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The wetting effect has attracted great scientific interest because of its natural significance
as well as technical applications. Previous models mostly focus on one-component
fluids or binary immiscible liquid mixtures. Modelling of the wetting phenomenon for
multicomponent and multiphase fluids is a knotty issue. In this work, we present a
thermodynamically consistent diffuse interface model to describe the wetting effect for
ternary fluids, as an extension of Cahn’s theory for binary fluids. In particular, we
consider both immiscible and miscible ternary fluids. For miscible fluids, we validate
the equilibrium contact angle and the thermodynamic pressure with Young’s law and
the Young—Laplace equation, respectively. Distinct flow patterns for dynamic wetting are
presented when the surface tension and the viscous force dominate the wetting effect. For
immiscible ternary fluids, we manipulate the wettability of two contact droplets deposited
on a solid substrate according to three scenarios: (I) both droplets are hydrophilic; (II) a
hydrophilic droplet in contact with a hydrophobic one; (IIT) both droplets are hydrophobic.
The contact angles at each triple junction from the simulations are compared with Young’s
contact angle and Neumann’s triangle rule. Simulations for the validation of our work are
performed in two and three dimensions. In addition, we model the evaporation process
of a ternary droplet and obtain the same power law as that of previous experiments. Our
model allows one to relate the interfacial energies with surface composition, enabling the
modelling of the coffee-ring phenomenon in further perspective.
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1. Introduction

The wetting phenomena of liquids sitting on top of solid substrates have attracted great
scientific attention in past decades (De Gennes 1985; Bonn 2001; Quéré 2008; Yuan &
Lee 2013; Mitra et al. 2016; Wang et al. 2022; Wang, Wu & Nestler 2023). The scientific
significance of the wetting phenomenon lies in its natural importance, such as lotus effect
(Marmur 2004) and coffee-ring pattern (Deegan et al. 1997), as well as the broad technical
applications, e.g. inkjet printing in printed electronics (Méittinen et al. 2010). It appears
that in most previous studies (Cahn 1977; De Gennes 1985; Puri & Binder 1994; Jacqmin
2000; Tanaka 2001; Sefiane, David & Shanahan 2008; Badillo 2015; Zhang, Tang &
Wu 2022b), one-component liquids or binary fluids have been focused on regarding the
investigation of wetting phenomena, such as water on top of a solid substrate (Wenzel
1936). However, in most realistic circumstances, the liquid droplet involved in the wetting
effect contains more than one component. Typical examples are a water—coffee droplet
and an inkjet printing droplet including several components of electrolytes (Turkoz et al.
2018; Cadilha Marques et al. 2019). Moreover, in some cases (Attinger, Zhao & Poulikakos
2000; Govor et al. 2004), the components in the droplet are immiscible with each other,
such as water—oil (Tan et al. 2016). These situations are within the scope of the wetting
phenomenon of multicomponent and multiphase systems, which have not yet been fully
addressed in the literature, although some recent efforts have been devoted to this direction
(Wang et al. 2018; Bala et al. 2019; Aland & Auerbach 2021; Chen et al. 2021; Yuan et al.
2022). In this work, we aim to develop a model for the wetting effect of fluids containing
three components and discuss two scenarios in which the components are miscible and
immiscible.

For the wetting phenomenon of one- and two-component fluids, distinct types of models
have been developed in the literature, such as sharp interface model (Chamakos et al. 2016;
Du et al. 2021), phase-field model (Yue & Feng 2012; Ben Said et al. 2014; Cai et al. 2015;
Wu et al. 2019b, 2020, 2022; Zhu et al. 2020), lattice Boltzmann (Attar & Korner 2009;
Bala et al. 2019), volume of fluid (Hirt & Nichols 1981; Malgarinos et al. 2014), level-set
methods (Zheng & Zhang 2000; Buscaglia & Ausas 2011) and thin-film models (Thiele
2018). The sharp interface method has mathematically a zero interfacial thickness. The
advantage of the sharp interface model lies in the direct application of physical principles.
For instance, Young’s law

cos = (V55 — Yas)/Vas (L.1)

is applied to determine the macroscopic equilibrium contact angle 6 at the triple junction
of droplet—surrounding—substrate. Here, vss, Vs and yys are the interfacial tensions
of surrounding—substrate, liquid—substrate and liquid—surrounding, respectively. Another
example in the sharp interface approach is the application of Young-Laplace pressure

AP = yus /R (12)

for the boundary condition at the droplet—surrounding interface, where the droplet is
in equilibrium with the surrounding phase. The droplet radius is represented by R and
its reciprocal denotes the mean curvature. However, the sharp interface model becomes
less efficient when the droplet spreads and evaporates, where the interface and the
triple junction move with time. In these cases, one has to make a huge effort to track
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the position of the interface as well as the triple junction to apply the corresponding
boundary conditions. The sharp interface model seems to be tricky when it comes to
multi-droplet scenarios where numerous interfaces need to be considered. In a second
approach, the diffuse interface method is proved to be not only more efficient, but also
more physically correct, as the droplet—surrounding interface is assigned a finite width,
typically of the order of nanometres. To distinguish the droplet from the surrounding
phase, the composition or the so-called phase-field order parameter ¢ is introduced which
varies continuously from the equilibrium value in the droplet to that in the surrounding.
Benefiting from the establishment of the free energy functional F (¢, V¢) for the diffuse
interface model by Cahn (Cahn & Hilliard 1958), the equilibrium states in the bulk and
on the substrate both are depicted by the minimization of the free energy functional of the
system, which is calculated by the variational approach via the Euler—Lagrange equation:

8F /8¢ = 0. (1.3)

For one-component phases within the diffuse interface model, this variational approach
gives rise to the equilibrium wetting state which has been shown to be consistent
with Young’s law of the sharp interface model. Considering droplet kinetics before
reaching equilibrium, two kinds of diffuse interface approaches, namely Allen—Cahn and
Cahn—Hilliard models, have been successfully adopted in the literature to study the wetting
effect of one-component phases (Ben Said ef al. 2014; Wu et al. 2019b). In these methods
for one-component phases or two-component systems, only one single phase-field variable
¢ is necessary to depict the free energy functional of the system.

For multicomponent and multiphase systems, the droplet and surrounding can be
dissolved with other components, but there is a paucity of literature studying the
corresponding wetting phenomenon in detail. In a previous multiphase-field approach by
Ben Said et al. (2014), the wetting phenomenon of N immiscible phases (N > 3) was
studied. The outstanding strength of this model lies in the utilization of the Allen—Cahn
type of phase-field model in combination with the obstacle potential, which significantly
reduces the computational time, allowing one to perform large-scale three-dimensional
(3-D) simulations. The static wetting angle at the substrate has been captured based on the
natural boundary condition. However, neither diffusion mechanism nor fluid dynamics is
considered. Moreover, in this model, the Young—Laplace pressure has been overlooked.
A recent work by Bala et al. (2019) based on the lattice Boltzmann model addressed the
wetting effect of three immiscible fluid phases on a solid substrate. The wetting contact
angles on the solid substrate have been described by three distinct methods. The difficulty
of the multiphase and multicomponent approach for the diffuse interface model lies in the
replication of the interfacial energies, since the paths for the free energy minimization on
the free energy landscape are challenging to obtain analytically, as pointed out in Bala et al.
(2019). Moreover, this study is only restricted to the two-dimensional (2-D) case, while the
3-D simulation turns out to be more realistic for taking the curvature of the third dimension
into account, but indeed is more computationally time-expensive. Notably, these studies
exclusively cover the wetting phenomenon of immiscible fluids. The previously mentioned
circumstances are still not fully understood where the components are miscible, such as
water—coffee or water—alcohol droplets.

Different diffuse interface models in the literature have been developed for the wetting
effect of ternary fluids. From the aspect of thermodynamics, careful attention should be
paid when extending the wetting model of binary fluids to the ternary case. Kim (2007)
and Boyer er al. (2010) proposed a ternary phase-field method based on the Cahn—Hilliard
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model. The Cahn—Hilliard type of phase-field model is a kind of diffusion equation based
on the chemical potential gradient rather than the composition gradient in Fick’s law.
In this way, in the Cahn—Hilliard model, the mass is naturally conserved. For a fluid
with K components, the chemical potential has K — 1 independent variables because of
the constraint for the volume concentration ZJK: 1 ¢ = 1 due to incompressibility. Most
importantly, for multicomponent fluids, the chemical potentials are constrained by the
Gibbs—Duhem relation (Alhasan & Tree 2022), which leads to a thermodynamically
consistent mobility consistent with the Onsager theorem (Balluffi, Allen & Carter 2005),
as is demonstrated in the current work. This is in contrast to the case of constant mobility
(Kim 2007; Boyer et al. 2010). The thermodynamic consistency due to the Gibbs—Duhem
relation is in contrast to the Lagrange multiplier approach for the chemical potentials
adopted in Kim (2007) and Boyer et al. (2010). As demonstrated by Jacqmin (1996)
for binary fluids and shown in the following for ternary fluids, the chemical potential
plays a key role in the thermodynamic pressure, which contributes to the capillary force
together with the Kortweg stress in the Navier—Stokes equation. The occurrence of the
Kortweg stress and the thermodynamic pressure for multicomponent and multiphase
fluids is a key difference from the one-component and one-phase Navier—Stokes flow.
Only if the thermodynamic pressure is validated is the subsequent fluid dynamics for
multicomponent fluids physically justified. As pointed out by Jacqmin (2000), the pressure
of a two-phase flow is different from the so-called ‘true pressure’ of one-phase flow.
However, the validation of the fluid statics for the thermodynamic pressure of ternary
fluids is scarce in the literature. In addition, the solid-liquid interaction, namely the wetting
effect of liquid on solid, is not considered in Kim (2007) and Boyer et al. (2010). By
considering the wetting boundary condition, an Allen—Cahn type of phase-field model for
ternary fluids has been developed by He ef al. (2020) and Jain, Mani & Moin (2020). As
aforementioned, the advantage of the second-order Allen—Cahn model is its computational
efficiency compared with the fourth-order Cahn—Hilliard model. However, the mass is not
conserved in the Allen—Cahn model because of the curvature effect. Different ways have
been adopted to amend this deficiency (Jeong & Kim 2017; Aihara, Takaki & Takada 2019;
Wu et al. 2019a; Yang & He 2022). One way is, for example, to remove the mean curvature
in the evolution equation (He et al. 2020, 2023). In this way, the thermodynamic pressure
and the chemical potential in terms of the mean curvature (consequently in the capillary
force) are overlooked; the real dynamics of the Allen—Cahn model should be different
from that of the Cahn—Hilliard model. Mathematically, the Allen—Cahn model follows the
energy dissipation law for L? gradient flow and the Cahn—Hilliard model obeys the energy

dissipation law for the H~! gradient flow.

The dynamics of wetting has attracted great interest in the community of fluid dynamics.
The diffuse interface model for the wetting dynamics of binary fluids dates back to the
work of Jacqmin (2000), Cahn (1977) and De Gennes (1985). This diffuse interface model
is based on the Cahn-Hilliard-Navier-Stokes equation. As demonstrated in Jacqmin
(2000), only numerical solution in two and three dimensions is possible even if this
model is simplified to the Laplace equation for the chemical potential and the bi-harmonic
equation for the stream function when the contact angle is 90° and the viscosity ratio is
1. In the last 20 years, many other diffuse interface models (Ding & Spelt 2007; Carlson,
Do-Quang & Amberg 2009; Yue, Zhou & Feng 2010; Sui, Ding & Spelt 2014; Prokopeyv,
Vorobev & Lyubimova 2019; Huang, Lin & Ardekani 2020; Gallo, Magaletti & Casciola
2021) for the wetting effect are based on Jacqmin’s approach. However, a significant
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difference of Jacqmin’s approach from that of Cahn (1977) and De Gennes (1985) is
the surface composition. The surface composition is engendered by the joint equilibrium
of bulk and surface and obtained somehow by the intersection of the wall free energy
with the bulk free energy. In Jacqmin’s approach, the minima of the wall free energy are
always identical to that of the bulk free energy, which leads to the same surface and bulk
compositions. However, in Cahn/de Gennes methods, the surface composition differs from
the bulk composition. The surface composition gives rise to an additional contribution to
the interface energies (De Gennes 1985), making the situation more complex but indeed
more generalized. Only a binary numerical model considers the effect of the surface
composition on the wetting effect (Wang & Nestler 2021) and, to the best knowledge of
the authors, no ternary model so far takes the surface composition into account. Moreover,
it has been shown that the Marangoni flow plays a vital role in the dynamics of wetting
(Wang et al. 2022). Because of the singularity at the triple junction (Huh & Scriven 1971),
it seems to be difficult for the sharp interface model to address the Marangoni effect in
the process of dynamic wetting. Using a diffuse interface model, we present distinct flow
patterns of dynamic wetting in comparison with the analysis of Huh & Scriven (1971) and
cast light on the Marangoni effect for dynamic wetting.

We develop a ternary phase-field model for the wetting phenomenon of droplets which
contain either two miscible or three immiscible components. For the miscible case, we
designate two kinds of phase diagrams, namely a symmetric and an asymmetric one, to
emphasize the crucial impact of different thermodynamics for the sessile droplets. By
varying the composition and the size of the droplet, we validate the present model by
comparing the simulation results with Young’s law in both two and three dimensions,
as well as with the Young—Laplace relationship. Our present results show that the initial
composition in combination with the phase diagram leads to different paths of free energy
minimization, which engenders distinct wettabilities of the fluids on a solid substrate. Our
model also allows one to scrutinize the surface composition, enabling one to relate the
interfacial energies with the composition. In the case of miscible fluids, we further study
the process of evaporation to be compared with the power law observed in experiments.
Furthermore, we consider three immiscible fluids with different wettabilities on the
substrate in both two and three dimensions. A similar consideration for the phase diagram
of ternary fluids has been published by He ef al. (2020). However, this work is based on the
Allen—Cahn model via removing the mean curvature in the evolution equation, which is in
contrast to the thermodynamically consistent Cahn—Hilliard model. The thermodynamic
pressure as well as the dynamics which is important for the flow patterns of dynamic
wetting should be intrinsically different although both models reduce the energy of the
system.

The rest of the paper is structured as follows. In §2, we review the Cahn/de
Gennes wetting models for a two-component and two-phase system. In § 3, we present
phase diagrams for miscible and immiscible fluids. In §4, we derive the bulk and
surface equilibrium conditions. Based on the results in §4, we show the calculation
of the interfacial energies in §5. In §6, we depict the kinetic equations based on the
Cahn-Hilliard model and its coupling with the Navier—Stokes equations. In § 7, we present
criteria for calculating the contact angles. In § 8, we present the effect of the droplet
composition on the contact angle for different types of phase diagrams shown in § 3, and
validate the surface composition. In § 9, we study the process of evaporation with different
saturation rates. In §§ 10 and 11, we validate the present model for fluid statics and fluid
dynamics. In § 12, we show the simulation results for three immiscible fluids. We conclude
the paper in § 13.
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2. Cahn/de Gennes model for two-component two-phase flow

For a system with two components and two immiscible phases, the free energy functional
is written as (Cahn 1977; De Gennes 1985)

F(p, Vo) = / [f(¢) + K(V¢)2] ds2 + / I'p)dS, VxeS$2US, (2.1)
2 S

where the bulk free energy density f(¢) as a function of the composition ¢ has two local
minima (equilibrium states) at d)ﬁ and ¢ to model two immiscible fluids. The composition
¢ is space x and time ¢ dependent defined on the bulk domain §2 and the solid substrate
S. Typical examples for the free energy density are double-well potential (Jacqmin 2000),
obstacle potential (Nestler, Garcke & Stinner 2005) or the regular solution model (Wang
et al. 2012). The interface tension y,s of the immiscible liquids is calculated by

Vs = /X [af +c(vay?] ax. 2.2)

where the excess energy density Af is defined as f(¢) —f(¢S) — n(d — ), un°
representing the chemical potential at equilibrium, and X traces the integration path from
the bulk of the droplet to the surrounding bulk region.

The second part of (2.1) describes the wall free energy whose density I"(¢) is an
interpolation over the individual interfacial tensions:

I'(9) = Yash(®) + yssll —h(P)], VxeS, (2.3)

where the interpolation function h(¢) fulfils h(¢S) =1 and h(q’)g) = 0. By this
interpolation, the liquid—substrate interfacial energy is y,s, when the liquid composition
is ¢ = ¢¢; and the surrounding—substrate interfacial energy is yss, when the surrounding

composition is ¢ = d)f. Various formulations for 2(¢) have been used in previous literature
(Carlson et al. 2009; Diewald et al. 2016; Xu 2016; Wu et al. 2019b). Apart from the
interpolation concept over individual interfacial tensions, a second-order polynomial has
been used (Cahn 1977; De Gennes 1985):

I'(¢) = ao+ar¢ + %quz, VxeS. (2.4)

Here, ag, a1 and a, depict the attractive and repulsive interactions between the liquid and
the substrate. A significant difference between (2.3) and (2.4) is that in the former case, the
effective interfacial energies yss and y,s are independent of surface composition. While
in the latter case, yus and yss depend on the surface composition ¢§ (a = «, §), which is
determined by a series of partial differential equations resulting from the joint equilibrium
of the bulk and the surface as

2V =f'(¢) VxeR; 2«Vep-n=TI"(¢p) VxeS, (2.5a,b)

where n is the normal vector of the solid substrate. After simplification, we obtain the
following implicit equation for the surface composition ¢5:

2kAf =T'(¢), YxefnNS, (2.6)

3

where the left-hand side is typically a ‘“W’-shaped curve (see supplementary figure S1
available at https://doi.org/10.1017/jfm.2023.561) and the right-hand side is a linear
function of ¢ if (2.4) is applied. The intersection of the two curves 2./k Af and I'’(¢)
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determines the surface composition ¢¢ and d)fé (see figure S1). In this way, the interfacial
energies have two contributions: one is the wall free energy density I'(¢5) (a = a, J)
and the other one is the excess free energy which is calculated by an integration from
the surface composition ¢§ to the bulk composition ¢¢. This result is in contrast to the
independence of the interfacial energies on the surface composition if (2.3) is applied.
The interfacial energies with the excess free energy at the solid—liquid interface represent
a large difference of Cahn’s approach from Jacqmin’s wetting model (Jacqmin 2000). For
fluids with three components, the variation of the wettabilities due to the occurrence of the
surface composition is much more complex than the binary case and is examined in the
following.

3. Model of ternary fluids

We consider a fluid mixture consisting of three components, of which the compositions
are denoted by ¢ = (¢1(x, 1), p2(x, 1), Pp3(x, 1)). The compositions are space x and time ¢

dependent and are restricted within the Gibbs simplex G = {¢ € R’ : Zle oi=1¢; >
0} in accordance with the assumption of incompressible fluids. This constraint results
from the definition of the volume concentration ¢; = v{/v,,, where v{ and vy, are the
molar volumes of the i component and the mixture, respectively. By the Flory—Huggins
model (Flory 1953), the free energy density of the system is formulated as a function of

temperature 7 and composition ¢ as

3

f@.T) = ReT/vm) | D % + Y xpditk+ Y xuditidr | Vxe g,
j=1 J j<k j<k<l

(3.1)
where the first logarithm term denotes entropy contribution and the last two polynomial
terms are related to the enthalpy of the mixture. The Flory—-Huggins parameters xjx depict
the double interaction between species j and k, while x;ji; scales the more complex triple
interaction between all three species j, k and [ (Zhang et al. 2021). Especially for distinct
polymer species, the entropy of the mixture can be altered by the degree of polymerization
N; which, otherwise, is set to unity for very small molecular species, such as water or
metal. In this work, the selection criteria for the interaction parameters x;x and xju, the
temperature 7" as well as N; are made to model two different situations:

(S1) Two phases consisting of component 1 and component 2 are completely miscible,
forming an o phase droplet, like water—alcohol or water—coffee. Meanwhile, the o
phase is immiscible with the component-3-rich § phase, like vapour. For two phases
in equilibrium, as demonstrated in figures 1(I) and 1(II), there are two local minima
in the free energy landscape. These two free energy minima states respectively
represent the droplet of o phase and the & surrounding phase. The equilibrium
compositions ¢35 = (¢}, 95, ¢5), ¢i = (¢?, ¢‘23, qbg) between the immiscible o and
8 phases are defined by the common tangent construction as

of of

e = e’ e’ e — — ’ 32
IR = G p=pr  0Plp=p} o
F@) —f(@) = (e, 9% —93), Vxe. (3.3)

Here, uf, i =1,2,3, denotes the equilibrium chemical potential of component i
and () is the dot product operator. Equations (3.2) and (3.3) are solved by the
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Figure 1. Free energy density landscapes and phase diagram. (I,II) Miscible ternary system. The parameters
for (I) are (N1, N2, N3) = (2,2, 1), (x1, X2, X3, x123) = (0.5,3.5,3.5,1.5) and T = 2. The parameters for
(II) are (N1,Na2,N3) = (5,1, 1), (x1, x2, X3, x123) = (0.5,6.0,4.5,1.5) and T = 2. The black solid lines
depict the binodal composition in the phase consisting of components 1 and 2 («¢ phase) and in the
component-3-rich phase (8 phase). The dashed lines show the spinodal curves. (III) Immiscible ternary system
with the simulation parameters (N1, N2, N3) = (1, 1, 1), (x1, x2, x3, x123) = (2.5,2.5,2.5,4.0) and T = 2.
The equilibrium compositions in « (component-1-rich), 8 (component-2-rich) and § (component-3-rich) phases
are illustrated by the black circles at the left, right and top positions, respectively. Colour legend: red for high
free energy density values and blue for low values.

Newton iteration method and the equilibrium compositions are illustrated by the
black solid lines in figure 1. The difference of figure 1(I) from figure 1(II) is that
the miscibility of components 1 and 2 is symmetric with respect to the composition
of ¢ = 0.5. In this case, the component 1 and 2 molecules have high similarity
and their interaction with component 3 is identical. Figure 1(II) represents another
case, where components 1 and 2 have different interaction parameters or degrees
of polymerization (N;). Consequently, the miscibility shifts to the side of the
component-2-rich phase in figure 1(II).

(S2) Three phases consisting of the three components 1, 2 and 3 are immiscible with each
other (Zhang, Wang & Nestler 2022a), for instance, a water—oil-vapour system. In
this case, three local minima on the free energy landscape manifest the equilibrium
compositions in each immiscible phase, as depicted by the black dots in the phase
diagram of figure 1(III). For convenience, component 1-, 2- and 3-rich phases are
called «, B and § phases, respectively.

4. Bulk and surface thermodynamics
The free energy functional of the system reads

3
F($, V) =/ F@.T)+ ) k(Ve)? d.Q+/F(¢) dS, VxefRUS. @l
2

j=1 5

Here, «; stands for the gradient energy coefficient. Considering an a—b interface (a = «,
B,8,b=ua,B,d,a D),
SF/8¢p =pn°, Vxef. 4.2)

Substituting (4.1) into (4.2) yields the following coupled ordinary differential equations:
wi = of/dg; — 2wV, Vxe, i=123. (4.3)
970 A17-8
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An integration of (4.3) with the condition that the composition gradient vanishes at the
boundary leads to

K
> ki (V) = af. Vxe g, (4.4)
j=1

where the excess energy density Af = f(¢) — () — k¢ - (b — ) = f($) —F(@L) —
ne - (¢ — qﬁf) and K is the total number of components in the system. Note that the
equilibrium chemical potentials are generally not zero, as shown in the phase diagram.
This is in contrast to the conventional way of a double-well potential for two-phase flow
(Jacgmin 2000) and a multi-well potential (He et al. 2020) for multiphase flow, where
the chemical potential is zero at equilibrium. The integration of the equilibrium equation
leads to a new potential in the form of f(¢p) — ZJ 11 ¢¢;. Based on the Euler formulation
for one-component phase (Sundman, Lukas & Fries 2007), we write its generalization
for a system with A phase and K component as Zle (f — Z] |1 “¢j)v” = 0 due to the
additive property of extensive variables, where v is the molar volume of the respective
phase v. Because of incompressibility, the summation of the molar volume is constant,
21/;\:1 v” = constant. This leads to a necessary condition for the phase equilibrium

— Z =1 /LJ ¢¢; = constant. This result motivates us to define a thermodynamic potential

P=f— ijl wjpj, which is the Legendre transformation of the chemical potential.
Here, the chemical potential for the jth component p; is not necessary to be ,uje The
thermodynamic potential characterizes the phase state away from the equilibrium. The
significance of the thermodynamic potential is its contribution to the capillary force
together with the Kortweg stress.

The minimization of the free energy functional at the substrate S requires that

8F/8pi =0, VxeS, i=1,2,3. 4.5)

With the expression for the free energy functional, the equilibrium condition at the
substrate is rewritten as (see supplementary section S.I1.3)

2kiVoi+n—04p 1" =0, VxeS i=1,273. (4.6)

The joint equilibrium of bulk and substrate, as a result of (4.4) and (4.6), determines the
surface composition ¢§ (a = «, B, §), which is analogous to (2.6) for the binary system.
The details for the surface composition of the ternary system are discussed in the following
section for the validation of the model.

5. Interfacial tension and wall free energy density

The interfacial tension of an a—b interface (¢ = «, B, 8, b = «, B, §, a £ b) is the excess
free energy across the interface, which is expressed as

K
2
Vab = f f(@) —f@) —n - (b — ¢+ Y i (Vey)™ | dX. (5.1)
X ,
j=1
The integral path X is achieved by minimizing the interfacial tension y,;. With the bulk
equilibrium condition, the surface tension is rewritten as

o?
Vab = f 2/Af ds, (5.2)

e
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where ds = ,/ ZJK: 1 kj(d¢p;)?. The path integral starts from one equilibrium composition
;. = (9], 95, ¢5) to the other one ¢[e’ = (¢?, ¢é’, qbé’ ) by minimizing the interfacial
tension.

The interfacial tension between an a phase (¢ = «, B, §) and the substrate S has two
contributions. One is the excess free energy due to the presence of the surface composition,
which leads to a non-uniform composition from ¢S to ¢¢. The second part is the wall free
energy I"(¢¢), which depends on the composition on the substrate. Thus, the interfacial
tension is expressed as

o
yas = T (%) + /¢ 247 as. (5.3)

N

The wall free energy density is assumed to be described by a second-order polynomial
function with coefficients g;; as

K K
rg)=> Y gl . ¥Yxes. (5.4)
i=1 j=1
Here, the parameters g;» represent an attraction of the liquid by the solid; the parameters
gi3 depict a certain reduction of the liquid-liquid attractive interactions near the surface
(De Gennes 1985). The constants g;; are reference values for the wall free energy and
make no contribution to the contact angle.

6. Kinetics equation

The compositions in the domain §2 and at the substrate S both evolve with time to
minimize the free energy functional. There are different types of kinetics equations, such
as Cahn—Hilliard and Allen—Cahn. In this work, we adopt the Cahn—Hilliard model for the
time evolution of the composition ¢ in §2 until the time 77. In § 9, we consider the droplet
wetting coupling with evaporation. The diffusion mechanism in the evaporation process
can be more conveniently described by the Cahn—Hilliard model, in comparison with the
Allen—Cahn approach. The diffusion equation for the composition ¢; reads

g = =V - j; =V - (LiV ). (6.1)

The contribution of Vpu; to the time evolution of ¢; (j #i) will be introduced by
considering the Gibbs—Duhem relation. In comparison with the diffusion flux in
terms of the composition gradient j; = —D;V¢;, the mobility L; is expressed as L; =
Dipivy/(RgT). The parameter D; denotes the diffusivity of component i. From the

Gibbs—Duhem relation Zsz 19V =0, we derive the chemical potential gradient for
the multicomponent system as

K
V=Y (8 — )V, (6.2)
j=1
where §;; stands for the Kronecker delta. Thus, we have the generalized diffusion equation
for a multicomponent system:

K
digi =V - | Y MV <8f/8¢j - 2K,-v2¢,) . V(x,0) e 2 x[0,TH, (6.3)
j=1
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where the mobility is expressed as
Mij = D,qb,(él] — ¢>j)vm/RgT. (64)

Note that the mobility is composition-dependent, which is in contrast to the constant
mobility (Kim 2007; Boyer et al. 2010). This dependency results from the diffusion
equation plus the Gibbs—Duhem relation. A constant mobility and composition-dependent
mobility can lead to different physical mechanisms for the time evolution of the equation
as well as distinct energy dissipation laws (Cahn, Elliott & Novick-Cohen 1996; Abels,
Garcke & Griin 2012). From the aspect of thermodynamic consistency, the mobility
M= (M) REXK must be positive semi-definite to fulfil the energy dissipation law
(supplementary material, S.7).

On the substrate S, we introduce the following evolution equation based on the surface
equilibrium condition (4.6):

Tt = 2;Vpi - n— 9. 1" + A, ¥V (x,1) € S x [0, Tt], (6.5)

where t; is a relaxation parameter. When the time t — oo, the surface equilibrium
condition (4.6) is reached. To ensure the constraint ZJK: 1 ¢ = 1, a Lagrange multiplier

A=—(1/K) ZJK: 1(8F/8¢;) has been added to the kinetic evolution for the surface
composition.

Depending on the Péclet number, the convection may play a non-negligible role in the
mass transfer. In this case, the Cahn—Hilliard model is modified as

K
D+ V + (up) = V - | YoMV (9f/08) — 2%¢;) |V (x1) € 2 x (0,7,
j=1

(6.6)
where u is the convection velocity of the fluid. No-slip boundary condition is assumed
for the fluid velocity on the solid substrate S. Hence, the evolution equation for the
composition on the substrate S, equation (6.5), is not altered. However, it should be noted
that a slip boundary condition on the substrate may be considered when the slip length
is known. We refer to Huang & Wang (2018) for a discussion on the effect of the slip
boundary condition on the solid substrate.

We focus on the fluid flow induced by the surface tension force which is formulated
as (S.I1.4)
K—1
fsz—ZdyV(W—uK), V(x,1) € £2 x [0, Tt], (6.7)
j=1
where the chemical potential is defined by the variational approach as wu; = 9f/0¢; —
2K jV2¢j-
With the surface tension force, the incompressible Navier—Stokes equation for the
convection velocity u reads

Veu=0; (6.8)
p@tu+u-Vu)=f,—Vp+V-[n(Vu+Vu")], Vx1e2 x0T (6.9

The parameters p, n and p denote the fluid density, viscosity and pressure, respectively.
The evolution equations (6.6), (6.8) and (6.9) effect a decrease of the total energy of the
system (S.I1.5). By selecting the reference values x*, o™ and D* for the length, surface
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Substrate

Figure 2. Sketch for the contact angle.

tension and diffusivity, respectively, we have the following dimensionless quantities: Re,
We and Pé (Appendix A).

We present some remarks for the divergence free of the velocity when diffusion is
considered. At atmospheric pressure and at room temperature, the density of a fluid
mixture is almost constant, as supported by many experimental data and theories. For
instance, at room temperature and 1 atm, the density of air with 100 % relative humidity
is 1.1 times that of dry air with 0% relative humidity (Picard et al. 2008). In view
of this fact, it is reasonable to assume dp/df ~ 0 for a liquid—gas system at room
temperature and 1atm. By using the materials derivative with a frame moving with
the direction of the fluid velocity u, we have the following expression for the total
derivative: dp/dt = dp /0t + u - V p. In comparison with the continuity equation (Landau
& Lifshitz 2013), dp/dt + V - (pu) = 0, we have pV - u = —dp/dt. Since dp/dr = 0, the
divergence free of the velocity is obtained. Note that the diffusion equation is normally
written in terms of the volume composition ¢ rather than the density p (Landau &
Lifshitz 2013). When diffusion takes place, we generally have d¢;/df #=0, which seems
to contradict with dp/df = 0. This contradicting point is realized by using ¢, = 1 — ¢
and dp/dt = (p} — p3) dey/de, if p = p{P1 + pj¢2 for a binary mixture with pf # p3.
Here, we prefer to interpret p{ and pj as partial densities, rather than the densities of
pure fluids before mixing. We think that one possible reason is that p{ and pj are no
longer constant in a mixture but depend on the local volume fraction. The fact is that
one cannot measure the local density p7, i = 1, 2, after mixing, while the density of the
mixture p and the density of the pure phase before the mixing can be measured. When the
local volume concentration varies with time in the diffusion process, the partial density
p{ should change accordingly via the equation of state relating to the partial pressure; but
the density of the mixture p does not vary.

7. Criterion of the contact angle measurement

For the two-phase wetting problem based on the phase diagrams in figures 1(I) and 1(II),
the components 1 and 2 are miscible with each other. The two immiscible phases separate
themselves by composition 3. Thus, we select the average composition 3 in the droplet and
in the matrix ¢, = (¢5 + d)g) /2 as the criterion for the interface between the immiscible
phases, as shown by the blue solid line in figure 2. This interface position almost
corresponds to the extreme value between the two immiscible phases along the tie line
in the free energy landscape. Specifically, the contact line radius 7. and the droplet height
h are used to calculate the macroscopic contact angle as 6§ = 2 arctan(h/r.) x 180° /.
For the three-phase wetting problem based on the phase diagram in figure 1(III), the
interface for the o phase is marked by the locations where ¢;n; = (¢ + qb‘ls) /2 (blue line),
corresponding to the extreme value in the free energy landscape. Here, ¢ and gbf are

970 A17-12


https://doi.org/10.1017/jfm.2023.561

https://doi.org/10.1017/jfm.2023.561 Published online by Cambridge University Press

Thermodynamically consistent diffuse interface model

(H)(a) b, ®, by
N
N

1.0 - .
0 0.5 1.0

@

-
© N <

Figure 3. Phenomenon: a symmetric phase diagram and the wetting morphology. (I) Phase diagram
with parameters (N1, No, N3) = (2,2, 1), (x1, x2, X3, x123) = (0.5,3.5,3.5,1.5) and T = 2, as in figure 1.
(II) Wetting morphologies for a droplet with composition of (a) ¢ = (0.63,0.15,0.22) and (b) ¢ =
(0.24, 0.55, 0.21). The tie lines for the binodal compositions of (a,b) are plotted on the phase diagram with
corresponding index. The colour bar denotes the distribution of the compositions ¢, ¢ and ¢3.

the equilibrium values of ¢ in the o droplet and in the § matrix, respectively. Similarly,
we obtain the B8—§ interface with the criterion of ¢, = (q’)g + (j)g) /2 (red line) as well
as the a—p interface (violet line). By fitting the three interfaces with circular arcs, we
denote their intersection point as the triple junction, where three dot-dashed tangent lines
for each interface define the contact angles 913 At the other triple junctions where the
two immiscible phases meet the substrate, the dot-dashed tangent lines are plotted at the
contact line position and the contact angle 6;; is estimated by the same method with the
help of tangent lines, as shown in figure 2.

8. Results and discussion
8.1. Symmetric phase diagram

The simulation results for the wetting phenomenon of the symmetric phase diagram
are shown in figure 3. Two different initial droplet compositions are considered, (a)
¢ = (0.63,0.15,0.22) and (b) ¢ = (0.24,0.55,0.21), which fall on the black solid
binodal line in figure 3(I). The compositions in the surrounding matrix are set to be
the corresponding equilibrium values according to the coloured tie lines. In this case,
we assume that components 1 and 2 have similar physical properties. Thus, we apply
identical parameters xi3 = x23 > 0 > x12 and N; = N; to get a special feature of the
symmetric phase diagram. The notion of ‘symmetric’ is understood as follows. The phase
diagram is symmetric with respect to ¢» = 0.5, as shown in figure 1(I). In the droplet,
the equilibrium compositions of the first and second components can have a relatively
large variation, while the third component remains almost constant. The gradient energy
coefficient x; = 2, the diffusion coefficient D; = 1 and the wetting relaxation parameter
7; = 1 are applied for all components, i = 1, 2, 3. The wall free energy coefficient is
assigned as g33 = 0.2 and the rest g;; = 0 following (5.4), which leads to a hydrophilic
set-up, as displayed in figure 3(II). In case (a), we have a relatively high ¢ over ¢,. Hence,
the simulated wetting morphology shows a red colour (dense) for component 1 and a light
blue colour (lean) for component 2. When adding more component 2 into the droplet, the
coloured composition distribution is reversed, as illustrated in case ().
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Figure 4. Model validation for the wetting effect of the symmetric phase diagram. (I) Phase diagram with
parameters (N1, N2, N3) = (2,2, 1), (x1, x2, X3, x123) = (0.5,3.5,3.5, 1.5) and T = 2. (II) The equilibrium
contact angle in two dimensions versus the wall free energy parameter g3z for the compositions Py, P;, P3 and
P4, in comparison with theory. (III) Comparison of the contact angle versus g33 in two and three dimensions for
the composition P;. (IV,V) Wetting morphologies for a droplet with a composition of ¢ = (0.55, 0.24, 0.21) in
two and three dimensions, respectively. The colour bar denotes the composition distribution of all compositions.

Next, we validate the simulation results by measuring the contact angle at the triple
junction in comparison with Young’s law for different compositions, as shown in figure 4.
Here, four distinct compositions in the droplet with Pi: ¢ = (0.05, 0.72178, 0.22822),
Py: ¢ = (0.25,0.53979, 0.21021), P3: ¢ = (0.40,0.39367,0.20633) and Ps: ¢ =
(0.75,0.01734, 0.23266) are considered, as sketched in the phase diagram of figure 4(I).
As presented in figure 4(IV) for the wetting simulations in two dimensions, the contact
angle for the composition of P, changes from a hydrophobic set-up 6 = 123° with
g33 = —0.2 to a hydrophilic set-up 6 = 63° with gz3 = 0.2. A systematic study for the
effect of the wall free energy parameter g33 on the contact angle is shown in figure 4(II)
for the four considered compositions Pj—P4. For all droplet compositions, the contact
angle variations with g33 almost overlaps with each other. This scenario corresponds to a
component-independent wetting phenomenon, for example, a mixture of water and dextran
(Li, Sheng & Tsao 2014). One can also vary other coefficients g3 and g»3 to manipulate
the wettability. For brevity, the discussion about other parameters on varying the contact
angle is not presented here.

For comparison, the theoretical contact angle according to Young’s law is presented
as the black solid line in figure 4(II). For the evaluation of Young’s contact angle, the
droplet-matrix interfacial tension is calculated with (5.2), where the integration path
denotes the composition distributions along the droplet-matrix interface and is sketched
as the coloured lines in figure 4(I). Differing from the tie lines in the phase diagram in
figure 3(I), the integration path is the exact solution of the Euler-Lagrange equation,
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which is decided by the free energy minimization of whole system according to the
Cahn-Hilliard model. For the symmetric phase diagram, the free energy minimization path
from the droplet to the surrounding coincidentally overlaps with the tie lines of two binodal
compositions, as demonstrated by the dark blue, the light blue, the light red and the dark
red curves in figure 4(I). The other two interfacial tensions, namely the droplet—substrate
and the matrix—substrate, are evaluated by (5.3). The contact angle is computed with the
interfacial tension set by Young’s law and shows excellent accordance with the simulation
results. As illustrated in figure 4(II), the maximal derivation is up to only 3°.

Besides 2-D simulations, 3-D simulations are carried out for the composition P». The
3-D wetting morphologies are portrayed in figure 4(V) with side and top views, the
red/blue surface showing the isosurface of component 1/2, respectively. Comparing the
3-D simulated 6 with the 2-D values in figure 4(III), both simulation results are in good
accordance with the theoretical lines of Young’s law. The subtle discrepancy is caused by
the different curvature constitution in two and three dimensions.

8.2. Asymmetric phase diagram

For a real ternary mixture, components 1 and 2 do not necessarily show similar physical
properties. More specifically speaking, for the ideal mixture with entropy dominating
over enthalpy, the miscibility gap has a symmetric shape which is typically observed for
alloys (Nakagawa 1958). However, for most other mixtures, such as water-, alcohol- and
polymer-based solutions, the enthalpy contribution for the free energy density is larger
than or comparable to the one of the entropy. In this case, the miscibility gap becomes
asymmetric which means not the same properties of components 1 and 2. In this section,
we consider the asymmetric phase diagram shown in figure 1(II) and study the wetting
effect with different compositions and distinct wall free energy densities.

For the free energy density of the asymmetric phase diagram, we choose the
following parameters: (N, Na, N3) = (5,1, 1), (x1, x2, X3, x123) = (0.5, 6.0,4.5, 1.5).
The other parameters are unchanged from those in § 8.1, except the coefficient of
the wall free energy. In our simulations, four distinct initial droplet compositions
are considered as shown in figure 5(I), namely Pi: ¢ = (0.26601, 0.64955, 0.08444),
P>: ¢ = (0.49801, 0.45093, 0.05106), P3: ¢ = (0.71401, 0.24986, 0.03613) and Ps: ¢ =
(0.92201, 0.04983, 0.02816). The matrix is initialized with the corresponding equilibrium
composition on the binodal line. As depicted in figure 5(II), an identical wall free energy
coefficient g33 = 1.5 leads to distinct wetting morphologies for P; and P4. Comparing the
composition distribution of P; with P4 in figure 5(II), not only is the change in ¢ and ¢»
observed, but also the composition variation of component 3. In spite of the identical g33,
the contact angle for P is not the same as for P4. This observation is in contrast to the case
of the symmetric phase diagram in § 8.1, where the contact angle is almost invariant with
respect to the initial composition. Figure 5(III) depicts the contact angle as a function of
the wall free energy coefficient g33 for all four initial compositions P1—P4. The simulation
results are in very good agreement with the theoretical lines calculated from Young’s law.

With moving from P; to P4, the impact of the wall free energy coefficient g33 on
the wetting angle becomes more pronounced. The special case is g33 = 0 where all four
set-ups have the same 90° contact angle. The enhanced wall effect with respect to the
initial composition does not simply lie in the wall free energy itself, but is also attributed
to the distinct interfacial tensions of droplet-matrix caused by the different equilibrium
compositions of P1—P4. Especially, the composition paths from the bulk of the droplet to
the bulk of the matrix for P;—P4 are depicted by the dark blue, light blue, light red and dark
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Figure 5. Validation for the wetting effect of the asymmetric phase diagram. (I) The phase diagram
and four compositions P; ¢ = (0.26601, 0.64955, 0.08444), P, = (0.49801, 0.45093, 0.05106), P3 =
(0.71401, 0.24986, 0.0361) and P4 = (0.92201, 0.04983, 0.02816) for the simulation. The dark blue, light blue,
light red and dark red lines depict the free energy minimization paths from the droplet to the surrounding, which
are obtained from the numerical simulations. (II) The composition distribution of the three components for the
initial composition P; and P4. The wall energy coefficient is g33 = 1.5. (III) The contact angle as a function of
the wall free energy density from the numerical simulation for different compositions: Py (square), P> (circle),
P3 (cross), P4 (triangle). The lines show the theoretical values calculated from Young’s law.

red lines in the phase diagram, as illustrated in figure 5(I). In contrast to the straight free
energy minimization paths in figure 4(I), the paths in figure 5(I) are curved towards the
¢o-rich direction. When computing the droplet-matrix interfacial tension by integrating
along the curved paths via (5.2), the interfacial tension drops as the initial composition
varies from P; to P4. Moreover, the variation of the initial composition in the droplet
results in a modification of the wall free energy, which in turn modifies the interfacial
tensions of droplet—substrate y,s and matrix—substrate yss. As a result, the contact angle
relies strongly on the initial compositions which has been observed in experiments for
mixtures of water with polyethylene glycol and polystyrene sulphonate (Li et al. 2014).

8.3. Surface composition

In previous works (Jacqmin 2000; Semprebon, Kriiger & Kusumaatmaja 2016; Yue 2020),
the free energy density is assigned as a polynomial of composition ¢. The wall energy
density is designed in a tricky way, so that the surface composition on the substrate is
identical to the equilibrium values in the bulk. In this way, the interfacial tension between
droplet and substrate y,s and that between matrix and substrate yss are only determined
by the function of wall free energy and are independent of the surface composition.
However, this simplification cannot fully explain some outliers in the experiments where
the enrichment of a certain immiscible component on the substrate is observed. Suffice to
say, the surface compositions can deviate from the equilibrium bulk values. Therefore,
both the interfacial tensions y,s and yss in our model have two contributions: one is
the wall free energy density as previous models; the other is the excess free energy as
a result of the non-uniform composition from the substrate to the immiscible fluids (bulk
of the surrounding or the droplet). Consequently, the accuracy of the contact angle in
our model crucially depends on the precision of the surface composition in the numerical
simulation. In this section, we validate the surface compositions for both the symmetric
and asymmetric phase diagrams.

As a quick introduction, we briefly review the surface composition calculation for the
binary system (Wang & Nestler 2021). When the sessile droplet equilibrates, there are
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two equilibrium equations in the bulk and the substrate. In the bulk, the Cahn—Hilliard
equation gives rise to the equilibrium solution for the composition ¢; as

of 01 — 21 V21 = pus. (8.1)

Multiplying both sides of (8.1) with V¢; and integrating with the condition that the
composition gradient vanishes at the boundary, the excess energy density Af is expressed
as follows:

Af =F (1(0) = F (@) — 1§ [¢1(x) — ] = k1 (V1)* (8.2)

On the substrate layer, the other equilibrium reads
21V +n=01/0¢. (8.3)

For a flat substrate with normal vector n = [0, 1, 0], after substituting (8.3) into (8.2), we
have

Af = % (8]‘/8(;51)2 or 2@— al'/a¢1 = 0. (8.4)
1

Therefore, the surface composition is given by the locus of (8.4), which marks the
intersection of the curve 2./k1Af with the derivative of the wall free energy density
01" /9¢1. This solution is originated from Cahn’s theory (Cahn 1977) and reviewed in De
Gennes (1985). In the binary system, (8.4) is dependent solely on the single variable ¢;.
Hence, for the droplet and the matrix, the surface composition is unique. The numerical
confirmation of the surface composition in binary systems has been shown in Wang &
Nestler (2021).

For the ternary system, the situation becomes more complex, as a second independent
variable ¢, is added to the equilibrium equation (8.1):

af /a1 — 261 V21 = s,
Af /dgy — 22V ¢py = U, in bulk region £2; (8.5)

3f /03 — 263V2p3 = pu,
21V -n=0I"/0¢q,
260V - n=01"/0¢2, in substrate S. (8.6)
2k3Vp3 - n=01"/9¢3,

With the same calculus as the binary case, the surface composition in the ternary system
is given by the following equation:

3
Af =F (@1, 92, 63) — (@5, 9565 — D us (65— )
=1

1 2 1 2 1 2
= o0 I/9¢1)" + — (0I'/dp2)" + — (31" /9¢p3)”" . (8.7
K1 dir dics

970 A17-17


https://doi.org/10.1017/jfm.2023.561

https://doi.org/10.1017/jfm.2023.561 Published online by Cambridge University Press

F. Wang, H. Zhang, Y. Wu and B. Nestler

(1) <

]

Figure 6. Validation of the surface composition for (I) the symmetric phase diagram and (II) the asymmetric
phase diagram. The red and blue conic sections are the analytical values according to (8.7). The red circle and
blue square depict the simulated surface compositions for the droplet and matrix, respectively. The simulated
surface compositions are taken from the wetting morphologies, guided by the black arrows in the snapshots on
the right-hand sides of the phase diagrams.

As 2;21 ¢; = 1 and after simplification, (8.7) can be rewritten as

2
Af =f@1. 921 = b1 — $2) — (@5, 951 — 6 — 65 = 3 (s = 115) (¥ - 9)

j=1

:L[3F(¢1,¢2,1—¢1—¢2)]2+L[3F(¢1,¢2,1—¢1—¢2)]2
4ict a1 02 '

4kr

It can be noticed that the intersection of Af with the derivative of the wall free energy
density does not lead to a single point (figure S1), but a conic section of ¢; and ¢»
instead. Two typical analytical solutions of (8.8) are shown in figures 6(I) and 6(II)
for the symmetric and asymmetric phase diagrams, respectively. In the former case,
the composition P> with g33 = 0.2 is selected. In the latter one, the composition P4
with g33 = 1.0 is considered. The dark red conic section defines all the compositions
for the droplet phase, which fulfil (8.7), while the dark blue one marks the adequate
compositions in the matrix. However, in the ternary system, the exact surface compositions
are not so straightforward to be read from the points on the two conic sections as the
binary case which we can easily deal with. According to the least action principle, the
surface compositions must give rise to the minimum of the total free energy functional
for the whole system. Mathematically, this minimum can be solved by addressing
the static solution of the Euler—Lagrange equation. Not surprisingly, the demanding
answer turns out to be nothing but the results of the Cahn—Hilliard equation with
the wetting boundary condition in our simulation, which are illustrated by the red
open circle and blue open square on the conic sections. The positions for extracting
the surface composition from simulation are indicated on the right-hand side of each
panel. This observation demonstrates the strong capability of the present model for
capturing the surface composition in the considered ternary systems, especially when the
enrichment of materials on the substrate is an important feature. We also perform surface
composition validations for other initial compositions, which show good accordance with
the theoretical values (not shown here to avoid redundancy).

In addition, we present some remarks on the significance of the surface composition
for ternary systems, especially when the system is off equilibrium. For instance,

970 A17-18

(8.8)


https://doi.org/10.1017/jfm.2023.561

https://doi.org/10.1017/jfm.2023.561 Published online by Cambridge University Press

Thermodynamically consistent diffuse interface model

during the evaporation process, the solvent molecules continuously volatilize from the
droplet—substrate and dissolve themselves in the surrounding matrix. This leads to the
surface compositions away from the equilibrium values, not only inside but also outside the
droplet. It has been proved in experiments that the composition changes around the triple
junction are much pronounced than any other places upon the droplet—-matrix interface
(Deegan et al. 1997). As a result, the interfacial tension pairs yys, yss are modified
accordingly, which engenders microscopic mass transfer starting from the substrate. This
kinetics is far off equilibrium and therefore gives rise to different wetting patterns on
the substrate, for example, coffee-ring effect. Moreover, we emphasize again that the
interfacial tensions in our model are composed of two crucial parts, namely the wall free
energy and the surface excess free energy. Which part dominates the interfacial tension
changing with surface composition will be more heedfully discussed in future works.

9. Evaporation

In this section, we study the evaporation process of a hydrophilic droplet for the symmetric
phase diagram. The initial composition inside the droplet ¢ = (0.4000, 0.3937, 0.2063)
corresponds to point P3 in figure 3. The wall free energy coefficient is set to be g3z = 0.2
which leads to a static contact angle of 62.4°. The other simulation parameters are identical
to the set-up of figure 4. The evaporation behaviour is manipulated by changing the initial
composition of component 2 in the surrounding environment:

®5° = Sods5. 9.1

Here, S stands for the saturation rate and ¢5 = 0.0667 denotes the binodal composition

in the matrix which stays in equilibrium with the initial droplet ¢gr0p . On decreasing the
saturation value, the droplets present different morphological evolutions, as demonstrated
in figure 7(I). When the surrounding saturation rate is greater than a certain value Sy >
25 %, the droplet finally reaches the equilibrium with the surrounding and a small droplet
remains on the substrate. While a low saturation Sp < 25 % leads to a completely drying
out of the droplets. These two typical morphological evolutions are characterized by the
variation of the volume with time, as demonstrated in figure 7(II).

We compare the simulation results with an empirical formulation proposed in Kim
& Weon (2018), which is based on the experimental evaporation of coffee droplets.
According to the diffusion-limited theory (DLT), the evaporation rate of a dilute droplet is
calculated as (Stauber et al. 2014)

p@V/dt)prr = —TrD(PS” — $5°)g(6). 9.2)

The evaporation rate is scaled by the water diffusivity D as well as by the composition
difference of component 2 between the droplet and the environment (¢§”"” — ¢5°). The

latter reflects the ¢» saturation and is the driving force for the evaporation. The wetting
effect is considered by a geometric factor g(0) as (Stauber et al. 2014)

6) = tan o 8/wMt h[ 0)1d 9.3
g()—an2+ | Snh@n0?) anh[¢(m — 0)]d¢. (9.3)

As component 2 inside the droplet gets dried up, the simulated evaporation rate (dV /df)sin
deviates gradually from the theoretical value (dV/df)prr. Their ratio is named as the
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Figure 7. Model validation for multicomponent droplet evaporation. Examples are shown by considering the
initial composition P3 of the symmetric phase diagram for different saturation rates So. Dark red: So = 66.7 %;
scarlet: 50.0 %; light red: 33.3 %; light blue: 25.0 %; dark blue: 12.5 %. (I) Exemplary simulation snapshots
with time evolution: (a) Sy = 66.7 %; (b) So = 50.0 %; (c) So = 25.0 %. (1) The normalized droplet volume
V/Vp with time (Vp, initial droplet volume). (III) The contact base radius r. with time. (IV) The composition
of component 2 inside the droplet ¢;1r0p with time. (V) The composition of component 2 in the environment
qb;’o with time. (VI) The log—log plot of the correlation factor £ in (9.4) changes with d)gmp . The results for

different saturation rates S follow the scaling law & ~ (47'21"’1])_0‘5 which is demonstrated in experiments (Kim
& Weon 2018). The scaling law is guided by the dashed black line.

correlation factor &:

_ (dV/doprr
—dV/dD)sin

Here, (dV/df)prr is evaluated by using the base radius r. shown in figure 7(IIT) and the
droplet compositions illustrated in figure 7(IV,V). If the droplet evaporation follows the
DLT, the correlation factor & should keep constant for its entire lifetime. However, the
DLT (9.2) is only valid for dilute droplets. As the droplet becomes more concentrated
during the evaporation, (9.2) loses its validity. As demonstrated in figure 7(VI) for &

& 9.4)

versus time-dependent ¢gmp , we observe the scaling law & ~ 1/ d)élmp , which shows

good consistency with the evaporation behaviours of coffee droplets in experiments (Kim
& Weon 2018).

Notably, the evaporation phenomenon in figure 7 considers the diffusion of three
compositions ¢, ¢» and ¢3 in the whole domain (droplet and gas phase). Figure 7(I)
shows the evolution of composition ¢3; the other two compositions ¢; and ¢, change
with time as well (not shown). Because of the symmetry of the phase diagram and
the same mobility/diffusivity for all the compositions adopted in the simulation, the
components evaporate synchronously and simultaneously as illustrated in figure 7.
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However, if an asymmetric phase diagram is considered and/or the mobility is set to
be distinct for different components, we may have inhomogeneous evaporation rates,
which lead to non-uniform composition at the droplet—surrounding interface. The resulting
composition gradient gives rise to pronounced interfacial flows, e.g. Marangoni flow. In
figure 7, the fluid dynamics is neglected. By considering the complex fluid dynamics of
multicomponent evaporation, some other phenomena can be observed, such as Ouzo effect
(Diddens et al. 2017; Lohse & Zhang 2020), pancake structure (Pahlavan er al. 2021),
precursor film (Wang et al. 2021), interfacial instability (Keiser et al. 2017; Baumgartner
et al. 2022) and Taylor dispersion (Charlier et al. 2022).

10. Fluid statics

For one-component and one-phase fluid, the static pressure plus the kinetic energy is
constant for inviscid incompressible fluids. The pressure varies with the velocity of the
fluid, which is affected by the boundary condition. When a one-component droplet is
present in an immiscible surrounding phase, an interface appears; the pressure inside and
outside the droplet is affected by two factors. (i) The first one is the curvature effect known
as the Young-Laplace equation, namely P* — Py = y4s/R, where Py is a reference value.
This relation is also acknowledged as the Gibbs—Thomson effect in materials science. (ii)
The second factor is the fluid velocity, as shown by Bernoulli’s law. With an increase in the
fluid velocity, the pressure deviates from the static pressure, namely P* — Py = % ou?. For
a multicomponent droplet, besides factors (i) and (ii), the pressure consists of an additional
part, which is the thermodynamic pressure P = f — Z]K: 1 Mj¢;. This is also known as the
Landau potential, which is derived based on Euler’s formulation in thermodynamics. In
the thermodynamic equilibrium, the thermodynamic pressure of two phases is the same, as
derived by the variational approach. However, when a non-zero mean curvature is present,
the thermodynamic pressure deviates from that of the flat interface. The summation of the
thermodynamic pressure with P* has two functions: (a) enforcing the incompressibility
in the Navier—Stokes equation (Jacqgmin 2000), which can be interpreted as an exchange
of the kinetic energy with the free energy (potential energy), and (b) the Kortweg stress

— Z,K:1 2«;V ¢; ® V ¢; plus the thermodynamic pressure P = f — ZJK:1 ¢ produces the
capillary force in the form of — ZJK:1 &;V uj, namely

K K K
Vel =D g [ 1= 2V, @ Ve | == ¢V (10.1)
j=1 j=1

j=1

The left- and right-hand sides are termed the stress and the potential forms of the capillary
force, respectively. Given the importance of the thermodynamic pressure, we validate the
numerical convergence of its calculation as well as its relation with the mean curvature
in this section. We consider the case when the fluid reaches the static state as in the
Young-Laplace case. In the static state, the contact angle reaches the Young’s contact
angle.

We consider the numerical convergence of the Cahn—Hilliard model coupling with the
Navier—Stokes equation. For 2-D simulation of the symmetric phase diagram, we vary
the resolution of the numerical discretization by changing the space step Ax = Ay from
0.5 to 4.0, while fixing the values of Ny x Ax and R x Ax. The former and the latter
values correspond to the physical length of the domain and the physical radius of the
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Figure 8. The validation of the Navier—Stokes equation on the wetting problem. (I) The convergence of the
equilibrium contact angle 6 and the thermodynamic pressure AP with increasing mesh fineness Ax = Ay.
(II) The convergence of 6 and AP with decreasing residual eps for solving the Poisson equation. (III) The
Young—Laplace pressure AP versus the reciprocal of the radius 1/R of the droplet for different compositions Py
(square), P> (circle), P3 (cross) and P4 (triangle) of the symmetric phase diagram shown in figure 1. The dashed
line illustrates the theoretical Young—Laplace relationship. (IV) The thermodynamic pressure AP versus the
curvature 1/R for different compositions Py (square), P> (circle), P3 (cross) and Py (triangle) of the asymmetric
phase diagram shown in figure 5. The dashed, dot-dashed, dotted and solid lines illustrate the theoretical curves
from the Young—Laplace equation AP = yy5/R.

droplet, respectively. For instance, we set the radius of the droplet R = 20 and the domain
size Ny = 132 for Ax = 1.0. The simulation parameters are k| = kp = k3 =2, 7] =
7 =13 =1, D1 = D, = D3 = 1. The wall free energy density parameters are set with
£33 = 0.2 and the rest g;; = 0.0. The density p and viscosity 7 of the fluid are assigned as
1. As depicted in figure 8(I), both the equilibrium contact angle 6 and the Young—Laplace
pressure AP converge with the reduction in Ax. Here, the thermodynamic pressure is

defined as P = f(¢°) — ZJK: 1 ,u;d)je. For the optimization of simulation accuracy and

computational effort, we select Ax = 1.0 as a compromise. Another convergence factor
for the numerical discretization is the residual eps for solving the Poisson equation in
the Navier—Stokes equation via the conjugate gradient method. The simulation results
in figure 8(II) demonstrate the convergence of the equilibrium contact angle 6 and the
thermodynamic pressure AP with decreasing residual eps. As a consequence, we choose
eps = 10~ for our simulation, which presents both high accuracy and convergence speed.
For verifying the numerical convergence of the Poisson equation, the space step is chosen
tobe Ax = Ay =1.0.
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Next, we place droplets with different droplet radii R on the substrate for compositions
Py, P>, P3 and P4 for both the symmetric and the asymmetric phase diagrams. For the
symmetric phase diagram, identical simulation parameters to those of § 8.1 are adopted.
As shown in figure 8(III), for different droplet compositions marked by square (Pp),
circle (P3), cross (P3) and triangle (P4) symbols, the Young—Laplace pressure AP from
the phase-field simulation increases linearly with the curvature 1/R. Compared with the
theoretical expression AP = yys/R depicted by the dashed line, the slope y,s equals the
surface tension which is obtained by the path integral shown in figure 4(I) via (2.4).
For the asymmetric phase diagram, the adopted simulation parameters are identical to
those in §8.2. As illustrated in figure 8(IV) by square (P;), circle (P3), cross (P3)
and triangle (P4) symbols, the simulated Young-Laplace pressure is also proportional
to 1/R, but with distinct slopes for different compositions. For comparison with the
Young—Laplace theory, we present the theoretical expression AP = y,s5/R, which is
depicted by the dashed, dot-dashed, dotted and solid lines for compositions Pp, P2, P3
and P4, respectively. Differing from the the results in figure 8(III), the Young—Laplace
curves for different compositions differentiate from each other. This difference is caused
by the distinct surface tensions for different compositions in the case of the asymmetric
phase diagram, which are obtained by the path integral depicted in figure 5(I) via (2.4).
As demonstrated in figure 8(IV), the simulation results quantitatively agree with the
Young-Laplace relationship.

11. Fluid dynamics
11.1. Velocity field

In this section, we present the establishment of the equilibrium Young’s angle with fluid
flow for the symmetric phase diagram. The parameters are identical to those of § 8.1. The
Péclet number, the Reynolds number and the Weber number all are set to be 1. As shown
in figure 9, a semicircular droplet is initially placed on the substrate, corresponding to a
contact angle of 90°, which is far away from its equilibrium value 6 = 63°. Because of
the imbalanced interfacial tension at the triple junction, the droplet spreads outwards,
which results in the composition changes iterated by the wetting boundary condition
(6.5). Despite the no-slip boundary condition, the composition on the substrate is updated
according to the gradient descent method via (6.5). The evolution of the composition
on the substrate leads to a composition gradient at the bulk region above the surface.
Thereafter, the thermodynamic force f, = — Zj:_ll ¢V (uj — ) is engendered and
propels the fluid flow starting from the triple junction. As can be noticed at ¢t = 2.5 in
figure 9(b), the maximal velocity is observed near the contact line and propagates gradually
towards the matrix region, as shown by the black streamlines on the right-hand side of the
panels. At ¢ = 150 and 400, a Marangoni vortex occurs at the interface, the formation of
which is demonstrated in the next section. Finally, at # = 1200, not only does the sessile
droplet reach its equilibrium shape with 6 = 63°, but both substrate and bulk regions
are thermodynamically stable as well. Consequently, without the thermodynamic force,
the fluid flow decays markedly. Although very small velocity (~1072) inside the domain
can still be proved by the streamlines, its disappearance is only a matter of time, which
is decided by the accuracy of the numerical model, and the relevant parameters in the
Navier—Stokes equation, such as the viscosity n and density p.

The flow patterns in figure 9 are quite similar to the so-called bulk flow inside the
droplet obtained by the sharp interface model (Diddens, Li & Lohse 2021). The origin
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Figure 9. A semicircular droplet spreads with fluid flow to its equilibrium shape 6 = 63°. Initial composition
P3 in the symmetric phase diagram is simulated and the initial droplet radius is R = 40. The wall energy density
parameter is identical to that of figure 8(I). The left half of each panel depicts the pressure, while the right half
illustrates the velocity field with black solid streamlines. The colour bars beneath indicate the corresponding
magnitudes.

of the present flow is the capillary force (6.9) which is proportional to the gradient of
the chemical potential within the framework of the diffuse interface approach. Note that
we use the concept of a generalized chemical potential rather than the surface tension
for the evolution of the fluid flow. The point is that if the no-slip boundary condition is
applied on the substrate, the contact line should not move. When introducing the chemical
potential, the movement of the contact line is induced by the non-uniform chemical
potential on the substrate, leading to the ‘slip’ effect. When the contact line is moving,
the chemical potential is non-uniform in the bulk of the droplet—surrounding as well as at
the droplet—surrounding interface, inducing the fluid flow. The chemical potential has two
terms, u; = df /0¢; — 2KjV2¢j, which is non-local. The former one df/d¢; is responsible
for the bulk flow and the latter one 2KjV2¢j mainly gives rise to the Marangoni flow. The
present case has both flows. The competing effect of these two flows results in distinct
flow patterns. An enhanced Marangoni flow at the interface can be achieved by imposing
a strong dependence of the gradient energy coefficient «; on the composition, which is
out of the scope of the current work. The conventional Marangoni flow is induced by the
surface tension gradient in the sharp interface concept. In the diffuse interface framework,
the surface tension is the excess bulk free energy across the interface plus the gradient
energy density. In this way, the gradient of the non-local chemical potential in the diffuse
interface should be a more generalized driving force than the surface tension gradient in
the sharp interface to account for the natural bulk and interfacial flows.

A difference of the present flow from that of Diddens et al. (2021) is the boundary
condition for the convection velocity at the droplet—surrounding interface. Because of
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the consideration of evaporation in Diddens et al. (2021), the flow velocity in the
normal direction u - m differs from u; - m (m is the outward normal vector of droplet
surface), where u; is the interface velocity. The compensation is the diffusive flux.
This boundary condition is derived based on a linear interpolation of the individual
velocity of the components by mass fraction. However, it should be noted from the
aspect of thermodynamics that the velocity is not an extensive variable. A linear
interpolation/average of the individual velocity u; engenders an additional contribution
to the kinetic energy, which is proportional to the product of the individual velocities of
the components, u; - u;, i #j. We refer to Abels et al. (2012) for more discussions when
diffusion is considered for two immiscible fluids with a large density ratio. In the present
section and in the following analysis, the fluid velocity is assumed to be continuous in the
normal direction; no evaporation takes place.

11.2. Comparison with wedge flow

In this section, we compare the flow field with the theory of Huh & Scriven (1971). In

Huh & Scriven (1971), a planar a—§ interface at the triple junction is considered; the fluid

contacts a solid wall with a contact angle of 6. The wall moves with a constant velocity

U = (U, 0,0). By defining the stream function ¥ (r, ¢) in the polar coordinates (r, ¢)
with the origin at the triple junction,

10y oy

YT e T e

) (11.1a,b)
r o

we have the bi-harmonic equation for a 2-D steady-state flow:

1o af1a [/ oy N 2 3%y, 1o*y; 2 33y 4 9%y
ror | or| ror '\ Or r20¢20r2 -t 0t P oZpdr 1t d¢?

=0.

(11.2)
In the individual fluids, we have the respective stream functions, ¥, and 5. The general
solution of the bi-harmonic equation for a bounded velocity in the polar coordinate reads
(Huh & Scriven 1971)

Yi(r, @) = r(a;sing + b;jcos ¢ + cipsing +dip cosp), r >0, ¢ € [0, 180°].
(11.3)
The eight coefficients a;, b;, ci, d;, i = «, §, are determined by the corresponding boundary
conditions (see details in the supplementary material). We highlight two boundary
conditions which are modified in the current work. In Huh & Scriven (1971), the normal
velocities of the fluid—fluid interface are assumed to be zero:

Wi

=0, i=u«a,d. (11.4)
ar

p=0

This boundary is used to keep the interface planar. ‘Because the interface is idealized as
being perfectly flat, no condition can be imposed on the normal stress acting at it’. In lieu
of the assumption for the zero normal velocity at the fluid—fluid interface, we modify this
boundary condition as

Yy
ar

_ s
ar

(11.5)

=0
The modified condition ensures the continuity of the velocity in the normal direction of
the fluid—fluid interface, which is known as the impenetrability constraint. In this way, the
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normal velocities at the interface in both fluids are not necessarily zero. This is the key way
to achieve a Marangoni vortex across the liquid-liquid interface (Golovin, Nir & Pismen
1995; Wang, Selzer & Nestler 2015).

Another boundary condition in Huh & Scriven (1971) is the stress balance in the
tangential direction of the fluid—fluid interface:

Yy RV

= 11.6
02 = M2 (11.6)

o

Notably, when applying the modified boundary condition for the normal velocity at the
fluid—fluid interface, the stress balance condition has to be adjusted as well. The tangential
viscous stress in polar coordinates is expressed as

0 (u(p)+ 1 du, (11.7)
T =n|r—(— - . .
e =1 ar \ r r dp

Because of the zero normal velocity, the first term in the viscous stress of (11.7) vanishes
and only the second term is considered in (11.7). By considering non-zero normal velocity,
we modify the stress balance equation at the fluid—fluid interface as

3 (10vyy 1 8%y, 3 (1ys 1 8%y 18

770{|:r8r<r 8r> r28(p2:|_n8|:r8r<r8r> r28(p2:|' (11.8)

Moreover, in the condition of (11.6), only the viscous stress is considered. The

surface-tension-related curvature effect in the tangential dimension is overlooked. In this

way, the Marangoni flow cannot come into play. We modify this boundary in the next

section to account for the Marangoni effect. Other boundary conditions are the same as in
Huh & Scriven (1971) and listed in the supplementary material.

With the theory of Huh & Scriven (1971), an exemplary streamline for a contact angle
of 6 =90° and a viscosity ratio of 1y/ns = 0.01 is illustrated in figure 10(I-c) (see
Appendix B for other contact angles). Two flow vortices appear in the low-viscosity fluid
(left) and one flow vortex is observed in the high-viscosity liquid (right). We consider
the same scenario in the simulation, as demonstrated figures 10(I-a) and 10(I-b). Some
important set-ups are adopted in the simulation. (i) The wall velocity U is used to calculate
the viscous shear force on the first layer on top of the substrate (Jacqmin 2000). (ii)
The variation of the viscosity in space is achieved by expressing its dependence on the
composition as

1($) = expl—¢(#3 — ¢)]. (11.9)

The viscosity ratio is controlled by the factor ¢; a value of ¢ = —7 leads to a viscosity ratio
of ny/ns = 0.01. In comparison with the linear interpolation, the exponential function
avoids non-physical values of negative viscosity and is more numerically stable. Note
that the exponential relation does not mean that the viscosity varies exponentially across
the interface. The composition is symmetric in space for a flat interface. For a curved
interface, the composition profile is slightly curved according to the Gibbs—Thomson
relation. In this way, the viscosity is almost symmetric across the interface but affected by
the curvature. (iii) Inflow and outflow boundary conditions are applied on the left, right and
top boundaries. (iv) The reciprocal of the Weber number is set to be 0, e.g. ¢ = 1/We = 0,
so that the surface tension (ox1/We) has no effect on the flow evolution. The streamlines
from the simulation are demonstrated in figure 10(I-a). A noticeable difference from Huh
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Figure 10. Comparison with wedge flow for a contact angle of 90°. The simulations are based on composition
P3 of the symmetric phase diagram. The Reynolds number is 1. The reciprocal of the Weber number is zero
(e = 1/We = 0) to exclude the surface tension effect. (I) The streamlines from the simulation with g; =0
corresponding to a contact angle of 90° and a viscosity ratio of 0.01 (@), and from the theory of Huh & Scriven
(1971) (c). For comparison, a reference velocity of order U/1000 is subtracted in (@) to account for the reference
frame; the resulting streamlines are shown in (b). In the theory, by applying the boundary conditions, we obtain
the following coefficients for the streamlines: a, = 2.35, by, = —4.24, ¢, = —1.5, dy = 1.35, as = —1.01,
bs =0, cs = 6.45, ds = 0.014. (I) The streamlines for a viscosity ratio of 1 from simulation (@) and the theory
of Huh & Scriven (1971) (b). (III) A quantitative comparison for the velocity u,/U in the vertical direction
along the interface as a function of the viscosity ratio between simulation and the theory of Huh & Scriven
(1971).

& Scriven (1971) is the non-zero normal velocity at the fluid—fluid interface. To compare
the simulation with the theory of Huh & Scriven (1971), we subtract all the velocity by
a reference value to have an almost zero normal velocity at the fluid—fluid interface. The
resulting streamlines in the reference frame are depicted in figure 10(I-b). This strategy
has been used in Jacqmin (1996) as well. As in the theory of Huh & Scriven (1971), two
flow vortices are observed in the low-viscosity liquid and one flow vortex is achieved in the
high-viscosity liquid. A noticeable difference of figure 10(I-b) from figure 10(I-c) is that
the streamlines close to the substrate pass through the interface near the triple junction.
This characteristic is also observed in the simulation results of Jacqmin (2000) and is
further discussed in figure 11(V).

We reconsider the reasonableness of the condition (11.4). In the simulation, we set
a viscosity ratio of 1 by setting ¢ = 0 and the substrate is pulling to the right with a
velocity of U = 1. The streamlines from the simulation are presented in figure 10(Il-a).
The resulting parallel streamlines demonstrate a linear velocity in the vertical dimension,
which is obviously the solution of the Laplace equation for the fluid velocity. However,
according to the theory of Huh & Scriven (1971), we obtain two flow vortices, as shown
in figure 10(II-b). These theoretical streamlines significantly differ from our simulation
results with continuous non-zero normal velocity at the fluid—fluid interface. The reason
for these differences is as follows. The theory of Huh & Scriven (1971) considers a sharp
interface model, where the triple junction is a singularity point. By using the resulting
coefficients a;, b;, ¢; and d;, it can be readily shown that the velocities u, and u, at
the triple junction r = 0, ¢ = 90° are different in the @ and § phases. This indicates a
discontinuity in the fluid velocity at the triple junction, giving rise to a breakup of the
velocity at the fluid—fluid interface. This result is non-physical on the continuum scale
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Figure 11. Flow pattern with Marangoni effect for a flat liquid-liquid interface and a contact angle of 90°.
() In the simulation, composition P3 of the symmetric phase diagram is considered. The Reynolds number
and Weber number are 1 and 10, respectively. The viscosity ratio is 1 by assigning ¢ = 0. For the theoretical
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streamlines, the coefficients are ay, = 6.87, by = —6.28, ¢4 = —7,dy = 2,a5 = —3,bs =0, cs = m,ds = 2.
The pulling velocity of the substrate is U = 1. (II) The simulation set-up is the same as (I) except for a different
viscosity ratio of 0.01. For the theoretical streamlines, the coefficients are a, = 3.71, b, = —6.28, ¢, = —2.13,

dy =2,a5 = —0.85, b5 =0, cs = 0.76, ds = —0.16. (1II) The simulation set-up is identical to (II) except that
the composition is P;. The Marangoni vortex vanishes for composition Py. (IV) A decrease of the Weber
number to 1 (increasing the Marangoni effect by a factor of 10), we again obtain a similar flow pattern with three
vortices. (V) Comparison with the flow patterns in Jacqmin (2000) for & = 90° and n,/ns = 1. (a) Reproduced
with permission, Copyright Cambridge University Press 2000. (b) Theoretical flow patterns with a, = 2.26,
by =—1.89, ¢ = —9.43,d, =6, a5 =—7, bs =0, cs = 9.43, ds = 6. (c) Theoretical flow patterns with
ay = 1.75,by = —2.20,¢c4 = —1.1,dy =0.7,a5 = —1.7,b5 =0,¢c5 = 1.1,d; = 0.7.

since there is no reason for the discontinuity in the fluid velocity when the two fluids
have the same viscosity (equal viscosity and no surface tension means one-phase flow).
In contrast to the sharp interface model, the diffuse interface model in the current work
avoids the singularity problem in the continuum scale and the fluid velocity is continuous
everywhere. In the diffuse interface, the triple junction is resolved by a triple region. The
movement of the triple region is governed by the natural boundary condition, resulting
from the minimization of the free energy functional F (¢, V@) in accordance with the
energy law. The question of whether the diffuse interface model resolves the singularity
problem has been discussed by Cox (1986) and Jacqmin (2000). The answer is yes.
Detailed discussions about the contact line in the diffuse interface model are provided
in Jacqmin (2000).

Despite the difference in the normal velocity u,, the tangential velocities u, at the
fluid—fluid interface from the theory of Huh & Scriven (1971) and the simulation are
comparable, as demonstrated in figure 10(IIl). In the simulation, we vary the viscosity
ratio 1y /ns from 0.1 to 10 by changing the parameter ¢. When 7ny/ns = 1, we have the
velocity parallel to the substrate and thus u, = 0 at the interface. When n,/ns < 1, the
velocity u, is negative and downward (see figure 10I-c); when 5, /ns > 1, the velocity u,
becomes positive. The velocity u, as a function of the viscosity ratio is centrosymmetric
with respect to the point (14 /ns, ur) = (1, 0) in the logarithm scale. The reason is that the
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case 1y/ns > 1 with a positive pulling velocity U is identical to the scenario ns/nq < 1
with a negative pulling velocity —U. As shown in figure 10(III), the simulation results for
u, coincide well with the analysis of Huh & Scriven (1971).

Next, by using the modified boundary condition (11.5), we obtain distinct flow patterns
according to the theory of Huh & Scriven (1971). The theoretical flow patterns for a
viscosity ratio of 1 and 0.01 are shown in figures 11(I-b) and 11(1I-b), respectively. In
the former case, we observe three flow vortices, one on the left, one on the right and one
across the interface; the flow pattern is symmetric to the interface. With an increase in
the viscosity of the right-hand fluid by a factor of 100, the symmetric flow pattern breaks
down; all the flow vortices tilt to the less viscous fluid. In the simulations, we obtain similar
flow patterns by varying the viscosity ratio (figures 111-a and 1111-a). A difference of the
simulation from figure 10 is that the Weber number is set to 10 in figures 11(I) and 11(ID).
A Weber number of 10 and a Reynolds number of 1 indicate a comparable effect between
surface tension and the viscous forces. The left and right flow vortices result from the
viscous effect. The flow ray passing through the interface is attributed to the Marangoni
force, as is demonstrated in the next section; this flow ray is what is observed in figure 9
at t = 150 and t = 400. In both theory and simulations, we see that the streamlines pass
through the interface, demonstrating non-zero normal velocity at the fluid—fluid interface.

According to (11.3), the normal velocity at the fluid—fluid interface for 6 = 90° is
proportional to the coefficient d,. By using the modified boundary condition (11.5), a
constraint has been removed. In order to have a well-defined system of equations for the
coefficients of the stream function, we assign a value for d, to account for the effect
of the normal velocity; in this way, a constant velocity u, is assigned to the interface.
This is of course not a rigorous mathematical derivation, but rather an empirical model
with idealization. The empirical model indeed provides a way to explain the Marangoni
effect, where the normal velocity is non-zero. The validity of the empirical model is
further demonstrated in figure 11(V) by comparing with the numerical results of Jacqmin
(Jacgmin 2000). Based on the theoretical flow pattern in figure 11(I-b), we decrease d,,
to 0.7 and obtain narrow and compressed flow ray across the interface, as shown in
figure 11(V-b). In contrast, an increase in the value of d, results in broad flow rays
across the interface, as depicted in figure 11(V-c). The flow pattern in figure 11(V-b) is
comparable with the numerical results obtained in Jacqmin (2000), where the Laplace
equation for the chemical potential and the bi-harmonic equation for the stream function
are solved numerically. A difference is that the flow near the substrate at the triple junction
passes through the interface in figure 11(V-a), while the flow cannot pass the triple junction
in figure 11(V-b). Note that the streamline in figure 11(V-b) at the substrate is parallel to
the substrate away from the triple junction and suddenly becomes upward/downward at the
triple junction. This characteristic obtained by Jacqmin is also observed in our simulation
results (figures 11(LIT) and 10(1)).

Next, we analyse the Marangoni effect by considering the balance between the gradient
of the chemical potential and the viscous stress. In the diffuse interface model, the
Marangoni force is computed by the gradient of the chemical potential — ZJK: _11 &V (uj —

k) subjected to the Gibbs—Duhem relation. Its balance with the viscous stress in the
tangential direction # is expressed as

K—1
=Y ¢V — ug) -t =n-na(Vug + Vuy) - t —n-15(Vus + Vuy) - £. (1110)

j=I
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For an incompressible fluid, this balance equation is rewritten as

K—1

D = pVeit=n-na(Vug + Vuy) -t —n-ns(Vus + Vuy) - £ (1L11)

j=1

These two equations indicate that either the chemical potential or the composition

gradient induces Marangoni flow. A difference of the wetting effect of the present ternary
fluid from the binary liquid is demonstrated in figures 11(III) and 11(IV). By changing
the composition from P3 to P; and keeping all other conditions the same, we see that the
Marangoni vortex vanishes (figure 11(I1I)). However, with a decrease in the Weber number
to 1 and fixing all other conditions, the Marangoni vortex appears again (figure 11(IV)),
resulting from the competing effect with the viscous force. This demonstrates that the
Marangoni flow in the ternary system is strongly dependent on composition and phase
diagram. The absolute value of the chemical potential at composition P is less than that
at P3 (see figure 4), so that the Marangoni effect at Py is less pronounced than at Ps.

11.3. Comparison with theory coupling with fluid flow and chemical potential

The wetting effect of a two-component and two-phase system is in fact a mathematical
problem of the coupled Laplace and bi-harmonic equations (Jacqmin 2000). The former
and the latter are responsible for the chemical potential and the stream function,
respectively. By considering the coupling between the chemical potential and the stream
function, a leading-order analysis has been carried out by Jacqmin (2000). This analysis
for the stream function and chemical potential is valid for & = 90° and a viscosity ratio
of 1. As in the work of Huh & Scriven (1971), the leading-order analysis of Jacqmin
(2000) is for a planar interface, where the curvature effect is not considered. Because of
the singularity at the triple junction, it is a knotty issue to address the analytical solution of
the coupled Laplace and bi-harmonic equations. In addition, for multicomponent liquids,
one should envisage a system of coupled Laplace equations for the chemical potential of
different components. This makes the analysis even more complex. In the diffuse interface
approach, the singularity problem is avoided and the coupled Laplace equation can be
solved numerically. In this section, we present a simple analysis for the wetting effect by
considering the coupling between the chemical potential and the stream function. This
analysis is an example for & = 90° based on Wang et al. (2015).

The Marangoni effect in Jacqmin (2000) is induced by pulling the wall with a velocity
U, which breaks down the symmetry of the composition across the interface. In contrast to
this method, we place two nearby droplets to break down the symmetry of the composition.
By this consideration, the analysis is carried out in bipolar coordinates (o, ¢). The Laplace
equation and the biharmonic equations read

V2 =0,
’ (11.12)
V2v2y =0,
and have the general solution
o0
1i(0. ¢) = (cosg — cos)!/? } " Gy cosh(n + 1/2)0Pu(cos ),
n=1
N 2 (11.13)
_ —1
(0. 9) = (cosg —cos ) 2" X,(0)C, 1> (cos ).

n=1
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where G, and X, are coefficients to be determined by the boundary condition at the

droplet—surrounding interface. The terms P, and C,_ l{z represent the Legendre and
Gegenbauer polynomials, respectively. We refer to Wang et al. (2015) for a comprehensive
analysis. In contrast to a planar interface, we apply the stress balance between the viscous
stress and the chemical potential gradient in the tangential direction on the surface of the

droplet:

K
o g _ Re (coshg —cosw) o (1L14)

T, —NsTh, = — .
The factor g relates to the radius of the droplet in bipolar coordinates. For 8 = 90°, the
analysis for the wetting effect is obtained by considering the mirror symmetry with the

following boundary conditions at the substrate:

ou; 0 93
owi _ oy _ W (11.15)
dy dy 9y}

The isolines of the chemical potential and the streamlines from the analysis are shown
in figure 12(II) for a viscosity ratio of 1 and a contact angle of 90°. The isolines of the
chemical potential near the substrate are perpendicular to the substrate, demonstrating a
contact angle of 90° in the analysis. The non-uniform chemical potential along the droplet
interface is balanced with the viscous stress, inducing the Marangoni flow. The streamlines
near the substrate are parallel to the substrate, resulting from the no-slip constraint for
the fluid velocity on the substrate. As shown in the analysis, we observe the formation
of two Marangoni vortices within the gap of the two droplets. The streamline passes
through the droplet interface, resulting from the boundary condition for the continuity
of the velocity in the normal direction of the droplet. The Marangoni vortex is also
observed in the numerical simulation, as depicted in figure 12(I). Composition P4 for
the symmetric phase diagram is used for the simulation. The droplet has a radius of 40
and a distance apart of 10. The Weber and Reynolds numbers both are set to be 1. Inflow
and outflow boundary conditions are used on the left, right and top boundaries. Because
of the geometrical asymmetry, the chemical potential within the gap of the droplet differs
from that outside the droplet, as depicted by the isolines. This chemical potential gradient
results in the Marangoni vortex. Both simulation and theory demonstrate the formation of
two Marangoni vortices within the gap of the droplets.

12. Three immiscible fluids

In this section, we consider a three-phase three-component system. Not only are the «
phase and the B phase immiscible with each other, but both phases are also immiscible
with the § matrix. Under such circumstance, the free energy landscape has three local
minima, as demonstrated in figure 1(III).

Similar to the previous discussion, we validate our phase-field model for the three-phase
configuration. The following simulation parameters are adopted: (x12, X13, X23, X123) =
(2.5,2.5,2.5,4.0). And x; = 1, D; = 1, t; = 1 are chosen for all components, i = 1, 2, 3.
At the beginning, we place two circular (2-D) or spherical (3-D) droplets with a radius R =
40 and a centre distance of 25 on the substrate. The simulation domain size is 400 x 140
for 2-D simulation and 200 x 74 x 200 for 3-D simulation. To reduce the computational
time, fluid dynamics is not considered during the time evolution.
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Simulation

a S Theory

Figure 12. Formation of Marangoni vortex from simulation and analysis for a contact angle of & = 90° and
a viscosity ratio of 1. (I) Simulation results. Two droplets with a radius of 40 and an initial distance apart of
10 for composition P3 of the symmetric phase diagram. The Weber and Reynolds numbers both are unity.
(a) Streamlines and (b) isolines of the chemical potential w3. (II) Analysis. (@) Streamlines and () isolines
of the chemical potential. The analysis is based on solving the coupled Laplace and bi-harmonic equations in
bipolar coordinates. In both simulation and theory, we observe the formation of the Marangoni vortex at the
liquid-liquid interface.

The simulated equilibrium wetting morphologies in two and three dimensions are
displayed in figures 13(I) and 13(II), respectively. Here, three different scenarios are
investigated. (a) Left panel: both the o phase (blue) and 8 phase (red) are hydrophilic,

which corresponds to the following wall free energy parameters: g3 = —0.2 and
g23 = —0.1. (b) Middle panel: the B phase is hydrophilic, while the « phase is
hydrophobic. The wall free energy coefficients are selected as g;3 = —0.2 and g3 =

0.2. (¢) Right panel: both the o and S phases are hydrophobic with gi3 = 0.3 and
g23 =0.2.

The simulated contact angles on the substrate ¢;; for all phases are tabulated in table 1
and prove to be directly comparable with the theoretical values via Young’s law. The
Young’s contact angle is calculated by using the three interfacial tensions yys, Yos and
vss which are estimated by the path integrals according to (5.2) and (5.3). The integral
paths for cases (a)—(c) in two dimensions are shown in figures 14(I), 14(II) and 14(III),
respectively.

For both 2-D and 3-D simulations, the equilibrium contact angles have very small
deviations from the theory. Besides, we also compare the contact angles at the three-phase
triple junction, namely 6,, 6;; and 6),, with the theoretical calculation according to
Neumann’s triangle rule. The precise naming method of all contact angles can be
found in figure 2. The results are demonstrated in table 1 and excellent agreements
between simulation and theory are observed. The contact angle in three dimensions differs
slightly from that in two dimensions, which might be attributed to the different curvature
constitution in two and three dimensions, as well as the measurement precision discussed
in the supplementary material.
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@ 2-D simulation
g13=0.2,8,;=-0.1 g13=-02,g,;=02 g13=03,g,;=02

3-D simulation

an

813=-02,8,;=-0.1 813=02,8,;,=02 81303, 85, =0.2
1 f ;
A A 2

M M
Figure 13. Wetting morphologies of three immiscible phases. (I) The 2-D simulation: blue, o phase; red, 8
phase; violet, é phase. (II) The 3-D simulation. Top and bottom panels are top and side views, respectively.
Blue, isosurface of « phase; red, isosurface of 8 phase. The surrounding of the § phase is transparent. In each

case, three different scenarios are presented. Left panel: « and 8 phases both are hydrophilic. Middle panel: «
is hydrophobic and g is hydrophilic. Right panel: « and $ both are hydrophobic.

Parameter Set 1 Set 2 Set 3
K1, K2, K3 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0
213, €23, 833 -0.2,-0.1,0.0 —-0.2,0.2,0.0 0.3,0.2,0.0

Theory 105.7°,76.9°, 60.5° 149.5°, 111.0°, 59.9° 98.5°, 112.4°, 122.1°
012,013,623  Sim 2-D 104.8°,77.7°, 61.4° 146.2°, 108.5°, 57.5° 97.9°, 110.5°, 118.8°
Sim 3-D 104.8°, 76.0°, 58.5° 146.3°, 110.7°, 55.6° 97.7°, 111.4°, 119.8°

Theory  120.0°,120.0°, 120.0°  120.0°, 120.0°, 120.0°  120.0°, 120.0°, 120.0°
015,055,075 Sim2-D  121.1°,120.6°, 118.3°  119.2°, 121.7°, 119.1°  119.2°, 118.4°, 122.4°
Sim 3-D  122.0°, 118.8°, 119.2°  119.9°, 119.8°, 120.3°  119.8°, 120.2°, 120.0°

Table 1. The contact angles from simulations in figure 13 compared with the theoretical values. The
definition of contact angle corresponds to the notations in figure 2.

13. Conclusion

In conclusion, we have presented a ternary phase-field model for two different scenarios:
(i) two components of the ternary system are miscible, which are immiscible with
the third-component-rich phase, and (ii) all respective three-component-rich phases are
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D g3=-02,g,;=-0.1 (1) g,3=-0.2,g,;,=02 (1) g,3=0.3,g,;=02
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Figure 14. The composition integral routines on the three-phase diagram for the calculation of the interfacial
tensions. The solid lines connect the black dotted equilibrium bulk compositions which vary from one to
another across the interfaces. Red: phase ¢ to ¢3; blue: ¢ to ¢3; grey: ¢ to ¢». The coloured dashed line
traces the continuous changes from the bulk composition to its corresponding surface composition marked with
an open circle.

immiscible with each other. In case (i), we have validated the contact angles with
Young’s law in both two and three dimensions. The effect of droplet composition and
the wall free energy parameter on the variation of the contact angle is systematically
studied. In particular, two distinct scenarios for the miscible fluids, namely symmetric
and asymmetric phase diagrams, are considered for the wetting phenomenon. In both
cases of the symmetric and asymmetric phase diagrams, the thermodynamic pressure
varying with the radius of the droplet from the simulation is well consistent with the
Young-Laplace equation. Apart from studying the static process for Young’s contact
angle and the Young—Laplace pressure, we also applied the present model for the kinetic
process of evaporation. The simulation results exhibit the same power law as observed in
experiments, but differ from the DLT for dilute solutions.

In the latter case (ii), we consider two immiscible droplets with different wettabilities
on a solid substrate. The contact angle on the substrate and at the triple junction of
three immiscible fluids shows good agreement with Young’s law and with the Neumann
triangle rule, respectively, in both two and three dimensions. This result is similar to recent
work (Bala er al. 2019). Differences from previous work are the variation of the surface
composition varying with the wall free energy parameters, the 3-D simulations as well as
the validation of the Young-Laplace pressure.

The model of the three immiscible fluids allows one to simulate simultaneous
evaporation of two immiscible droplets. The present model for three immiscible fluids
is based on a symmetric ternary phase diagram (figure 1(IIl)). As long as as the
interfacial tensions are correctly modelled, the results for the static wetting angle should be
independent of the real phase diagram. A realistic phase diagram used to be non-idealized
and non-symmetric, which makes it more challenging to evaluate the free energy
minimization path from one phase to another one. However, for the evaporation process,
an idealized symmetric phase diagram loses its realistic physics.

A different opinion in the present work from previous ones is the introduction of the
surface composition, which is consistent with the concept of Cahn (1977). We have related
the interfacial energies with the surface composition and validated the surface composition
in the simulation with analytical solutions. This surface composition concept makes it
possible to study a more realistic kinetic process of evaporation, where the composition
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evolves with time in the droplet and the interfacial energies change accordingly. Another
distinct concept of the present work from previous ones is the miscible fluid. The miscible
fluid can be considered as an individual phase that is immiscible with the surrounding
phase, which corresponds to the two-phase model in the literature. However, when
the droplet evaporates, the non-uniform distribution of the composition in the droplet
cannot be handled by the two-phase model. The ternary fluid model of miscible fluid
in combination with the surface composition concept could be applied for studying a
variety of multicomponent and multiphase wetting phenomena coupling with evaporation,
for example, coffee-ring effect.

Another discussion should concern the selection criterion for the coefficients of the wall
free energy density, g;;. As a rule of thumb, for the term ~(¢:)/ with an even power factor
Jj — 1, a negative value of the corresponding coefficient leads to a hydrophilic set-up and
a positive coefficient results in a hydrophobic configuration, as shown in figure 13. This
rule breaks down if the term ~(¢;)’ with an odd power factor j — 1 is considered. Because
of the (K x K)-dimensional parametric space (for ternary case, K = 3), the problem is
hard to address numerically, as also pointed out in Bala et al. (2019). This problem may
be investigated by studying the property of the matrix dg/d¢ to elaborate whether the
interfacial energy increases or decreases along the direction of the composition vector
following the energy minimization path.

The Marangoni effect has been discussed by comparing with the analysis of Huh
& Scriven (1971) and Jacqmin (2000). From the comparative study, it is necessary to
consider non-zero normal velocity to achieve the Marangoni vortex across the interface.
The competition of Marangoni flow with the viscous drag force leads to distinct flow
patterns in the process of dynamics wetting. An empirical model based on that of Huh &
Scriven (1971) has been developed by assigning a constant normal velocity to the interface.
This result can somehow explain the Marangoni vortex competing with the viscous effect.
The formation of the Marangoni vortex is further validated by comparing with an analysis
by considering the stress balance between the viscous stress and the chemical potential
gradient.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.561.
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Appendix A. Non-dimensionalization

All the physical parameters are non-dimensionalized by the characteristic length x*,
reference surface tension o™ and diffusivity D*. With these three reference values, we
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Figure 15. Flow patterns for a contact angle of 67.8°. (a) Simulation. The parameters are identical to those of
figure 11(I) except that the Young’s contact angle is changed from 90° to 67.8°. This contact angle is achieved
by setting g33 = 0.2, corresponding to figure 4(II). (b) Theory. The parameters in the modified Huh & Scriven
model are ay, = 17.57, by = —9.43, ¢ = —6.87,dy =3, as = —11.44, bs = 0, cs = 11.36, d5 = 10.44. The
pulling velocity of the substrate is U = 1 and the viscosity ratio is 1y /ns = 1.

obtain the non-dimensionalized form of the model:

i . v - (of 2K
— Vo= — - MV | — — 2 ,
+u-Vo; Pe j_zl ij 0p; of
- K—1 =
_f(ou _ ~._ 1 = Vp L~ 1.2 -
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229 eVgon— 2L 12,3
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(A1)
The dimensionless quantities Re, We and Pé are calculated as
* ok ok s k2 ok * %
Re=Z25 we=20 1t pe= S (A2a-0)
n o

Appendix B. Exemplary flow patterns for non-90° contact angle

Figure 15(a) shows the streamlines from the simulation for a contact angle of 67.8°,
corresponding to g33 = 0.2 in figure 4(II). The other parameters are identical to those
of figure 11(I). For comparison, the analytical streamlines from the modified Huh &
Scriven model are demonstrated in figure 15(). In general, a good agreement between
the simulation and theory is observed. A difference is noticed at the triple junction. The
streamline from the theory does not pass through the interface near the triple junction
suffering from the singularity. In the simulation, the streamline crosses over the interface
near the triple junction because of the diffuse interface treatment, where the singularity
is avoided and resolved in the continuum scale. The simulation and theory can be applied
for other viscosity ratios 71 and contact angles, which will be discussed in forthcoming
works.
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