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In this work we consider the equation 

Q(x) = /(*) + Mo K(x> 0 0 ( 0 dt where J£(A:, y) is singular in the sense that it 
does not properly belong to L2 and/(*) is an arbitrary L2 function. 

A Lebesgue measurable function K{x, y) of two variables, having real values on 
[0.1] x [0.1] is called a singular normal kernel of 

(i) H \K(x, y)\2 dy < oo, JJ \K(x, y)\2 dx < oo 

There exists approximating kernels Km(x9 y) satisfying 

(ii) Km(x, y) is L2 in (x, y) \Km(x, y)\ < \K(x, y)\ 

(iii) JJ Km(x, t)Km(y, t) dt = JJ KJiu x)KJt, y) dt 

(iv) lim Km(x, y) = K(x, y) 
m->oo 

It is seen in [1] that the approximating kernel Km(x,y) admits a representation 
Km(x,y) = Km(x,y)-i-iKm(x,y) where K' and K" are symmetric, having one and 
same system of characteristic functions. The real and imaginary parts of the 
characteristic numbers of the kernel Km(x, y) are characteristic numbers of Km 
and Km respectively. The approximating kernels behave like symmetric kernels with 
the single exception that the characteristic values may be complex valued. 

We associate with equation (1) the equation 

(2) Q(pc) = /(*) + A C Km(x, 00(0 *• 
Jo 

The Fredholm theory is applicable to (2), thus there exists a unique solution Qm in 
L2 of (2) for every non-characteristic value Xmv of Km. Consequently the Schmidt 
representation extended to the solution of (2) yields, 

(3) QJX) = / (*) + A ^ T ^ T Kv> fmv = C / M M ds 
v Amv A JO 

and 

(4) F Qm(x) MX) dx = j ^ F f(x)<f>mj(x) dx 
Jo Amj — AJ0 
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or equivalently we may write 

QJx) = fix) + A £ KJLx, 0/(0 dt 

(y) i n ri 
+ A2 2 Y2—, KJx, T )^„ (T) / (0 dr dt. 

v Amv"~A JO JO 

As is well known from classical theory, the series in (5) converges uniformly. 

Multiplying by Qm(x) and integrating one gets, 

flfii(*)l<fe= !1f(x)Qm(x)dx+\2j-Lrx 
Jo JO v Amu A 

(6) x f Qm(x)4>™(x) dx \ 4>mv{f)f{i)dt 
Jo Jo 

< I jj(x)Qn(x) ^ | + X { ? i/o' 5m(*)*m„(*) dx\ 

X 2 Ax)Kv{x) dx\ \ 
v |Jo I J 

12̂ 1 1/2 

where À is in the compliment C(E) of the closure Ë of the set of characteristic values 
Ami;(m, v = 1, 2, . . .) of Km and 8 the distance (necessarily positive) from À to E. 

From Bessel's inequality 

(7) fo \Q2
m(x)\ dx < { £ i / i 2 «&£ |gm |2&}1 , 2+l^{Jo

1 |gm|2«& £ i / i 2 ^-} 1 / 2 

and 

(8) £ IQl(x)\ dx < {l +{!j}.2 £ |/2(x)| rf*. 

We now cite the following well known lemmas of F. Riesz [3]. 

LEMMA 1. If fv(x) eL2[0, 1], v = l, 2 , . . . , and if jl \fv(x)\2 dx<M, t>=l, 2 , . . . , 
r/zen rtere erâte a subsequence {fvj(x)} such that asj-> <x),fvj(x) ->f(x) weakly, i.e. 
limy JQ fvj(x)dx=Jo/(x) dx, 0 < x < 1. Furthermore JJ /2(x) dx < M. (M is a constant 
independent ofj.) 

LEMMA 2 [2, p. 132]. If jlf?(x) dx<c,fv->f(x) weakly while gn(x)-> g(x) and 
\gn(x)\<y(x) c 1,2, «=1 ,2 , . . . , then 

lim J fn(x)gn(x) dx = J0 /(x)g(x) rf*. 

LEMMA 3. If a sequence {fv(x)} converges weakly to f(x) and converges in the 
ordinary sense to F(x) then 

f(x) = F(x) a.e. 
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From (8) and Lemma 1 there exists a subsequence {Qmn} converging weakly to a 
function Q(x) in L2. 

From Lemma 2 it follows that for almost all x in [0, 1] 

(9) lim f Knv(x, y)Qnv{y) dy = f K(x, y)Q(y) dy. 
u-°° Jo Jo 

With the aid of (2), it follows from Lemma 3 that lim^ Qnv = Q(x) is a solution of (1). 
We have thus proved the following: 

THEOREM. For X in the compliment C(E) of the closure Eofthe set of characteristic 
values Xmv (m,v=l,2,...) of the approximating kernels Km(x,y), the equation 
Q(x) =f(x) + A jl K(x, y) Q(y) dy with singular normal kernel K, and fin L2, possesses 
a solution Q(x) in L2. 

We now examine the solution Q(x) obtained above. We suppose in what follows 
that 

(10) J ' \Km(x9t)-Km(x',t)\2dt < *(\x-x'\) 

where a is independent of m and approaches zero as x-> x'. 

In view of (8). 

\Qm{x)-f(x)\ < |A| { £ \K*{x,y)\ dyj* \Q\y)\ dy} 

<C|A|{l + ̂ } V ) 

where 

C = fof
2(y)dy and K(x) = {£#(*, yf dy^ 

Likewise 

\Qm(x)-f(x)-(Qm(x')-f(x'))\ 

< |A| {_[* Ql(y) dy}1'2 { £ \Km{x, y)-Km(x', j)[2 dy} 

(12) 
< C |A| {l +l|i}2 { £ \Km(x, y)-Km(x', j)|2 dy}. 

In view of (10) 

(13) \(Qm(x)-f(x))-(Qm(x')-f(x'))\ < C |A| {l + ^ } 2 o{\x-x'\). 

1/2 

1/2 
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It follows as in [2, pp. 54-55] with the aid of Vitali's theorem that l i m ^ » ômO) 
= Q(x) is analytic in A for every A for which Theorem 1 holds. 

COROLLARY. Suppose Q is a region in C(E) and the homogeneous equation 

Q(x) = \ jl K(x, y)Q(y) dy has no nonzero solutions in L2 for A = A1? A2 , . . . , the 

An, w= 1, 2 , . . . , being distinct points in O with a limiting point in O, then there exists 

no solution Q=Q(x, A), distinct from zero and analytic in A. 

Proof. Results directly from the identity theorem of analytic functions. 

REMARK. For any multiple connected region in C{E), the function Q may be 
multiple valued. As A describes some closed path in C(E), Q may change to another 
function 0. However any such circuit will leave equation (1) unchanged, so $ will 
also be a solution of (1). 

It follows [2, p. 56] that there exists a linear operator TxA (dependent on K) and 
a subsequence {m3} (independent off) such that with Qm denoting a solution of (2) 
for A in C(E) we have 

(14) lim Qmj = Q = TxX(f) is a solution of (1). 
i 

THEOREM 2. The operator TxA(f) 0/(14) satisfies 

(15) f 7i(*)r*A(/a) dx = Cf^TMi) dx 
Jo Jo 

for allfi in L2, /= 1, 2 , . . . , and A in C(E). 

Proof. Let Qitm(x) be a solution of 

(16) Q(x) = A J* KJx, y)Q(y) dy+f, / = 1, 2 , . . . 

Multiply the equation (16) for g l m by QltTn and integrate. Similarly multiply the 
equation for Q2m by gi.m and integrate. Subtracting the second expression from 
the first as in [2] we get 

(17) f Vi(*)- Ô2.»(*) dx = Ff2(x)-Q1,m(x) dx. 
Jo Jo 

Setting m = mj9 from (14) and noting 

fQ \QumAx)\2 dx < M, i = l , 2 , . . . 

we may pass to the limit in (17). Our result now follows from (14). This result is 
similar to that in [2, p. 56]. 

However, since our kernel is now normal and not necessarily symmetric, the 
development as in [2, Ch. II and III] relating to kernels of Class 1 (those generating 
selfadjoint operators) cannot be made without additional assumptions. 
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REMARK. A spectral theory paralleling that in [2] or [4]-[5] can be developed 
for the kernels considered here on the basis of which, properties 1-4 of Theorem 
10.4 [4, pp. 406-407] can be demonstrated. 
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