidal field region
in the core of the star, where superfluid vortices pin to superconducting fluxtubes.
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1. Introduction

The magnetic field in neutron stars (NSs) varies over a very wide
range, with strengths ranging from 108 G in old recycled pul-
sars all the way upto 1015 G in magnetars. These values of the
magnetic field are generally inferred from the observed spindown
rate of the star, assuming that it is due to magnetic dipole radi-
ation. This provides information on the exterior field far from
the star, however, details about the interior field configuration
remain unknown. Observationally, the inferred exterior magnetic
field of pulsars is found to be relatively stable on short timescales,
except for energetic outbursts and flares in magnetars (Rea &
Esposito 2011; Coti Zelati et al. 2018). Nevertheless, the differ-
ences in field strengths between different populations, suggest that
on long timescales, comparable to the lifetime of the star, the field
may evolve, and that different classes of neutron stars may differ
not only due to their age, but also to their magnetic field config-
uration at birth (Kaspi 2010). Any change in the exterior field is
expected to be driven by internal phenomena, such as the flow
of currents in the crust and superconductivity in the NS core.
The dynamical interplay between these two regions is thus cru-
cial to understand also magnetospheric phenomenology (Akgün
et al. 2017; Glampedakis et al. 2014; Gourgouliatos et al. 2016;
Gusakov et al. 2017a). Understanding the secular evolution of the
magnetic field is crucial to connect different evolutionary tracks

∗Author for correspondence: Ankan Sur, E-mail: ankansur@camk.edu.pl
Cite this article: Sur A and Haskell B. (2021) The impact of superconductivity and the

Hall effect in models of magnetised neutron stars. Publications of the Astronomical Society
of Australia 38, e043, 1–14. https://doi.org/10.1017/pasa.2021.39

and NS classes like millisecond pulsars, rotation-powered pulsars,
and magnetars. On dynamical timescales, however, it is of inter-
est to understand the physical conditions that allow to obtain
stable equilibria in NSs, in order to use such models as back-
grounds to model phenomena such as gravitational wave emission
due to oscillations or deformations of the crust (Ushomirsky
et al. 2000; Payne & Melatos 2006; Osborne & Jones 2020;
Singh et al. 2020).

A number of equilibrium models of magnetised stars have
been produced in recent years, and to study their stability and
evolution, magnetohydrodynamic (MHD) simulations have been
performed, all of which have shown to produce quasi-equilibrium
mixed poloidal–toroidal geometry starting from the earlier works
of Braithwaite & Spruit (2006); Braithwaite & Nordlund (2006);
Ciolfi et al. (2011) and more recently by Sur et al. (2020). Purely
poloidal or purely toroidal magnetic field initial conditions are
known to be unstable, and analytical and numerical studies have
shown to favour an axisymmteric twisted-torus field (Haskell
et al. 2008; Lander& Jones 2009; Lasky et al. 2011; Ciolfi &Rezzolla
2012) where the poloidal and the toroidal components stabilises
one other. These models, however, consider a ‘fluid’ star, which
makes them relevant only in the first instants of life of the star,
when the temperature is too high for the crust to have formed
yet. Furthermore in most cases, the equation of state is taken to be
barotropic, and the stability of barotropic equilibria has been ques-
tioned (Lander & Jones 2012; Mitchell et al. 2015). Rotation may
provide partial stabilisation and in particular the boundary condi-
tions play an important role in determining whether the poloidal
or the toroidal field is globally dominant (Lander & Jones 2012),
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but stratification provided by charged particles of electrons and
protons carrying magnetic flux moving through a neutron fluid in
particular, may allow for additional degrees of freedom and allow
to stabilise the field (Castillo et al. 2017; Castillo et al. 2020). In fact,
barotropic axisymmetric equilibrium solutions are unstable under
non-axisymmetric perturbations owing to MHD instabilities and
stable stratification is likely to be required to prevent complete dis-
sipation of the field (Braithwaite 2009; Reisenegger 2009; Mitchell
et al. 2015). Nevertheless, while non-barotropicity may be crucial
to understand the stability of the models, the equilibria them-
selves will not differ significantly from those of bartoropic stars in
mature pulsars (Castillo et al. 2020), making barotropic equilibria
an important tool to use in calculations that require magnetised
background models of NSs.

It is well known that rotation (or more in general non-trivial
fluid velocity fields in the stellar interior) may have an impact
on the evolution of the magnetic field. First, instabilities due to
perturbations developed within the NS are stabilised by rotation.
Second, superfluids in deferentially-rotating NS cores experience
torque oscillations (Peralta et al. 2005; Melatos & Peralta 2007),
which are likely to explain glitches observed in standard pulsars.
Third, internal velocity fields and multifluid components could
give rise to additional modes of oscillations and alter the prop-
erties of modes of non-rotating stars (Akgün &Wasserman 2008).
Fourth, on studying magnetothermal evolution with macroscopic
flux tube drift velocity, it had been shown that magnetic field may
be weakly buried in the outermost layers of the core and not com-
pletely expelled, as previously thought, although this is sensitive to
the initial conditions (Elfritz et al. 2016). And lastly, the presence
of bulk motion in the crust was explored in Kojima et al. (2021)
who showed that the magnetic energy is converted into mechani-
cal work and parts of it are dissipated through bursts or flares. A
realistic model of NS should consider a solid crust and a fluid core,
which are in rotation (and possibly in differential rotation due to
hydromagnetic torques). However, in this work, we neglect the
effects of rotation as we are mainly interested in the magnetic field
configuration in mature pulsars, which are slowly rotating, and in
understanding the impact of suprconductivity in the core and of
the Hall effect in the crust. It is, nevertheless, important to keep
in mind that rotation may play an important role in the evolution
of younger, strongly magnetised, NSs, and should be considered to
obtain a full picture of the evolution of the field during the lifetime
of a NS.

The crust of a NS consists of ≈ 1% of the total mass, but plays
an important role for the dynamics and emission properties of the
star. The composition of these outer layers depends on the equa-
tion of state and the density varies from 106 gm cm−3 in the outer
crust to ∼1014 gm cm−3 at which point there is a transition to a
fluid outer core of neutrons, protons, electrons and muons, and
at higher densities still, in the inner core, one may have an inner
core of exotic particles like hyperons, superconducting quark mat-
ter and Boson condensates. When the temperature drops below
T ≈ 109 K, soon after birth, the crusts begins to solidify, and forms
conducting crystal lattice with free electrons soaked in superfluid
neutrons where the Lorentz force can be balanced by elastic forces.
During the lifetime of a NS, the evolution of the field in the crust
is mainly affected by two processes: (a) the Hall effect and (b)
Ohmic dissipation, owing to the currents carried by electrons in
the crust (Goldreich & Reisenegger 1992; Cumming et al. 2004;
Pons & Geppert 2007; Hollerbach & Rüdiger 2002). It is known
that Hall effect leads to turbulent cascades but whether it leads to

complete dissipation of the field or relaxes to a stable state is an
important question as stationary closed configuration is neutrally
stable Lyutikov (2013). Over the Hall timescale, (Gourgouliatos
& Cumming 2014) have shown that indeed the field evolves to a
state known as the ‘Hall attractor’ having a dipolar poloidal field
and a weak quadrupolar toroidal component. Depending on the
steepness of the electron density, this field may dissipate rapidly
(Gourgouliatos et al. 2013). As the field relaxes from an MHD
(fluid) to a Hall equilibrium, it may drive the expulsion of toroidal
loops powering flares from the NS crust (Thompson & Duncan
1995).

When the temperature drops below ≈109 K in the core, the
protons will be superconducting and the neutrons superfluid
(Haskell & Sedrakian 2018), which will have a significant effect
on the evolution of the field in the standard pulsar population
(Ofengeim & Gusakov 2018; Gusakov et al. 2017b; Gusakov et al.
2020). Superconductivity, in particular, affect the magnetic field,
as if it is of type II, as theoretical models suggest, the field will be
confined to flux tubes, which can also interact with superfluid neu-
tron vortices (see Haskell & Sedrakian 2018 for a review). In fact,
the possibility that neutron vortices may pin in strong toroidal
field regions in the superconducting core has been proposed as an
explanation for the observed high values for the activity param-
eter in glitching pulsars such as the Vela (Gügercinoğlu & Alpar
2014; Gügercinoğlu 2017; Gügercinoğlu & Alpar 2020). In the
core, Goldreich & Reisenegger (1992) was the first to propose that
ambipolar diffusion becomes important where the charged par-
ticles like electrons and protons move relative to the neutrons.
Glampedakis et al. (2011) showed that this ambipolar diffusion
in superconducting/superfluid NSs has negligible effect on the
magnetic field evolution. However, this can change if the core tem-
perature is of the order 108 − 109 K and the diffusion time scale is
comparable to age of the star Passamonti et al. (2017).

A realistic model for the magnetic field structure of a stan-
dard pulsar cannot be that of a magnetised fluid star, and thus
MHD equilibrium, but should include a superconducting core and
a crust. In this paper, we therefore construct equilibrium models
for magnetisedNS, including type-II superconductivity in the core
and the Hall effect in the crust, and compare our models to pure
MHD and Hall equilibria.

The equilibrium of the magnetic field is studied by solving the
so-called Grad–Shafranov (GS) equation (Shafranov 1966), whose
formalismwe discuss in the next section. This GS equation appears
widely in plasma physics and analytical solutions are often hard
to obtain. Nevertheless, when the source term has a simple form,
we can use Green’s functions to solve the GS equation. However,
except for a small number of simple forms for the source function,
numerical methods such as finite differences (Johnson et al. 1979),
spectral methods (Ling & Jardin 1985), spectral elements (Howell
& Sovinec 2014), and linear finite elements (Gruber et al. 1987)
should be used. In applications to NSs, numerical solvers such as
the HSCF method (Lander & Jones 2009), Gauss–Seidel method
(Gourgouliatos et al. 2013) or the generalised Newton’s method
(Armaza et al. 2015) have been used.

We propose a numerical technique based on finite differ-
ence iterative scheme for solving the GS equation. We focus in
the astrophysical relevance of the GS equation, in particular, to
obtain magnetic equilibrium configurations in neutron stars. Our
method is fast, written both in C++ and Python, and easier to
implement numerically. We have generated models in regimes
where numerical instabilities were faced by previous works. In
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order to do this, we have demonstrated how non-linear source
terms can be treated numerically for the first time. Our numerical
algorithm in general can be applied to any such non-linear PDEs of
the similar form, like the Poisson equation, appearing ubiquitously
in physics.

This article is arranged as following: in Section 2, we derive
the GS equation for Hall and MHD equilibrium, in Section 3, we
describe the numerical algorithm to solve the discretised GS equa-
tion, in Section 4 we show our results for the normal matter star
and the superconducting core, while conclusions and discussions
are finally presented in Section 5.

2. Mathematical formalism

In general, the magnetic field (�B) in spherical coordinates is
expressed in terms of two scalar functions, α(r, θ ) representing
the poloidal component, and β(r, θ ) representing the toroidal
component, as

�B= �∇α × �∇φ + β �∇φ, (1)

where �∇φ = φ̂/r sin θ . From Faraday’s law, we have

∂ �B
∂t

= −c �∇ × �E, (2)

where the electric field is �E= − 1
c �v× �B+ �j

σ
, �v is the velocity of

electrons which is related to the current density as �v= − �j
e n , n is

the electron density and σ is the electrical conductivity. Moreover,
Ampere’s law states that the current density is related to the mag-
netic field as �j= c

4π
�∇ × �B, and substituting these in equation (2)

yields the induction equation,

∂ �B
∂t

= − c
4πe

�∇ ×
( �∇ × �B

n
× �B

)
− c2

4π
�∇ ×

( �∇ × �B
σ

)
. (3)

The first term on the right-hand side of the above equation is
referred to as the Hall term while the second is the Ohmic dis-
sipation term. The ratio of timescales on which these two terms
operate is given by (Goldreich & Reisenegger 1992)

τOhm

τHall
= 4× 104

B14

T2
8

(
ρ

ρnuc

)2

, (4)

where B= B/1014 G and T8 = T/108K. Thus for a suitable choice
of the parameters density, magnetic field, and temperature, the
Hall effect is faster than the Ohmic term and we can obtain a fam-
ily of Hall equilibrium solutions. In particular we expect this to be
true in the cores of standard pulsars, with B≈ 1012 G and internal
temperatures of the order of T ≈ 107 K.

The evolution of the magnetic field purely due to Hall effect is
given by

∂ �B
∂t

= − c
4πe

�∇ ×
( �∇ × �B

n
× �B

)
. (5)

To obtain steady-state models, axisymmetric Hall equilibria solu-
tions are calculated by setting equation 5 to zero. Integrating this
equation gives

1
n
( �∇ × �B)× �B= �∇χHall, (6)

where χHall is an arbitrary function of the coordinates r and θ ,
which can be physically interpreted as the magnetic potential since

its gradient gives the magnetic force. Substituting equation 1 gives
the toroidal component as

�∇α × �∇ �β = 0, (7)
which shows β = β(α). Moreover, �∇α ‖ �∇χHall implies χHall =
χHall(α). This gives rise to the Grad–Shafranov (GS) equation for
a two-dimensional plasma, which is a second-order non-linear
partial differential equation (PDE) given by:

�
α = ∂2α

∂r2
+ (1−μ2)

r2
∂2α

∂μ2 = −χ ′(α)n(r)r2(1− μ2)−β ′β = −S ,
(8)

where �
 is the GS operator, μ = cos (θ ) and S is the source term.
The GS equation, however, does not only apply to Hall equilib-

ria. In a barotropic NS, i.e., where the pressure is a function of mass
density (ρ) alone, as P= P(ρ), a very similar form of equation 6 is
also obtained for MHD equilibria, for which one has:

1
4πρ

( �∇ × �B)× �B= ∇p
ρ

+ ∇φ, (9)

with φ the gravitational potential. For a barotropic equation of
state, equation (9) is clearly of the same form as the GS equation,
and can thus be written in the same form as (6)

1
ρ
( �∇ × �B)× �B= �∇χMHD, (10)

where, however, the specific terms have different interpreta-
tions with respect to Hall equilibria (Gourgouliatos et al. 2013).
Specifically in MHD, the mass density plays a similar role as the
electron density while χMHD as χHall. The poloidal field evolution
takes the same form as equation 8, and thus it is necessary to obtain
a numerical solution in either case of Hall or MHD equilibrium.
In this study, we neglect any relativistic terms and assume that the
conductivity is high enough that we can neglect the contributions
of the Ohmic dissipation term, which is a good approximation in
NS interiors. However, it should be noted that the Ohmic dis-
sipation term is likely to be present in the crust and the Hall
drift enhances it by forming small-scale eddies through which the
field dissipates magnetic energy (Goldreich & Reisenegger 1992).
Simulations have shown that the Hall drift term quickly satu-
rates and the evolution of the field occurs on a slower Ohmic
timescale (Pons & Geppert 2010; Kojima & Kisaka 2012; Viganò
et al. 2012). Even if the field evolves rapidly during the ini-
tial stages, it approaches one among the family of steady-state
Hall equilibrium solutions. Given that diffusivity only depends on
radius, the Ohmic term will not affect the angular structure of the
magnetic field. Gourgouliatos et al. (2013) showed that the elec-
tron fluid in the crust slows down rapidly compared to the Ohmic
dissipation rate for a field connecting an external dipole. Further,
the Hall term enhances the dissipation rate of higher order Ohmic
modes as compared to pure Ohmic decay. To fully investigate
the evolution of the field, one must solve the induction equation
given in (3) as carried out by Marchant et al. (2014) who showed
that starting from either purely poloidal equilibrium or an unsta-
ble equilibrium initial condition, the Ohmic dissipation evolved
the field towards an attractor state through adjacent stable config-
urations superimposed by damped oscillations. Considering the
effects of Ohmic term in our calculations is beyond the scope of
this work, and we assume that as the Ohmic decay occurs on a
much larger timescale as compared to the Hall timescale, our equi-
libria are an adequate approximation to the field configurations in
a middle-aged pulsar.
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3. Numerical method

In this section, we discuss our finite difference iterative scheme
for solving the GS equation in spherical coordinates. We consider
a two-dimensional grid on r − μ plane. There are Nr points in the
r direction running from r = rmin at i= 0 to r = rmax at i=Nr − 1.
The radial values have been normalised by the radius of the star
(R) so that r = 1 corresponds to the stellar surface. Similarly, in
the μ direction, we have Nμ points running from μ = −1 at j= 0
and μ = +1 at j=Nμ − 1. The source term (S) is given by

S =
{

χ ′(α)n(r)r2(1− μ2)+ β ′β if r < 1
0 if r ≥ 1

, (11)

where β is the toroidal component and the prime denotes deriva-
tive with respect to α. The functional form of β does not allow
toroidal currents outside the star and thus makes the toroidal field
to be located within the stellar interior. The electron density is
assumed to be isotropic within the star, implying n= n(r), and
is zero outside due to vacuum. This makes the source term also
zero outside the stellar surface. Moreover, this electron density
appearing in Hall equilibria states are related to MHD equilibria
by n= ρYe, where Ye is the electron number per unit mass which
varies from 1022 − 1028 gm−1 across the crust.

We apply second-order finite difference scheme for equation 8
on a two-dimensional grid of (r − μ)

αi+1,j + αi−1,j − 2αij

dr2
+ (1− μ2

j )
r2i

αi,j+1 + αi,j−1 − 2αij

dμ2 = −Sij =Qij,

(12)
where dr = (rmax − rmin)/(Nr − 1), dμ = 2/(Nμ − 1) and Q is the
negative value of the source function S . On rearranging the above
terms, we can get an expression for αij at the (k)th step in terms of
all its neighbouring points,

αk
ij =

(αk
i+1,j + αk

i−1,j)/dr2

ωij
+ (1− μ2

j )
r2i dμ2

αk
i,j+1 + αk

i,j−1

ωij
+ Sij

ωij
, (13)

where ωij = 2/dr2 + 2(1− u2j )/r2i /dμ2. We use updated values of
αij whenever they are available. The boundary conditions were set
to α(r,μ = −1)= 0, α(r,μ = 1)= 0, α(r = rmin,μ)= 0, and α(r =
rmax ,μ)= 0. Axisymmetry equilibrium requires the azimuthal
component of the magnetic field to vanish, which allows us to
consider a toroidal component of the form

β = s[α − α(r = 1,μ = 0)]p�(α − α(r = 1,μ = 0)), (14)

where s and p are free parameters (Lander & Jones 2009;
Gourgouliatos et al. 2013; Armaza et al. 2015; Fujisawa et al.
2012) and � is the heaviside function. This form ensures there
are no toroidal currents outside the star. The value of α(1, 0) is
self-consistently calculated at each iteration. This form of β also
makes the source term non-linear. Solving a PDE with non-linear
source terms is a challenging task and we follow the procedure of
Mazumdar (2015) to linearise the process. To do so, we expand the
source term, namelyQ, in Taylor’s series

Qk
ij =Qk−1

ij + dQ
dα

∣∣∣∣
k−1

(αk
ij − αk−1

ij )+ ....=Qc +Qpα
k
ij, (15)

and neglect the contributions from higher order terms in α. We
define

Qc =Qk−1
ij − dQ

dα
∣∣k−1

αk−1
ij , (16)

Qp = dQ
dα

∣∣k−1, (17)

and bring Qpα
k
ij on the left-hand side of equation 13, modifying

the coefficient ωij and the source term such that

ωij = ωij −min(0,Qp), (18)

Qij =Qc +max(0,Qp)αk−1
ij . (19)

This step does not always guarantee convergence. To improve the
performance of our solver, we use an under-relaxation scheme
such that

αk
ij = ξαk

ij + (1− ξ )αk−1
ij , (20)

where the parameter ξ lies between 0 and 1. The exact value of
ξ depends on the problem and generally a smaller value like 0.1
would make the convergence slower but more accurate. We solve
equation 13 until a tolerance limit is reached,

αk
ij − αk−1

ij

αk−1
ij

≤ ε = 10−8, (21)

where the error at each step is computed as

ε =

√√√√√√
∑
i,j
(αk

ij − αk−1
ij )2

∑
i,j
(αk−1

ij )2
. (22)

We have developed Python codea, which is a widely used pro-
gramming language known for its easily available numerical and
scientific modules for computing. Instead of looping in the r − μ

plane and calculating each αij term one at a time, we use numpy
(Harris et al. 2020) vectorisation allowing for operations on the
entire array at once. This speeds up the code by a factor of 100 for
a grid of 50× 50 and the improvement is more significant for a
larger grid size, say 100× 100 or 200× 200. Additionally, we have
the same version in C++ which is faster than Python and can be
used for larger grid dimensions required to resolve strong toroidal
fields.

4. Results

Given an EOS for a NS, one can solve the Tolman–Oppenheimer–
Volkov (TOV) equations to obtain the mass (M), radius (R) and
density profile (ρ) of the NS. This information is used as the back-
ground model on which we solve the GS equation to obtain the
equilibrium magnetic field structure. In this paper, as we are solv-
ing Newtonian equations of motion, we use a set of EOSs that
are analytically tractable and allow to mimic the the structure of
fully relativistic solutions. In particular we produce models with
three EOS. First of all, we use two particular exact solutions of the
Einstein field equations which are of interest for a NS: the first
known as the ‘Schwarzschild’ solution gives ρ = ρc = const and
the other obtained by Tolman (1939) gives ρ(r)= ρc(1− r2/R2),
which is close to the density profile for the polytropic EOS P(ρ)∼
ρ2, and has been used previously in several studied of magnetised
neutron stars (Mastrano & Melatos 2012; Mastrano et al. 2013).
We verify this explicitly by also producing a third set of equi-
librium models for an n= 1 polytropic EOS which is obtained

aOur code is freely available for download at https://github.com/ankansur/GSsolver
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Figure 1. Flowchart of our numerical algorithm.

by solving the Lane–Emden equation giving ρ = ρc
sin(πr/R)

πr/R . This
allows us to maintain a physically plausible density profile, and
an analytically tractable model, where we can arbitrarily chooseM
and R to match the compactness predicted by microscopic EOSs,
without the technical difficulties associated with the use of a tabu-
lated EOS in our scheme. Unless otherwise stated, we consider as
our standard model a NS made of two different regions, a crust of
thickness 1 km and a core of thickness 9 km with the crust–core
interface having a density ρcc ∼ 1.9× 1014 gm cm-3 and ρc ≈ 1015
gm cm-3. All the radial values r appearing hereafter have been
normalised by the radius of the star R.

The age during which a realistic NS attendsHall/MHD equilib-
rium depends on its magnetic field strength (B). Typically, in a NS
with an age of 103−105 yrs having B≥ 1014 G, the Hall term domi-
nates over the Ohmic dissipation term. However, in a NS with and
Ohmic timescale of a billion years, the Hall term can still dominate
for weaker field strengths, for example, in pulsars with B∼ 1012 G,
as the internal temperature is lower and of the order 107−108 K.
Nore that although the Hall term is independent of the internal
temperature (Tin), the magnetic and thermal evolution of a NS are
coupled (Viganò et al. 2013), as the magnetic diffusivity (which
we neglect) is strongly dependent on the internal temperature. In
practice for the realistic systems we consider, we require Tin � 108
K, which also ensure the core temperature is well below the critical
temperature for proton superconductivity.

In this section, we discuss axisymmetric solutions for the three
different models: (a) Normal matter in the crust and the core—
this includes both the case of standard MHD equilibria, and Hall
equilibria, (b) Hall in the crust and MHD in the core, and the
more realistic case, and (c) Hall equilibrium in the crust and a
superconducting core.

4.1. Normal matter in crust and core

In this section, we consider a star composed of normally conduct-
ing matter in both the crust and the core. We show results for
the Hall equilibrium, however these results can be easily extrap-
olated to MHD equilibrium, by replacing ne with ρ = ρc(1− r2),
replacing χMHD = Ye χHall and changing the constants given as
λMHDρcR2 = B′

0.
In the following we choose χHall(α)= λHallα and set λHall =

10−35 G cm. This constant λHall sets the strength of the mag-
netic field (B0). As mentioned before, we present results for the
Hall equilibria models with two different electron density profiles,
one constant in space n1 = ne, and the other radially decreasing

profile n2(r)= ne(1− r2) inside the NS. We also show results for
the EOS with matter density following the n= 1 polytrope. We
solve equation 8 with the α and β normalised by B0/R2 and B0/R,
respectively. The normalisation constant ne of the electron den-
sity profile, with typical values 1036 − 1034 cm−3 across the crust,
appears as λHall ne R2 = B0. For a star with radius R= 10 km, we
get B0 ∼ 1013 G which corresponds to a surface field strength of
∼ 1011G. The results we obtain are scalable to any field strength B0
which doesn’t influence our magnetic field topology but results in
changing the quadrupolar deformation which we calculate later in
Section 4.4. The normalised GS equation for the Hall equilibria is
given by

�
α = −
(

λHall ne R2

B0

)
r2(1− μ2)n(r)− ββ ′. (23)

We consider now results for the whole star, i.e., rmin = 0, since it
provides simpler analytical expressions.To compare with previ-
ous studies we choose p= 1.1. A lower value of p, in principle,
develops stronger toroidal field. However p cannot be less than
0.5 as it makes the term β ′β infinite in certain regions inside the
star (Gourgouliatos et al. 2013). For n1 = 1, a purely poloidal field
(s= 0) has an analytical solution given by Gourgouliatos et al.
(2013)

α(r,μ)=
{

(1−μ2)
30 (5r2 − 3r4) if r < 1

(1−μ2)
15

1
r if r ≥ 1.

(24)

This is represented by the black line while the numerical calcu-
lations are shown by the green triangles in Figure 2. In Figure 3,
we compare the radial and angular variation of the poloidal field
for the two electron density profiles. We show results for differ-
ent values of s ∈ [0, 10, 20, 30, 40, 50, 60, 80, 90]. First, varying the
electron density yields a weaker poloidal field. Second, a higher
value of s makes the poloidal field stronger with its maximum
value lying at the equator as seen in sub-figures 3b, 3d and 3f. This
is in good agreementwith the results obtained by Gourgouliatos et
al. (2013). However, on increasing s> 80, we do not see a further
rise in the peak of poloidal field strength. Moreover, the results in
Figure 3d show qualitative convergence as we increase the value
of s, from which we conclude that models with s∼ 50 may be
used as a reasonable approximation for the field structure. The
geometry of the field lines for these different cases are shown in
Figures 4, 5, and 6, for s ∈ [0− 90], with the colourscale represent-
ing the strength of β which is directly proportional to the toroidal
field strength. The toroidal component is concentrated close to
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Figure 2. Variation of α (contours of which give the poloidal field lines) at the equator
across the radial direction for the constant electron density profile. The black solid line
shows the analytical solution.

the stellar equator and lies along the neutral line where the inner-
most closed poloidal field line is located within the star. This is
however not surprising since we chose to have no currents out-
side the star. These figures also show that increasing s makes the
region containing the toroidal field smaller as predicted by pre-
vious studies (Lander & Jones 2009; Gourgouliatos et al. 2013;
Armaza et al. 2015). The toroidal region is also larger for the radi-
ally varying density profile n2 when compared with the constant
profile n1. We compare our results directly with Gourgouliatos
et al. (2013); Armaza et al. (2015) in table 1 where we show the
percentage of the toroidal magnetic energy (Etor) to the total mag-
netic energy (Emag ) with a fixed background density. The energies
are comparable which shows that our results are consistent.

On comparing Figure 3c and 3e, we see that the maximum
value of α across the equatorial region is lower for the density
profile ρ2(r)∝ sin(πr)

πr when compared to n2(r)∝ (1− r2). This cor-
responds to a weaker poloidal and toroidal component however
on comparing the fraction of toroidal energy with different values
of s as seen in Figure 7, we see that the energies are compara-
ble which assures our assumption that both these density profiles
resemble each other.

We remark again that as we have assumed that density to
be a function of radius only, the pressure and gravity forces are
also radial and hence cannot balance the angular component of
the magnetic force. In principle these forces will deform the star
and lead to an ellipticity, and one should also solve the evolu-
tion equation for the density (Lander & Jones 2009). However,
for the magnetic fields in regular pulsars, magnetic equilibrium
can be treated as a perturbation on the background (Akgün et al.
2013). Deformations of the density profile are of the higher order
in B2, and any back-reaction on the field is even smaller, O(B4),
and hence will only play a role for very strong magnetic fields in
magnetars.

We have explored a different twisted-torus geometry with a
continuous toroidal field β(α) = γ α(α/ᾱ − 1)�(α/ᾱ − 1) where
ᾱ is the value at the last closed field line and γ is a constant.
This entire framework was carried out in general relativity by
Ciolfi & Rezzolla (2013)(C&R) which we try to reproduce in the
Newtonian limit. Previously, we have seen that with increasing s,
the toroidal field becomes stronger and the closed field line region
shrinks. To produce a larger closed field line, C&R considered a

functional dependence of χ(α)= c0[(1− |α/ᾱ|)4�(1− |α/ᾱ|)−
k̄], with c0 and k̄ are constants. Furthermore the transformation
χ(α)= χ(α)+ χ̄(α) was applied, with χ̄ = X(α)β ′β , thus min-
imising the effect of toroidal fields on the poloidal field lines. With
γ = 1, c0 = 1, k̄= 0.03, and X(α)= 1 we solved the GS equation
and get Etor/Emag ∼ 0.05 instead of the very strong toroidal fields
Etor/Emag ∼ 0.6 obtained by C&R (Ciolfi & Rezzolla 2013).We do
not solve our equations in GR and cannot conclusively say what
could give rise to this discrepancy.

4.2. Hall equilibria in crust andMHD in core

As a first step towards more realistic models, we start by consid-
ering the case where we have a Hall equilibrium in the crust, and
anMHD equilibrium in the core of the star. We follow Fujisawa &
Kisaka (2014) who showed that the strength and structure of mag-
netic field in the core affects that in the crust, and the current sheet
at the crust–core interface affects the internal and external field.
Similarly, we look into a situation where we impose Hall equi-
librium in the crust and MHD equilibrium in the core. Outside
the star, we assume vacuum condition, in which case, we solve
�
α = 0 with the zero boundary conditions for α at a far away
radial point. One can also impose a dipolar field however the
results do not change significantly as seen by Gourgouliatos et al.
(2013).

In order to study this case we now have to, unlike in pre-
vious examples, explicitly differentiate between Hall and MHD
equilibria. The equations we solve are given by

�
α = −r2(1− μ2)n(r)χ ′
Hall − ββ ′ in crust, (25)

�
α = −r2(1− μ2)ρ(r)χ ′
MHD − ββ ′ in core. (26)

At the crust–core interface, the continuity of α is automatically
imposed. We also want the magnetic field in the core and the
Lorentz force in the crust to balance, which gives[

ρcore χ ′
MHD

]cc

=
[
ncrust χ ′

Hall

]cc

. (27)

We set the electron density in the crust to be a constant
ncrust = ne while the density in the core is assumed to follow
ρcore = ρc(1− r2).With the crust–core boundary at r = 0.9R, using
equation 27 we get the following relation:

χ ′
MHD = 5.1× 1021χ ′

Hall ∼ 5.1× 10−14 G cm−1. (28)

The magnetic field lines remains unchanged however the strength
of the parameter β is significantly higher as seen in Figure 8.

We plot the percentage fraction of toroidal energy for the
pure Hall+MHD in Figure 9 and compare this with the pure
Hall equilibrium NS. The difference between this setup com-
pared to purely MHD or Hall equilibria is that the toroidal
energy density is stronger up to s∼ 40, but starts decreasing
for higher values. Qualitatively, however, the results are similar
and the toroidal energy saturates at a few percent of the total
energy.

4.3. Hall equilibrium in crust and Superconducting core

As the NS cools down, neutrons and protons form pairs by reduc-
ing their energy owing to the long range attractive part of the
residual strong interactions. The thermal energy in this case is
much smaller than the pairing energy and the system is gaped,
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Variation of α (whose contours give the poloidal field lines) at the equator across the radial direction for eight values of the parameter s shown for three different density
profiles in (a),(c), and (e). Variation of themaximum value of α across the angular direction with s. The density profiles are given as text in each figure.

which leads to reactions and viscosity being greatly suppressed.
As previously mentioned, the transition temperature below which
the system behaves as superfluid/superconductor is typically
Tc ∼ 109 −1010 K, and the star thus cools below this rapidly after
birth. In the interior of a mature neutron star the geometry of the
magnetic field depends on the type of superconductivity, which in
turn depends on the size of Cooper pairs and the penetration depth
of the magnetic field. This is measured with the Ginzburg–Landau
parameter κGL which for NS cores is greater than 1/

√
2making it a

type-II superconductor (for an in depth discussion, see the review
article by Haskell & Sedrakian (2018)).

In order to obtain a more realistic model of a pulsar, we thus
consider a core of type-II superconducting protons, and study
its effect on the magnetic field equilibria, following the setup of
Lander (2013, 2014). Therefore, our star is made up of normal

matter in Hall equilibrium in the crust and superconducting
matter in the core. The crust–core interface lies at r = 0.9 as
in previous cases. Our models, in this case, are valid for pul-
sars having a surface field strength of (1 −10)× 1011 G with
typical ages in the range of 104 −105 yrs and internal temper-
atures of 107 −109 K. The Lorentz force for this type-II super-
conducting protons in the core is given by (Easson & Pethick
1977; Mendell 1991; Akgün & Wasserman 2008; Glampedakis
et al. 2011)

�Fmag = − 1
4π

[
�B× ( �∇ × �Hcl)+ ρp �∇

(
B

∂Hc1

∂ρp

)]
, (29)

where �Hcl(ρp, ρn)=Hc1B̂ is the first critical field with B̂ is the unit
vector tangent to the magnetic field. The norm of this first critical
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Figure 4. Contours of poloidal field for different values of s (given in the text box in each figure) using the constant electrondensity profile n1 = 1. The colourbar shows the strength
of β. The black dotted line represents the location of stellar radius. We have shown contours of α having values (0.1αs, 0.2αs, 0.3αs , 0.4αs, 0.5αs , 0.6αs , 0.7αs, 0.8αs , 0.9αs , 1αs).

field is given as

Hc1(ρn, ρp)= hc
ρp

ε


, (30)

where hc is an arbitrary constant (Glampedakis et al. 2011). We
assume that the density of protons ρp in the core follows the
same profile ≈ (1− r2) as that by electrons in the crust. The
entrainment parameter is given by ε
 = 1−εp−εn

1−εn
, where εp = 1−

m

p

mp
. Here m


p is the effective mass of the protons acquired as a
result of entrainment. Similarly, we can define εn. We refer the
reader to Palapanidis et al. (2015) where the effect of entrain-
ment is discussed extensively. In the following, we simply set
ε
 = 1, which implies that force on neutrons due to coupling is
zero which allows us to represent Hc1 =Hc1(ρp). The equivalent
Grad–Shafranov equation for type-II superconducting core is thus
given by

�
α = �∇� · �∇α

�
− r2(1− u2)ρp�

dy
dα

− �2fsc
dfsc
dα

, (31)

where we represent superconducting matter with the subscript sc
and the functions fsc and y(α) are defined as

y(α)= 4πχsc + B
hc
ε


, (32)

fsc(α)= β

B
Hc1, (33)

where B=
√�B · �B) is the magnitude of the magnetic field and� =

B
Hc1

. Equation 31 is valid in the NS core (r < 0.9R). For the crust,
we consider normal matter in Hall equilibrium while the exterior
remains the same as considered before. As previously remarked,
we consider mostly the more realistic case of Hall equilibria, but
our equations in general can be applied also to MHD equilibrium,
in which case the boundary conditions are modified. In particular
equation 40 becomes:

y(α)= hc
ε


Bcc(α)+ 4π
[

ρcrust
p

ρcore
p

]
cc
χMHD(α), (34)

4.3.1. Boundary conditions

We treat the boundary conditions as outlined in (Lander 2014).
At the surface of the NS, the density of protons vanishes. The
magnetic field in the core and the Lorentz force in the crust must
balance, which gives[

ρ core
p χ ′

sc

]cc

=
[
ncruste χ ′

Hall

]cc

. (35)

Since apriori, we do not know B explicitly as a function of α, we
use a polynomial approximation for B at the crust–core interface
as given in (Lander 2014)

Bcc(α)= c0 + c1α + c2α(α − αeq
cc ), (36)
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Figure 5. Contours of poloidal field lines (with similar strengths as above), for the electron density profile n2 = (1− r2). The colourbar, again, shows the strength of β and the red
dotted line represent r= R.

where c0 are constants and α
eq
cc is the equatorial value of α on the

crust–core boundary. We choose the constant such that

c0 = Bpole
cc , (37)

c1 = Beq
cc − c0
α
eq
cc

, (38)

c2 = Bmid
cc − c0 − c1αmid

cc

αmid
cc (αmid

cc − α
eq
cc )

, (39)

where αmid
cc is the value of α at θ = π/4 in the crust–core boundary.

This gives

y(α)= hc
ε


Bcc(α)+ 4π
[
ncruste
ρcore
p

]
cc
χHall(α). (40)

The next boundary condition that wemust satisfy is the continuity
of Bφ which is given by

fsc(α)= [Hc1]cc
β(α)
Bcc(α)

. (41)

4.3.2. Field lines

The poloidal field contours are shown in Figures 10a and 10b
with the colourscale again representing the strength of β . This

corresponds to a maximum toroidal field of magnitude 1010 G.
In the core, we see that the field lines are convex for the super-
conducting matter as opposed to the normal matter. The toroidal
field is also restricted to the crust and cannot penetrate deep
within the star. This can be understood by comparing the ratio
of averaged magnetic field strength to the magnitude of Hc1 at
the crust–core interface, i.e., 〈Bcc〉/Hcc

c1 < 1, which is typically the
case for pulsars. 〈Bcc〉/Hcc

c1 ≥ 1 makes the field lines kink inwards
and close inside the core (Lander 2014). This effect is indepen-
dent of the choice of our function χMHD(α). In this study, we
typically have Hc1 10–50 times stronger than the magnitude of
B at the crust–core interface, which increases the magnetic ten-
sion towards the z-axis. The toroidal flux is fully expelled to the
crust, as also seen by Lander (2014), while magnetothermal evolu-
tions by Elfritz et al. (2016) found on the contrary a toroidal field
in the core. We note however that this result depends strongly
on the intial conditions for the evolution in the core, and fur-
ther analysis of their compatibility with the equilibria found here
would be needed to obtain a full physical understanding of this
discrepancy.

4.4. Magnetic deformation

Finally, let us discuss the magnetic deformation of the star, which
plays an important role in estimating the strength of gravitational
radiation from NSs (Ushomirsky et al. 2000; Haskell et al. 2008;
Mastrano et al. 2013; Lasky 2015; Gao et al. 2017; Sieniawska &
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Figure 6. Contours of poloidal field lines with different s values for the n= 1 polytropic density profile ρ = ρc
sin(πr/R)

πr/R . The colourbar, again, shows the strength of β and the red
dotted line represent r = R.

Table 1.The percentage of Etor/Emag for different parameter values of
s for n2(r)= (1− r2). A comparison is also shown with Armaza et al. (2015)
and Gourgouliatos et al. (2013).

s This work Armaza Gourgouliatos

0 0 0 0

5 0.12 0.14 0.15

10 0.65 0.57 0.60

20 2.2 2.2 2.3

25 3.1 3.1 3.2

30 3.3 3.7 3.9

Bejger 2019; Chandra et al. 2020). In our setup, as already dis-
cussed, this can be treated as a higher order effect in an expansion
in O(B2). The strategy is thus to compute the magnetic field on
a spherical background, as we have done in the previous section,
and then evaluate the deformations of the density profile at O(B4).
Following Haskell et al. (2008), the theta component of the Lorentz
force (Lθ ) term is given by

(δp+ ρδ�)
dY0

2
dθ

= r
[( �∇ × �B)× �B]θ

4π
= rLθ

4π
. (42)

where Y0
2 is the m= 0 spherical harmonic. We further impose

the Cowling approximation which gives δ� = 0 and on using
the EOSs considered in this work, we calculate the quadrupole

Figure 7. Percentage fraction of the toroidal magnetic energy (Etor) to the total mag-
netic energy Emag) for two different density profiles given in figure labels for the setup
given in Subsection 4.1.

moment, following Ushomirsky et al. (2000), as

Qlm =
∫ R

0
δρlm(r)rl+2dr, (43)

which on dividing by the zth component of the moment of iner-
tia (Izz), gives us the ellipticity parameter ∈ = Q20/Izz . Note that
our models are axisymmetric, and would not lead to gravitational
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Figure 8. Magnetic field lines and the strength of β for the Hall equilibrium in the crust andMHD equilibrium in core.

Figure 9. Percentage fraction of the toroidal magnetic energy (Etor) to the total mag-
netic energy Emag) for the pure Hall (setup in 4.1) and mixed Hall+MHD (setup in 4.2)
with varying s.

wave emission, even in the presence of a significant deformation.
However, if the magnetic axis is not aligned with the rotational
axis, the deformation will not be axisymmetic and there will be
components of the quadrupole also with m �= 0, leading to emis-
sion at both the rotational frequency and twice the rotational
frequency of the star (Bonazzola & Gourgoulhon 1996). In order
to obtain an estimate of the ellipticity, we thus make the standard
approximation that Q20 ≈Q01, neglecting geometric factor that
depend on the inclination angle.

We can now compare the quadrupoles obtained for our setups
with Hall equilibrium in the crust, but with MHD and super-
conducting cores. The results are very similar for the densities
ρ ∼ (1− r2) and ρ ∼ sin (π/r)/πr, and for s= 10, we obtain
for the MHD core ε ≈ 2× 10−12, corresponding to an average
poloidal field of Bp = 6× 1011 G (with a surface value of Bs =
2× 1011 G) and toroidal field of Bt = 5× 1010 G, which is in
line with theoretical expectations. For our setup with a super-
conducting core we obtain, taking Hc ∼ 10B0, values of ε ≈ 7×
10−11, for Bp = 4.3× 1011 G, Bt = 3× 1010 G, and a surface field
of Bs = 3× 1011 G.

This is significantly lower than the results obtained by Suvorov
et al. (2016) who found ∈∼ 10−6 from spot-like magnetic field
structures present in the crust due to Hall effect causing density
perturbations for field strengths higher than B≥ 1014 G. This dif-
ference is likely to be caused by the interplay between the overall
stronger poloidal field in the core of the star and the (locally)
strong toroidal field in the crust which compensate each other
in our model, while Suvorov et al. (2016) consider fields only
in the crust of the star, and non-barotropic equations of state.
Nevertheless, a full magnetothermal evolution of the couple crust–
core system would be needed to conclusively shed light on the
issue.

Note finally that in the MHD model, the toroidal field regions
of the star can present locally large deformations of density (up to
δρ/ρ ≈ 0.01), which could be important in older, accreting sys-
tems, as if they occur in the crust they could lead to deformed
capture layers in the presence of accretion (Singh et al. 2020).
However, in our more realistic models with a superconducting
core, these deformations are much smaller, and never larger than
δρ/ρ ≈ 10−6.

4.5. Code performance

We compare our two codes in Python and C++. In Figure 11a,
we show the number of iterations taken for each code to reach
an error (ε) for three different grid sizes for s= 5. In Figure 11b,
we plot error as a function of number of iterations for two differ-
ent cases, purely poloidal (s= 0) and a mixed poloidal–toroidal
(s= 5). The grid size chosen was 101× 101. Overall we infer
that the performance of C++ is better as it takes less num-
ber of iterations (and hence time) to reach our final tolerance.
However, for the purely poloidal case, we see that our Python
code, which uses <monospace>numpy</monospace> vectorisa-
tion, is faster when compared to C++. Further we calculated

the order of convergence oc= ln
(

f3−f2
f2−f1

)
/ ln (r), where f 3, f 2 and

f 1 are values at a fixed point in the grid with resolutions 128×
128, 64× 64 and 32× 32 respectively. Here r is the refinement
ratio chosen to be 2, and we find oc∼ 2, showing second-order
convergence (O(h2)).
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(a) (b)

Figure 10. Contours of poloidal field lines for two different values of s in the superconducting core Hall equilibrium crust. The location of the crust–core interface is represented
by the solid grey line at r = 0.9R, while the red dotted line shows the stellar surface. The colourscale represents the strength of the toroidal field β.

(a) (b)

Figure 11. (a) Number of iterations as a function of accuracy for three different grid sizes for the two versions of our code. (b) The number of iterations taken by our solvers to
reach a certain accuracywhen generating different field geometries, purely poloidal (s= 0) and themixed poloidal–toroidal(s = 5).

5. Conclusion and discussions

In this paper, we have developed a numerical scheme to rapidly
solve the GS equation to obtain axisymmetric magnetic field equi-
librium models for mature neutron stars. As a benchmark for our
code we first consider first the case of pure MHD equilibria and
pure Hall equilibria, then move on to models in which we solve
for Hall equilibrium in the crust andMHD equilibtium in the core.
Finally, we produce for the first time a model where we consider
a type-II superconducting core and Hall equilibrium in the crust,
thus producing a more realistic model for a mature pulsar.

We compared our numerical computations with analytical
solutions provided by Gourgouliatos et al. (2013) and with the
results obtained by Armaza et al. (2015) which shows excellent
agreement. Since our source terms have a high-degree of non-
linearity, we have implemented a new technique which allows us
to linearise our source. This, along with the under-relaxation to

update α had significantly improved our solver’s performance. We
were able to extend calculations for s> 65, i.e., regions where pre-
vious studies (Armaza et al. 2015; Gourgouliatos et al. 2013) had
failed, for the normally conducting fluid. We reach convergence
when s∼ 50 and the results do not change significantly beyond
this value of s. However, our code fails when we increase s beyond
90 for p= 1.1 because the toroidal field region became too small
to be resolved, causing numerical instabilities. We can do better
if p is increased to 2, but this does not produce any difference in
the toroidal component. In our calculations we implement both
simplified equations of state, such as a constant density profile,
in order to compare to previous results, but also more realis-
tic profiles. In particular we implement a parabolic equation of
state of the form ρ ∝ (1− r2/R2) and compare the results to those
obtained with an n= 1 polytrope, and find them to be in good
agreement.
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In this work, we have assumed the star to be always spher-
ical. There are a few limitations of this as our results do not
account for the back-reaction of the magnetic force on the fluid,
and so we cannot self-consistently calculate ellipticities for strong
magnetic fields, such as those of magnetars, where our perturba-
tive approach is no longer valid. To consistently account for the
effect of non-sphericity in the presence of strong fields or rota-
tion, it would be necessary to modify our method to calculate
simultaneously the density and field structure (Lander & Jones
2009). Nevertheless our method can be confidently applied to
the standard pulsar population, in which the magnetic fields are
weak enough to enable a perturbative treatment, and rotationally
induced deformations can safely be ignored.

We calculate magnetic equilibria solutions for the supercon-
ducting core NSs which differed from the normally conducting
matter by field strengths and geometry of the poloidal field lines.
The most notable change is that the toroidal field is expelled
from the core and restricted to the crust in the case of where
〈Bcc〉/Hcc

cl < 1, which is applicable for the standard pulsar popu-
lation. Increasing this ratio beyond 1 (as would be the case for
magnetars) caused numerical difficulties and we leave it as a scope
for improvement in the future. Furthermore for B>>Hc even
non-linear effects such as those considered bu Lander & Jones
(2009) can be important, and further development of our scheme
would thus be required to consistently describe magnetars.

To be precise, our Hall crust-superconducting core models are
valid for middle-aged pulsars with ages of around 105 years and
core temperature of T � 109 K. We consider surface values of the
magnetic field os order Bs ≤ 1012 G. This guarantees that we are
exploring a population which have a timescale for Hall evolu-
tion which is much shorter than the Ohmic dissipation timescale
and we can ignore the latter contributions when computing our
models.

Our results for superconducting cores and Hall equilibrium in
the crust are, therefore, a realistic model for mature pulsars, and
are particularly interesting for glitching pulsars. It has, in fact, been
suggested that a strong toroidal field region in the core could lead
to vortex/flux tube pinning, thus providing a large reservoir of
angular momentum to power large glitches such as those observed
in the Vela pulsar (Gügercinoğlu 2017; Gügercinoğlu & Alpar
2020), and possibly resolving the tension between the observed
activity of the Vela (i.e., the amount of spin-down reversed by
glitches during the observing period) and the angular momen-
tum that theoretical models predict to be stored in the crust
(Andersson et al. 2012; Chamel 2013). Ourmodel, however, shows
that no toroidal field area is present in the core to allow for such
pinning, as it is expelled to the ‘normal’ matter crust. The models
we produce can, however, be used as a background for more real-
istic vortex pinning calculations (Sourie & Chamel 2020a; Sourie
& Chamel 2020b), in order to fully investigate the effect of pinning
in the core on pulsar glitch phenomenology. Note, however, that
for very strong surface magnetic fields (e.g., Bs > 1015 G) like those
seen in magnetars, the ratio 〈Bcc〉/Hcc

c1 is greater than unity and the
toroidal flux is non-zero inside the core of the star (Lander 2014)

All our computations produced a toroidal field which is less
than 5% of the total magnetic energy, and both the structure and
strength of the field appear to rapidly converge to a qualitatively
stable regime as we increase the degree of non-linearity by increas-
ing the parameter s. This is in line also with the results obtained
from numerical MHD evolution by Sur et al. (2020). We have
also shown that we can have a stronger toroidal field for a model

with Hall equilibrium in crust and MHD equilibrium in the core
of the star, and also tried to implement the formalism presented
in Ciolfi & Rezzolla (2013) to generate extremely strong toroidal
fields.We do not obtain results with toroidal energies significantly
larger than � 5% of the total magnetic energy of the star, although
we do not work in GR and do not consider strong magnetic fields
in our setup. This has strong implications as the gravitational wave
emission, as the size of a ‘mountain’, i.e., of the quadrupolar defor-
mation that couples to the gravitational field, strongly depends on
the internal magnetic energy of a NS (Haskell et al. 2008).

We study such ‘mountains’ on the star by calculating the den-
sity and pressure perturbation induced at higher order by the field
configurations we generate. This allows us to estimate the ellip-
ticity, which in our case is ∈≈ 7× 10−11 in the superconducting
case, for a surface field value of Bs ≈ 3× 1011 G, which is in line
with theoretical expectations and confirms that if such deforma-
tions persist also in older pulsars, for which the crustal fieldmay be
buried leading to a lower inferred external dipole, this may explain
the observed cutoff observed in the P− Ṗ diagram for millisecond
pulsars by Woan et al. (2018).

We have written two versions of our code, one in C++ and
the other in Python. To improve our Python code’s performance,
we vectorised our arrays to perform operations instead of using
loops. The number of grid points play a major role in resolv-
ing the toroidal component. We needed finer mesh to obtain the
strong toroidal fields wherein our C++ code was efficient. Using
our Python code, we could solve the GS equation with param-
eters (s= 0, p= 1.1) for 101× 101 grid to reach an accuracy of
ε ∼ 10−8 in less than 10 seconds. With the non-linear source, the
Python solver took longer time and hence we used our C++
solver.

To summarise, we generated realistic magnetic equilibrium
models in NSs with superconductiong cores, which could serve
as initial conditions for long-term evolution of the magnetic
field. This will bestow our understanding of the global magnetic
field structure and its stability over the lifetime of a NS or any
barotropic star.
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