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SKEIN HOMOLOGY

DOUG BULLOCK, CHARLES FROHMAN AND JOANNA
KANIA-BARTOSZYŃSKA

ABSTRACT. A new class of homology groups associated to a 3-manifold is defined.
The theories measure the syzygies between skein relations in a skein module. We
investigate some of the properties of the homology theory associated to the Kauffman
bracket.

1. Introduction. It is possible to introduce, for each skein module, a chain complex
whose homology is a 3-manifold invariant and whose 0-th level is the original module.
In some sense the homology theories we construct measure skein relations among skein
relations, which mimics Hilbert’s theory of syzygies.

Skein modules were first introduced by Przytycki and Turaev [5, 6], with different
motivations leading to various constructions. One in particular generalizes the Kauffman
bracket polynomial [3], itself a reformulation of the Jones polynomial [2]. We will explic-
itly define the homology modules based on the Kauffman bracket—a procedure easily
generalized to other skein modules—and demonstrate their nontriviality. More detailed
computations are difficult because the usual tools, excision and exact sequences, are
absent. The reason is simple: there is no workable definition of relative skein homology
(although one seems apparent from the work of W. LoFaro).

The natural examples with which to begin investigation of skein homology are man-
ifolds whose 0-th level is well known. The most tractable of these are cylinders over
surfaces, but even there the homology modules are extremely complicated. The homol-
ogy of the three sphere, for example, seems to contain as much information as the space
of all finite type link invariants [4]. At best, we can show that the algebra structure on
the skein module of a cylinder induces a graded product on homology.

The authors thank C. Livingston and the referee for suggested improvements.

2. The Kauffman Bracket Skein Module. Generally, skein modules are con-
structed as follows. Pick a coefficient ring and form the free module spanned by isotopy
classes of links with some sort of decoration. Decorations include orientation of the com-
ponents and framings. You then impose relations, which usually come in two sorts: skein
relations and framing relations. For example, to define the Kauffman bracket module we
use isotopy classes of framed links and impose skein relations, = A + A�1 ,
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and the framing relations L[
 = �(A2 +A�2)L. You should think of the diagrams above
as representing pieces of flat annuli. The first relation means that outside of a small em-
bedded ball in M the three links are identical, while inside they appear as shown. The
second one means there is a trivial component of the link that can be separated from the
rest of the link by a ball.

Let Z[AÒA�1] be the ring of Laurent polynomials with integer coefficients. Let M
be a 3-manifold, and let L0(M) be the set of isotopy classes of framed links in M.
A framed link is an embedding of a disjoint union of annuli in M. Let S0(M) be the
smallest submodule of the free module Z[AÒA�1]L0(M) containing all sums of the form

�A �A�1 , and L[
+ (A2 + A�2)L. The Kauffman bracket skein module,

K(M), is the quotient Z[AÒA�1]L0(M)ÛS0(M).
One can define K(M) beginning with a slightly different basis. Let L(M) denote

the set of framed links with no trivial components, including the empty link. Let
S(M) Ú Z[AÒA�1]L(M) be the submodule generated by all sums of the form

� A � A�1 , with the stipulation that you use L [ 
 = �(A2 + A�2)L
to rewrite the relation without trivial components.

3. Kauffman Bracket Homology. A crossing ball for a framed link is an embedding
of the pair (B3ÒD2) so that inside the crossing ball the link looks like with D2 lying
in the page. A framed link with n crossing balls is one where the balls are ordered and
disjoint. We number the crossing balls from 1 to n, corresponding to their ordering. Two
such objects are equivalent if there is an ambient isotopy of the links that carries crossing
ball to crossing ball in an order preserving fashion. The set of isotopy classes, excluding
links with trivial components, will be denoted Ln(M).

The i-th ball operator

]i:Z[AÒA�1]Ln(M) ! Z[AÒA�1]Ln�1(M)

is defined locally at the i-th crossing ball by

7! � A � A�1 Ò

along with any necessary applications of L [
 = �(A2 + A�2)L. For example,

]i

� �
= � A � A�1

= + A(A2 + A�2) � A�1

= + A3 

The remaining crossing balls inherit the original ordering. For n ½ 1, define
] :Z[AÒA�1]Ln(M) ! Z[AÒA�1]Ln�1(M) to be the alternating sum

P
(�1)i]i. The bound-

ary operator on framed links without crossing balls is the zero map. The proof that
] Ž ] = 0 is essentially the same as for singular homology. Hence, we have a chain
complex,

�
Z[AÒA�1]Ln(M)Ò ]

�
.
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The cycles are

Zn(M) = ker
n
] :Z[AÒA�1]Ln(M) ! Z[AÒA�1]Ln�1(M)

o
Ò

the boundaries are

Bn(M) = im
n
] :Z[AÒA�1]Ln+1(M) ! Z[AÒA�1]Ln(M)

o
Ò

and the n-th Kauffman bracket homology of a manifold is

Kn(M) = Zn(M)ÛBn(M)

For an example of a 2-cycle, consider the element

T = 2 L2(S3)

with the crossing balls numbered from left to right. The ball operators are

]1(T ) = � A � A�1 Ò and

]2(T ) = � A � A�1 

A rotation of each diagram by 180Ž shows that ]1(T ) = ]2(T ), so T is a 2-cycle.
Now suppose that F is a compact oriented surface. We will explain how the Kauffman

bracket homology of F ð I admits a graded product. Let SÒT be framed links with
n and m crossing balls in F ð I. Since F ð I = F ð

h
0Ò 1

2

i
[ F ð

h
1
2 Ò 1

i
, and each

piece is homeomorphic to F ð I via rescaling the last coordinate, we can form S Ð T
by embedding S in F ð

h
0Ò 1

2

i
and T in F ð

h
1
2 Ò 1

i
. Order the crossing balls using

those of S followed by those of T . This operation is well defined up to isotopy, and
it extends linearly to a map from Ln(F ð I) 
 Lm(F ð I) to L(n+m)(F ð I). Notice that
]n+m(S Ð T ) = ]n(S) Ð T + (�1)nS Ð ]m(T ). Hence, the product induces a graded product
on the skein homology of Fð I.

In D2 ð I this construction gives a well defined product in the skein homology of
the 3-sphere. It can also be used to build cycles in an arbitrary 3-manifold M; given an
n-cycle and and m-cycle, there is an (n + m)-cycle formed from their disjoint union with
crossing balls ordered as above.

4. Examples and Problems. The following technique for showing that a chain is
not a boundary is due to Chuck Livingston, improving on our original device. Let ê be a
primitive sixth root of unity. Notice that this implies that ê + ê�1 = 1. Since ê2 is a third
root of unity, ê2 + ê�2 = �1. We define a map

è:Z[AÒA�1]Ln ! Z[ê]

as follows. Each L 2 Ln has è(L) = 1. Set è(A) = ê, è(A�1) = ê�1, and extend linearly.

LEMMA 1. Bn � ker(è).
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PROOF. Given L 2 Ln+1(M),

è
�
]i(L)

�
= è

�
� A � A�1

�
= 0Ò

provided there are no trivial components. However, if a diagram has a trivial component,

è(L [
) = è
�
�(A2 + A�2)L

�
= è(L)Ò

so the computation above is still valid.

The example from the last section has è(T ) 6= 0. Hence, T is not a boundary and
K2(S3) 6= 0. The construction generalizes easily.

PROPOSITION 1. Suppose that L 2 L2n(M) and there is an ambient isotopy of the
underlying link which cyclically permutes the crossing balls. Then K2n(M) 6= 0.

Any framed knot in M may be endowed with 2n crossing balls of the form .
There is an isotopy of M, fixed outside a regular neighborhood of the knot, which
permutes the crossing balls, so every K2n(M) 6= 0. Another example is provided by
embedding a (2Ò 2n) torus link into a regular neighborhood of any knot in M.

Framing also creates nontrivial homology—immediately in K1(M), and via a clever
state sum argument suggested by the referee for higher levels.

PROPOSITION 2. For any 3-manifold M and positive integer n, Kn(M) 6= 0.

PROOF. We begin by proving that K1(M) is nonzero. Consider the one chain

� A3 Ò with the usual understanding that the two links are identi-
cal except as shown. Its boundary is

+ A3 � A3
�

+ A�3
�

= 0Ò

so it’s a cycle. It’s not a boundary for the usual reasons.
The general case is essentially the same but with more terms. Remove n disjoint

3-balls from M and mark each of the newly created boundary spheres with two points.
Embed a framed tangle in the punctured M so that its boundary is this set of points.

There are 2n ways of completing this tangle by inserting either or in

each ball. Each choice is weighted by the coefficient �A3 raised to the number of times
appears. The sum over all choices is an n-cycle on which è is non-zero.

The constructions performed here could be carried out using any of the relations for
a general skein module [1]. We have restricted our attention to a particular module and
have only touched upon its possible homology structure. Many open questions remain.

First of all, what is Kn(S3), and how exactly does it relate to finite type invariants?
There are two major impediments to working this example: we can construct only some
cycles, and we have little or no idea what boundaries look like. In other words, how do
we determine that we have enough cycles, and how do we tell them apart? The latter
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question is likely to be answered by link invariants, and these are likely to be of finite
type.

Our understanding of Kn(F ð I) is dependent on knowledge of the original skein
module. Specifically, the product on the homology ring comes directly from the well
known product on K0. What other facets of K0 translate to Kn? In particular, the skein
module is free and finitely generated (as an algebra); is its homology?

One of the original motivations for skein homology was to expand what is perhaps
the most puzzling phenomenon in the Kauffman bracket skein module, torsion. What
effect does torsion in K0 have on Kn? Do torsion elements generate distinct homology
classes in each level? If so, can one use this to prove that torsion in K0 implies infinite
rank?

There are other avenues as well, such as the relationship between the Kauffman
bracket skein module and the SL2(C)-characters of the fundamental group. One would
like to know how this is expressed in higher homology modules. Also, all of the above
questions can be asked for other skein modules.
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