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Collision of two counterflowing gravity currents of equal densities and heights was
investigated by means of three-dimensional high-resolution simulations with the goal of
understanding the flow structures and energetics in the collision region in more detail. The
lifetime of collision is approximately 3H/ ug, where H is the depth of heavy and ambient
fluids, and iy is the front velocity of the approaching gravity currents, and the lifetime of

collision can be divided into three phases. During Phase I, —0.2 < (7 — fc)ﬁf/I:I < 0.5,
where 7 is the time, and 7, is the time instance at which the two colliding gravity currents
have fully osculated, geometric distortions of the gravity current fronts result in stretching
of pre-existing vorticity in the wall-normal direction inside the fronts, and an array of
vertical vortices extending throughout the updraught fluid column develop along the
interface separating the two colliding gravity currents. The array of vertical vortices is
responsible for the mixing between the heavy fluids of the two colliding gravity currents
and for the production of turbulent kinetic energy in the collision region. The presence
of the top boundary deflects the updraughts into the horizontal direction, and a number
of horizontal streamwise vortices are generated close to the top boundary. During Phase
IL05< (F— fc)itf / H < 1.2, the horizontal streamwise vortices close to the top boundary
induce turbulent buoyancy flux and break up into smaller structures. While the production
of turbulent kinetic energy weakens, the rate of transfer of energy to turbulent flow due
to turbulent buoyancy flux reaches its maximum and becomes the primary supply in
the turbulent kinetic energy in Phase II. During Phase III, 1.2 < (7 — 7.)iiy JH < 2.8, the
collided fluid slumps away from the collision region, while the production of turbulent
kinetic energy, turbulent buoyancy flux and dissipation of energy attenuate. From the point
of view of energetics, the production of turbulent kinetic energy and turbulent buoyancy
flux transfers energy away from the mean flow to the turbulent flow during the collision.
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Our study complements previous experimental investigations on the collision of gravity
currents in that the flow structures, spatial distribution and temporal evolution of the mean
flow and turbulent flow characteristics in the collision region are presented clearly. It is
our understanding that such complete information on the energy budgets in the collision
region can be difficult to attain in laboratory experiments.
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1. Introduction

Gravity currents, also known as buoyancy or density currents, are flows along a horizontal
boundary driven by horizontal density differences, and occur in natural and anthropic
environments. To name a few, examples of gravity currents include sea and land breezes,
turbidity currents, powder snow avalanches and pyroclastic flows. The reader is referred
to Simpson (1997) and Ungarish (2009) for a comprehensive introduction to this topic and
review of examples.

Gravity currents have been studied extensively using the lock-exchange set-up in
laboratory experiments and numerical simulations (see e.g. Shin, Dalziel & Linden 2004;
Cantero, Balachandar & Garcia 2007a; Cantero et al. 2007b; Cenedese & Adduce 2008; La
Rocca et al. 2008, 2012a,b; Adduce, Sciortino & Proietti 2012; Dai 2013, 2014; Lombardi
et al. 2015; Ottolenghi et al. 2016a,b, 2018; Inghilesi et al. 2018; Lombardi, Adduce & La
Rocca 2018; Pelmard, Norris & Friedrich 2020). In the classic lock-exchange experiments,
the heavy fluid is typically separated from the ambient fluid in the tank by a removable
barrier. When the barrier is withdrawn, the fluids of different densities are set into motion.
In the classic lock-exchange experiments, the gravity currents propagate on a horizontal
boundary without interaction with counterflowing gravity currents.

Collisions between gravity currents are common in nature. Examples of such
convergences include sea breeze (Burpee 1979; Noonan & Smith 1986; Lapworth 2005),
land breeze (Wapler & Lane 2012; Gille & Llewellyn Smith 2014), thunderstorm outflows
(Droegemeier & Wilhelmson 1985; Intrieri, Bedard & Hardesty 1990), microburst (Orf,
Anderson & Straka 1996) and atmosphere bores (Clarke, Smith & Reid 1981). There is
also evidence, from sedimentary deposits, of the collision of turbidity currents on the
ocean bed (Simpson 1997). However, few previous studies have considered the collision
between two gravity currents. Simpson (1997) showed the main effect to be the emergence
of two undular bores travelling in opposite directions after a collision. Shin (2001)
considered the collision between two gravity currents of equal densities but different
heights, and developed a theory that predicts the propagation speed of the bores after the
collision.

More recently, van der Wiel et al. (2017) have performed laboratory experiments
on the collision of two counterflowing gravity currents using the lock-exchange set-up.
The effects of differences in gravity current density and height are studied. For
symmetric collisions, i.e. same current densities and heights, the interface separating
the two currents is vertical and stationary. For asymmetric collisions, i.e. different
current densities and heights, the interface is tilted and changes shape in time. Using
two-dimensional simulations based on the incompressible Euler equations with the
Boussinesq approximation, Cafaro & Rooney (2018) replicated numerically situations
similar to the laboratory experiments of van der Wiel ef al. (2017). The interface
slope for asymmetric collisions has been shown to be dependent on the buoyancy
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ratio of the two gravity currents, whereas the maximum height reached by the fluid
after the collision has no strong dependence on the buoyancy ratio of the two gravity
currents.

To understand turbulent mixing in the collision between two identical counterflowing
gravity currents, Zhong, Hussain & Fernando (2018) performed laboratory experiments
on colliding gravity currents in a Plexiglas tank using a time-resolved particle image
velocimetry and planar laser-induced fluorescence system to record instantaneous velocity
and density fields synchronously. According to Zhong et al. (2018), four flow stages
can be identified: independent propagation of gravity currents, their approach while
influencing each other, the collision stage, and post-collision slumping of collided fluid.
The lifetime of the collision stage between two identical counterflowing gravity currents
can be further divided into three phases based on the spatially averaged vertical front
velocity in the collision region. During Phase I, the collision produced a rapidly rising
density front with intense turbulent kinetic energy production. During Phase II, the
density front was flat with negligible vertical velocity. During Phase III, the collided fluid
slumped in the collision region. Furthermore, the eddy diffusivity, space—time averaged
in the collision region and over the lifetime of collision stage, was recommended as a
conditional parametrization for representing collision events in mesoscale meteorological
models.

Our computational study on the collision of gravity currents is motivated by and is
a continuation of the experimental work by Zhong et al. (2018). Our focus is on the
collision stage, and this study complements the work by Zhong et al. (2018) in several
perspectives. In this study, we conduct three-dimensional high-resolution simulations for
the collision of two counterflowing gravity currents of equal densities and heights, and we
further implement passive tracers in the simulations to highlight the heavy fluids originally
contained in the left and right locks. With the help of high-resolution simulations and
implementation of passive tracers, the three-dimensional flow structures and the mixing
between the heavy fluids of the two colliding gravity currents in the collision region
are presented clearly. Energy budgets for the collision of two gravity currents, along
with the spatial distribution and temporal evolution of the mean flow and turbulent flow
characteristics in the collision region, are now made possible thanks to the detailed
flow information provided by the three-dimensional high-resolution simulations. It is our
understanding that such complete information on the energy budgets in the collision of
gravity currents can be difficult to attain in laboratory experiments. The paper is organized
as follows. In § 2, we describe the formulation of the problem and the implementation of
numerical methods. The qualitative and quantitative results are presented in § 3. Finally,
conclusions are drawn in § 4.

2. Problem formulation

Figure 1 gives a sketch of the initial configuration for the collision of two gravity currents
of equal strengths. The two gravity currents are produced from two identical full-depth
locks on the left and right ends of the channel. The height of the locks is H, which is the
same as the environment, and the length of each lock is Lo. The heavy fluid density in
the two locks is pj, and in between the locks is the homogeneous environment of density
0o. The gravitational acceleration is in the —x3 direction. Here, we adopt the Boussinesq
approximation, in that the density difference is sufficiently small, i.e. (o1 — po) < po, SO
that the influence of density variations is retained in the buoyancy term but neglected in
the inertia and diffusion terms.
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Figure 1. Sketch of the initial condition for the collision of two gravity currents produced from two identical
full-depth locks. The heavy fluid inside the left and right locks has density /5y, height A and length L.
The ambient fluid of the same height has density po and length le — 2Ly. The coordinate system follows
the right-hand rule, where xj, x and x3 represent the streamwise, spanwise and wall-normal directions,
respectively. The origin of the streamwise coordinate is placed at the centre of the flow domain. Here, gravity
g acts in the —x3 direction, and the positive spanwise direction points into the page.

The governing equations take the form, using tensor notation,

3 .
Y 2.1)
an
du; Au; B 1 0%y
Ui s Ui _ pe§ _°p + Ui (2.2)

ot T ax; 3x;  Re ax; 0x;

ap ap 1 9%
— 4t U — = .
ot / dxj  ReSc 0xjdx;

(2.3)

Here, u; denotes the velocity, p the density, e‘f the unit vector in the direction of gravity,
and p the total pressure (including the part created by the density stratification in the
flow domain), respectively. The variables without a tilde are dimensionless quantities. The

set (2.1)—(2.3) is made dimensionless by the lock height H as the length scale and the
buoyancy velocity

i, = /gy, withg) =322 (2.4)

as the velocity scale. The dimensionless density is given by
0 — Po
p=—=—=-"- (2.5)
P1 — Po
Other relevant dimensionless parameters are the Reynolds number Re and the Schmidt
number Sc, defined by

H
Re=ub— and Sc =

v
D K

(2.6a,b)
It is assumed that the heavy fluid and ambient fluid have identical kinematic viscosity
v and diffusion coefficient of density field . It has been reported by researchers (e.g.
Hirtel, Meiburg & Necker 2000; Necker et al. 2005; Bonometti & Balachandar 2008) that
the influence of the Schmidt number is weak as long as Sc &~ O(1) or larger, and setting
the Schmidt number to unity is common practice in the numerical simulations for gravity
currents (Cantero et al. 2007a,b; Zgheib, Ooi & Balachandar 2016; Dai & Huang 2022).
Therefore we use Sc = 1 in all simulations in the study.
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The three-dimensional flow domain is chosen as Ly, X Ly, X Ly, =17.5 x 1.5 x 1,
where the lock length at each end of the channel is Ly = 3. The length in the problem
is non-dimensionalized by the lock height H. This flow domain is chosen to follow the
experimental configuration designed by Zhong et al. (2018) for the collision of gravity
currents (cases C2800, C3500 and C4300) in their study.

The governing equations are solved using the time-splitting method (Canuto et al.
1988) with the low-storage third-order Runge—Kutta scheme (Williamson 1980) for time
advancement. In the time-splitting method, a provisional velocity, which does not satisfy
the continuity condition, is calculated in the first step. The pressure field, which satisfies
Poisson’s equation, is solved in the second step. The pressure field is used to correct
the provisional velocity such that the final velocity and the pressure satisfy the complete
governing equations. In the computation of the provisional velocity, the convection and
buoyancy terms are treated explicitly, and the diffusion terms are treated implicitly with
a Crank—Nicolson scheme. For the convection term, divergence and convective forms
are used alternately to reduce the aliasing error (Durran 1999). In the three-dimensional
flow domain, Fourier expansion with periodic boundary conditions is employed in the
streamwise and spanwise directions, i.e. x; and x>, while Chebyshev expansion with
Gauss—Lobatto quadrature points is employed in the wall-normal direction, i.e. x3. For the
velocity field, we employ the free-slip condition at the top boundary and no-slip condition
at the bottom boundary. For the density field, we employ the no-flux condition at both the
top and bottom boundaries.

The initial velocity field was set with a quiescent condition in all simulations. The initial
density field was prescribed as unity in the heavy fluid regions at both ends of the channel,
and zero in the ambient fluid region between the two locks, with an error-function-type
transition, of which the thickness depends on the Reynolds number and Schmidt number.
The initial density field was seeded with minute, uniform, random disturbances following
Hirtel, Michaud & Stein (1997) and Cantero et al. (2006). The de-aliased pseudo-spectral
code has been employed in previous high-resolution simulations for lock-exchange flows
(Cantero et al. 2007b; Dai 2015; Dai & Wu 2016; Dai & Huang 2022).

In order to distinguish between the heavy fluids originally contained within the left and
right locks in the channel, we adopted the technique in Dai, Huang & Hsieh (2021) and
implemented two passive tracers in the simulations, namely Cy, and Ck, for the heavy fluids
originally contained within the left and right lock regions, respectively. Introducing the
passive tracers in the simulations is identical to adding dyes in the locks for visualization in
the experiments. The passive tracers were assumed to have identical diffusion coefficient
Kk as the density field, and likewise follow the mass transport equation (2.3) as the density
field does. The initial concentration for the passive tracer Cy (Cg) was set as unity in the
left (right) lock region and zero elsewhere, with an error-function-type transition.

In this study, we are interested in the collision of gravity currents, and we consider
four Reynolds numbers, i.e. Re = 3450, 6450, 8950, 14 450, which correspond to the four
front Reynolds numbers, i.e. Rey = 751, 1398, 1939, 2954. The front Reynolds number is
defined as Rer = L"tffi/ v and is related to the Reynolds number via Re; = urd Re, where
uy is the dimensionless front velocity, and d is the dimensionless height of the head. To
provide sufficient resolution for the simulations of collision of gravity currents, the grid
spacing must be of the order of O(Re Sc)fl/ 2 (Hartel et al. 1997, 2000; Birman, Martin
& Meiburg 2005), and the grids employed in the three-dimensional simulations for the
preceding four Reynolds numbers follow Dai & Huang (2022) and are listed in table 1.
The time step was chosen such that the Courant number remained less than 0.5.
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Re ug d Rey Domain size Grid resolution
(L)Cl X L)C2 X Lx;) (N)C] S Nx2 X ng)
3450 0.409  0.532 751 17.5x 1.5 x 1 960 x 84 x 110
6450 0.420 0.516 1398 175 x 1.5 x 1 1024 x 96 x 160
8950 0.429  0.505 1939 175 x 1.5x 1 1056 x 112 x 180

14450 0435 0470 2954 175 x 1.5 x 1 1408 x 140 x 240

Table 1. List of simulations for the colliding gravity currents. Four Reynolds numbers, Re = 3450, 6450, 8950
and 14450, are considered. Quantitative measures based on the simulation results include the dimensionless
front velocity uy, dimensionless height of the head d, and the front Reynolds number Rey. The domain size
is kept the same for all simulations. The grid resolution increases with increasing Re to provide sufficient
resolution for the colliding gravity currents.

3. Results
3.1. Observations of the collision of gravity currents

We begin by presenting the collision of gravity currents of equal strengths in close
proximity to the centre of the flow domain. Here, the origin of the streamwise coordinate
x1 = Ois placed at the centre of the flow domain. Figure 1 shows the side view of the initial
configuration for the collision of gravity currents. As the heavy fluids in the two identical
locks on both ends of the channel are released, two gravity currents of equal strengths are
formed and propagate towards the centre of the flow domain.

In order to more easily visualize the three-dimensional simulations and to take the
ensemble (Reynolds) average for the problem in § 3.4, here we use the average in the
spanwise direction for the variables in the three-dimensional simulations. The average of
a variable f(x1, x2, x3) in the spanwise direction is defined as

Ly
<f>=L—/ 1, 13) d, 3.0)
xy J0

where L,, = 1.5, and f can be a scalar or vector variable, such as the dimensionless
density p(x1, x2, x3), velocity u;(x1, x2, x3), where i = 1, 2, 3, or pressure p(xy, x2, x3) in
the three-dimensional simulations.

Figure 2 shows the dimensionless density averaged in the spanwise direction for the
collision of gravity currents at Re = 6450 at t = 11.60, 13.29, 14.85, 15.27, 16.40 and
19.23, or equivalently, 7 = —1.2, —0.5, 0.16, 0.34, 0.81 and 2.0. Here, T denotes the
shifted time, whose definition and time origin will be introduced in § 3.2. Prior to the
collision, the two gravity currents of equal strengths propagate towards the centre of the
flow domain independently, with the height of the head d &~ 0.516 and approximately
constant front speed uy ~ 0.420 for Re = 6450. Based on the height of the gravity current
head and the front speed prior to the collision, the front Reynolds number is Rey = 1398.
The height of the gravity current head, front speed and front Reynolds number prior to the
collision in all the cases considered in this study are listed in table 1 for reference.

The two gravity currents propagate towards the centre of the flow domain independently
without influencing each other, as shown in figure 2(a) at t = 11.60 (T = —1.2), until the
two gravity current fronts are sufficiently close to each other within approximately one
lock height, as shown in figure 2(b) att = 13.29 (T = —0.5). As this stage of flow, the two
approaching gravity currents begin to slow down and are about to collide. Afterwards, the
two colliding gravity currents make contact, cause updraughts and slumping of collided
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Figure 2. Spanwise-averaged density fields for the collision of gravity currents of equal strengths at Re =
6450. The two gravity currents are produced from two identical full-depth locks on the left and right ends
of the channel. Time instances are chosen at (a) t = 11.60, (b) 13.29, (¢) 14.85, (d) 15.27, (e) 16.40 and
(f) 19.23, or equivalently, (a) T = —1.2, (b) —0.5, (¢) 0.16, (d) 0.34, (e) 0.81 and (f) 2.0. The shifted time T
is introduced in § 3.2.
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Figure 3. Spanwise-averaged (ai—a v) density fields, (bi-bv) dynamic pressure and (ci—c v) concentrations
of the passive tracers for the collision of gravity currents of equal strengths at Re = 6450 at five time instances
13.29, 14.85, 15.27, 16.40 and 19.23, or equivalently, 7 = —0.5, 0.16, 0.34, 0.81 and 2.0. The shifted time 7 is
introduced in § 3.2. Spanwise-averaged velocity (Uj, Uz) is represented by vectors for reference.

heavy fluid away from the collision region, as shown in figure 2 at t = 14.85, 15.27, 16.40
and 19.23, or equivalently, T = 0.16, 0.34, 0.81 and 2.0.

In order to visualize the interaction and mixing between the heavy fluids of the two
colliding gravity currents, figure 3 shows the spanwise-averaged density fields along with
the dynamic pressure p; and concentrations of the passive tracers C; and Cg in the
collision region. The dynamics pressure py is defined such that its gradient is in balance
with the material acceleration and the viscous term (Liu & Katz 2006), i.e.

3pd Du,‘ 1

—— 4 — V%, 3.2
0x; Dt +Re i (3-2)

where D/Dt denotes the material derivative. The dynamic pressure gradient is related to
the total pressure gradient via dpy/0x; = dp/dx; — pe‘lg , and the spatial average of the
dynamic pressure across the field is set to zero. The concentrations of the passive tracers
Cr. and Cy, are visualized by yellow and cyan colours, respectively, and the mixing of the
two passive tracers results in a green colour. As demonstrated by figure 3 at ¢ = 13.29
(T = —0.5), as the two colliding gravity currents are sufficiently close to each other
within approximately one lock height, the dynamic pressure between the two approaching
fronts rises, and the ambient fluid between the two approaching fronts begins to move
vertically upwards. After the two colliding gravity currents make initial contact, the
resulting updraughts approach the top boundary, create rising dynamic pressure close to
the top boundary, and deflect horizontally, as shown in figure 3 at ¢t = 14.85, 15.27 and
16.40 (T = 0.16, 0.34 and 0.81). It is worth noting that as the collision of gravity currents
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Figure 4. Time evolution of the dimensionless height of the heavy fluid in the H—H domain for the collision
of gravity currents at four Reynolds numbers. Symbols: [, Re = 3450; o, Re = 6450; A, Re = 8950; ¢, Re =
14 450. From Zhong et al. (2018): solid black line, C2800; dashed red line, C3500; solid blue line C4300.
The dimensionless time ¢ is shown on the top horizontal axis, and the shifted time 7" is shown on the bottom
horizontal axis. The shifted time is defined as T = (t — t.)ur/H, where . is the instance at which 4 = 0.5. The
vertical dashed lines correspond to 7= —0.2, 0.5, 1.2 and 2.8, where Phase [ is —0.2 < 7' < 0.5, Phase Il is
05<T<1.2,andPhaselllis 1.2 < T < 2.8.

continues, mixing occurs not only between the heavy fluid and ambient fluid — such as the
breakdown of Kelvin—Helmbholtz billows in the proximity of the density interface in the
laboratory experiments by Zhong et al. (2018) — but also between the heavy fluids of the
two colliding gravity currents, as shown by the green colour in figure 3 at r = 16.40 and
19.23 (T = 0.81 and 2.0). The mechanism responsible for the mixing between the heavy
fluids of the two colliding gravity currents will be discussed in § 3.3.

3.2. Collided heavy fluid in the H-H domain

As discussed in Zhong et al. (2018), the height of the heavy fluid accumulated in the
H-H domain is an important parameter in defining the three phases of collision. The H—H
domain in this study is the region (—H/2 < x1 < H/2;0 < x2 < Ly,; 0 < x3 < H) placed
at the centre of the flow domain. Following Shin ez al. (2004) and Cantero et al. (2007b),
we define an unambiguous metric for the dimensionless height of the heavy fluid in the
H-H domain as

1 H/2

Lo, H
h(r) = / f p(x1, x2, x3, 1) dxz dxo dxy. (3.3)
o Jo

LoH? ) np

Figure 4 shows the time evolution of the dimensionless height of the heavy fluid in the
H—H domain, where the normalized abscissa is T = (¢ — t.)uy/H. The time instance . is
chosen at the time instance when i = 0.5, following Zhong et al. (2018). Since the gravity
current thickness from a full-depth lock-exchange set-up is approximately 0.5H, the time
origin 7 = 0 is the time instant when the two colliding gravity currents have made full
contact, i.e. h = 0.5. With such a choice of time origin, the two colliding gravity currents
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Figure 5. Averaged vertical velocity of the density front in the H—H domain for the collision of gravity
currents at four Reynolds numbers. Symbols: [J, Re = 3450; o, Re = 6450; A, Re = 8950; ¢, Re = 14450.
The dimensionless time 7 is shown on the top horizontal axis, and the shifted time 7" is shown on the bottom
horizontal axis. The shifted time is defined as T = (t — t.)ur/H, where . is the instance at which 4 = 0.5. The
vertical dashed lines correspond to 7 = —0.2, 0.5, 1.2 and 2.8, where Phase [ is —0.2 < 7' < 0.5, Phase Il is
05<T<1.2,andPhaselllis 1.2 < T < 2.8.

make initial contact at 7' & —0.2. Prior to the two colliding gravity currents entering the
H-H domain, the dimensionless height of the heavy fluid in the H—H domain remains
identically zero, i.e. 1 = 0. Upon collision, the dimensionless height of the heavy fluid in
the H—H domain increases rapidly, while the two colliding gravity currents continue to
feed into the H—H domain. The dimensionless height of heavy fluid in the H—H domain
reaches a maximum value 7 ~ 0.9 at T ~ 1.23. Afterwards, the dimensionless height of
the heavy fluid in the H—H domain decreases over time. The maximum height of the heavy
fluid in the H—H domain and the time evolution of the dimensionless height of the heavy
fluid in the H—H domain in our study are consistent with the results of Zhong et al. (2018),
where the experimental set-ups were similar to ours in the simulations.

Following Zhong et al. (2018), the ‘averaged’ vertical velocity of the density front in the
H-H domain can be defined as

dh
Wfa = % 3.4)

Figure 5 shows the time evolution of the averaged vertical velocity of the density front
in the H—H domain, and we can identify clearly the three phases in the collision stage as
reported in the literature. Here, Phase 1 is in the time period —0.2 < 7' < 0.5, during which
the two colliding gravity currents make initial contact at 7 ~ —0.2, and the averaged
vertical velocity of the density front in the H—H domain reaches its maximum at 7 ~ —0.1.
The averaged vertical velocity of the density front in the H—H domain then begins to
decrease, while the rate of decay of wy , reaches its maximum at 7~ 0.5. Phase II is in
the time period 0.5 < T < 1.2, during which the averaged vertical velocity of the density
front in the H—H domain continues to decrease at a lower rate of decay of wr, 4, but remains
positive until 7"~ 1.2, at which wy, clearly changes sign from positive to negative.

959 A20-10


https://doi.org/10.1017/jfm.2023.148

https://doi.org/10.1017/jfm.2023.148 Published online by Cambridge University Press

Collision of gravity currents

X3 0.5

Figure 6. Three-dimensional view of the flow structures in the H—H domain for the collision of gravity
currents at Re = 6450. For illustrative purposes, the isosurface of the swirling strength is A,; = 3.68, and
the time instance is chosen at 7= 0.10 (¢ = 14.71) in Phase I of collision. The red and blue colours of
the isosurfaces of the swirling strength represent the orientations of the vortex in the positive and negative
wall-normal directions, respectively.

Phase III is in the time period 1.2 < T < 2.8, during which the averaged vertical velocity
of the density front in the H—H domain remains negative, which indicates that the collided
fluid begins to slump away from the collision region.

3.3. Flow structures in the H-H domain

It is now understood that the height of the heavy fluid in the H—H domain increases rapidly
as the two counterflowing gravity currents collide, and the collision of gravity currents may
create geometric distortions of the fronts. Since we are interested in the energy balances for
the collision of gravity currents, it is instructive to examine the flow structures in the H—H
domain as the gravity currents collide before we move on to the mean flow and turbulent
flow characteristics in the H—H domain.

Figure 6 shows the swirling strength in the H—H domain for the collision of gravity
currents at Re = 6450 and, for illustrative purposes, the time instance is chosen at T ~
0.10 ( = 14.71) in Phase I of collision. As shown in figure 6, there exists an array of
vertical vortices along the interface separating the two colliding gravity currents. As time
proceeds, these vertical vortices are stretched longitudinally and subsequently break up
into smaller structures.

In order to identify the mechanism responsible for the occurrence of an array of vertical
vortices along the interface between the two colliding gravity currents, we study the
wall-normal component of the vorticity equation in the H—H domain. We take the curl
of the momentum equation (2.2), and the wall-normal component of the vorticity equation
is

Dws duz dup duz dun ou3 1 _5
— = — —— — 4+ w3 — + — Vs, 3.5
Dt 0x> 0x3 0x1 0x3 0x3 Re
——
S1 So S3 Sy
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where S1, S2, S3 and S4 represent the tilting of x| vorticity, twisting of x, vorticity,
stretching of x3 vorticity, and diffusion of x3 vorticity, respectively. Since the gravity is
in the negative wall-normal direction, there is no baroclinic production of vorticity in
the wall-normal direction. We also remark that the component —(du/9x3)(du;/dx3) in
the tilting of x; vorticity, and the component (du;/0x3)(duz/dx3) in the twisting of x,
vorticity, have no net effects in Dws /Dt because they cancel exactly.

The contribution of the stretching of x3 vorticity, i.e. the S3 term, to Dws /Dt at T ~
0.10 (r = 14.71) is shown in figure 7(a). It is worth noting that when the array of vertical
vortices develops as the two gravity currents collide, the major contribution to Dws /Dt
comes from the stretching of x3 vorticity, i.e. the S3 term. Other contributions to Dws /Dt
from the tilting of x| vorticity, twisting of x, vorticity and diffusion of x3 vorticity, i.e.
the S1, S2 and S4 terms, are less than or even of opposite sign to the time rate of change
of x3 vorticity, and are not shown for brevity. Our results indicate that the occurrence
of an array of vertical vortices developing along the interface between the two colliding
gravity currents is due to the stretching of pre-existing x3 vorticity inside the lobes. Our
simulations show that, consistent with previously published reports (Cantero et al. 2007b;
Espath et al. 2015; Dai & Huang 2022), the x3 vorticity pre-exists inside the lobes of the
two colliding gravity currents even before the two gravity currents enter the H—H domain.
Inside a lobe moving in the streamwise direction, positive x3 vorticity exists in the left
portion of the lobe, while negative x3 vorticity exists in the right portion of the lobe. As
the two gravity currents collide, geometric distortions of the fronts create dusz/dx3, and
consequently, the stretching of pre-existing x3 vorticity. The flow structures along with
the concentrations of the passive tracers can also be visualized in a horizontal slice at
x3=0.45and T ~ 0.10 (t = 14.71) in the H—H domain, as shown in figure 7(b). Based
on the vorticity and concentrations of the passive tracers, the mixing between the heavy
fluids of the two gravity currents is observed in a way that the heavy fluid of one gravity
current between a pair of counter-rotating vertical vortices is induced across the interface
at x; &~ 0 into the heavy fluid of the other gravity current.

3.4. Energy budgets in the H-H domain

From the point of view of energy budgets, the propagation of gravity currents into a
homogeneous environment is a process in which the potential energy is converted into
kinetic energy and subsequently into dissipation (Dai 2015; Dai & Huang 2016; Dai & Wu
2016). The collision of gravity currents, in contrast to the propagation of gravity currents,
is a process in which the kinetic energy is converted into potential energy, while dissipation
may also occur in the collision process.

It is our understanding that the energy budgets can be difficult to attain in laboratory
experiments, and there is no complete information on the energy budgets in the collision
of gravity currents. In the following, we will provide a computational analysis of the
energy budget based on our three-dimensional high-resolution simulations for the colliding
gravity currents. In addition, the flow field is statistically homogeneous in the spanwise
direction, and we may derive the ensemble (Reynolds) average in the spanwise direction
as the mean flow, and the deviations from the mean flow as the turbulence fluctuations.
Therefore, we will also provide an analysis of the mean flow energy and turbulent kinetic
energy equations.

For a concise presentation of our analysis, the derivation of the total energy, mean flow
energy and turbulent kinetic energy equations is placed in Appendix A, to which readers
are referred for more details.
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(a) 1.0
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Figure 7. Flow structures visualized with vertical and horizontal slices in the H—H domain for the collision
of gravity currents at Re = 6450. The time instance is chosen at 7' =~ 0.10 (t = 14.71) in Phase I of collision.
(a) The time rate of change of x3 vorticity, Dw3/Dt, and the stretching of x3 vorticity, i.e. the S3 term in (3.5),
in the vertical slice at x; = 0.07. The time rate of change of x3 vorticity is visualized by the colour contours,
and the positive and negative contributions of the S3 term are represented by the thin solid and dashed lines,
respectively. (b) Concentrations of the passive tracers Cp and Cg, velocity (u1, up) and x3 vorticity in the
horizontal slice at x3 = 0.45. The concentrations Cr, and Cr are visualized by cyan and yellow, velocity (u1, u2)
is visualized by vectors, and the positive and negative x3 vorticities are represented by the thin solid and dashed
lines, respectively.

3.4.1. Total energy equation
The evolution equation of the total energy can be written as

% + % = ,Z;otal + M+ Dtotala (3.6)
at ot
where E; = %uiui is the total kinetic energy, E, = px3 is the total potential energy, Zyzar
is the rate of transport of total energy, M is the rate of conversion from internal energy
due to irreversible diffusion of density, and D, is the rate of dissipation of total energy.
Integration of (3.6) over the entire flow domain £2 leads to the conservation of energy
equation, i.e.

Ef +EY +Ej —Ef =EJ,_,, (3.7)
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where superscript §2 is used to denote integration over the entire flow domain, and E;? =0
is the initial potential energy in the system. The total kinetic energy E,'? and total potential
energy EI‘? are

EZ () = fg ExdV and EY () = /Q E,dV; (3.8a.b)

the total dissipated energy Ef is

t
ES () =— f D (t)dr, DL, = / Diorar AV, (3.9a,b)
0 2

and the total conversion from internal energy E;Q is
t
E2 (1) :f ME(x)ydr, M*Z :/ Mav. (3.10a,b)
0 2

Here, the integration of 7y, over the entire flow domain £2 vanishes. It is worth
noting that E;Q represents the conversion from internal energy to potential energy due
to irreversible diffusion of density (Winters ef al. 1995; Dai & Wu 2016), and, as we will
show next, the conversion from internal energy can be considered as unimportant for the
collision of gravity currents.

For illustrative purposes, figure 8 shows the energy budget in the entire flow domain for
the colliding gravity currents at Re = 6450. The energy budgets for the colliding gravity
currents at other Reynolds numbers are qualitatively similar and are not shown here for
brevity. It is observed that the total energy in the entire flow domain is conserved to a
high degree of accuracy. When the two gravity currents propagate towards the centre of
the flow domain independently, the potential energy is converted into kinetic energy and
into dissipation. As the two gravity currents collide, the potential energy in the entire
flow domain begins to increase at the expense of decreasing kinetic energy at 7 =~ —0.17
(t = 14.07). The potential energy in the entire flow domain continues to increase until
T =~ 3.43 (t ~ 22.63), when the kinetic energy in the entire flow domain begins to increase
at the expense of decreasing potential energy. The dissipated energy during the course of
propagation, including the collision of gravity currents, comprises up to 33 % of the total
energy, while the conversion from internal energy is approximately 2.2 % by the end of
the simulation. Therefore, the contribution from the internal energy, when compared with
the kinetic energy, potential energy and dissipated energy in the entire flow domain, can
be considered as unimportant for the collision of gravity currents.

Since we are interested in the collision of gravity currents in the collision region,
integration of (3.6) over the H—H domain leads to the evolution equation of the total energy
in the H—H domain:

OEM  OEl
a_tk + = = T + M + D (3.11)
where superscript H is used to denote integration over the H—H domain.

Figure 9 shows the temporal evolution of the contributions to the evolution equation of
the total energy in the H—H domain (3.11) for the colliding gravity currents at Re = 6450.

As shown in figure 9(a), that aEkH /0t is positive until 7 ~ 0.01 and becomes negative
afterwards indicates that the total kinetic energy in the H—H domain increases in early
stages of Phase I of collision, then decreases in the rest of Phase I and Phase II.
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Figure 8. Energy budget in the entire flow domain for the collision of gravity currents at Re = 6450. All
energies are normalized by the initial potential energy in the entire flow domain, E[fz:()’ Symbols: A, E;
v, EI?; o, E;,Q; o, E;Q O, E;? + EI{Z + Egz — E;Q The dimensionless time ¢ is shown on the top horizontal

axis, and the shifted time 7" is shown on the bottom horizontal axis. The vertical dashed lines correspond to
T =-0.2, 0.5, 1.2 and 2.8, where Phase I is —0.2 < T < 0.5, Phase 1T is 0.5 < T < 1.2, and Phase III is
12<T<28.

In Phase 111, 8Ef /0t =~ 0 indicates that the total kinetic energy in the H—H domain remains
nearly unchanged. The potential energy in the H—H domain increases in Phase I and Phase
II, then decreases in Phase III because 8EII;I /0t is positive until 7~ 1.2 and becomes
negative afterwards. In Phase I, Phase II and early stages of Phase III, energy is transported

into the H—H domain since 7;5 . 18 positive until 7' ~ 1.26. In the rest of Phase III, energy

is transported out of the H—H domain since ’Z;Zal becomes negative when T 2 1.26. As
H

shown in figure 9(b), the rate of dissipation of total energy in the H—H domain, D, .,
reaches its maximum magnitude at 7 = 0.22 in Phase I of collision, and diminishes
in Phase II and Phase III. The conversion from internal energy due to irreversible
diffusion of density in the H—H domain, MH  as discussed above, can be considered as
negligible.

The total energy in the H—H domain can be further decomposed into the mean flow
energy and turbulent kinetic energy, as will be shown in the next subsubsection.

3.4.2. Mean flow and turbulent kinetic energy equations

We are interested in the evolution of mean flow and turbulent flow characteristics, and for
this purpose, the ensemble (Reynolds) average for the problem is defined following (3.1),
where the brackets () represent the average performed in the spanwise direction. With the
ensemble average, U; = (i;), P = (p) and p = (p) are the mean flow velocity, pressure
and density, respectively; and u; = u; — U;, p' =p — P and p’ = p — p are the velocity,
pressure and density fluctuations, respectively.
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Figure 9. Contributions to the evolution equation of the total energy in the H—H domain (3.11) for the collision
of gravity currents at Re = 6450. All contributions are normalized by M;Hz. Symbols in (a): A, BEI{'I /ot; V,
BEIIf/at; 0, 'Z;gal. Symbols in (b): ¢, Mo, ngl. The dimensionless time 7 is shown on the top horizontal
axis, and the shifted time 7' is shown on the bottom horizontal axis. The vertical dashed lines correspond to
T =-0.2, 0.5, 1.2 and 2.8, where Phase 1 is —0.2 < 7 < 0.5, Phase I is 0.5 < T < 1.2, and Phase III is
1.2<T<28.

The evolution equation of the mean flow energy can be written as

JoE  OE
E + 8_tp = %ean +M - Bturb — Prurb + Dimeans (3.12)

where E = %U,- Ui is the mean flow kinetic energy, E, = px3 is the mean flow potential
energy, Tmean is the rate of transport of mean flow energy, M is the rate of conversion
from internal energy due to irreversible diffusion of density, —B;, is the rate of transfer
of energy away from the mean flow due to turbulent buoyancy flux, — Py, is the rate of
transfer of energy away from the mean flow due to production of turbulent kinetic energy,
and D,yeqn is the rate of dissipation of mean flow energy.

Figure 10 shows the spatial distribution of the mean flow characteristics in the H-H
domain at five instances (7' = —0.5, 0.16, 0.34, 0.81 and 2.0) during the three phases of
collision at Re = 6450. The mean flow kinetic energy demonstrates that strong shears
are generated in the low-velocity strips during Phase I and Phase II, as shown in
figures 10(ai—aiii), and the rate of dissipation of mean flow energy is most evident in
the strong shears of the mean flow, as shown in figures 10(gi—giii). The rate of transfer
of energy away from the mean flow due to turbulent buoyancy flux is apparent, as
shown by the red and blue strips close to the top boundary in figures 10(eii—eiv). The
turbulent buoyancy flux close to the top boundary is created by a number of horizontal
streamwise vortices aligned close to the top boundary. Detailed inspections show that
the presence of the top boundary deflects the updraughts of collision into the horizontal
direction. The vorticity in these horizontal streamwise vortices aligned close to the top
boundary intensifies further due to stretching in the horizontal direction in Phase I of
collision, and these horizontal streamwise vortices break up into smaller structures in
Phase II of collision. The rate of transfer of energy away from the mean flow due
to production of turbulent kinetic energy is apparent in the rising density front and
throughout the updraught fluid column where the vertical vortices are located, as shown
in figures 10(fii—fiii). The rate of transfer of energy away from the mean flow due to
production of turbulent kinetic energy then weakens in Phase II and Phase III of collision.
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Figure 10. Mean flow and turbulent flow characteristics for the collision of gravity currents at Re = 6450.
Panels show: (ai-a V) E, (bi-bV) k, (ci—c V) Tean, (di~d V) Tyup, (ei—e V) —Buyp, (f i=f V) —Puup, (gi-g V)
Dineans (hi—hv) Dy,p. Time instances are chosen at 7 = —0.5, 0.16, 0.34, 0.81 and 2.0. Mean flow velocity
(U1, Uz) is represented by vectors for reference.
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Figure 11. Contributions to the evolution equations of the mean flow energy and the turbulent kinetic energy
in the H—H domain, i.e. (3.13) and (3.15), for the collision of gravity currents at Re = 6450. All contributions
are normalized by u_?Hz. Symbols in (a): A, dET /31, v, 8E[1f/8t; 0, ’Z;’lf,an. Symbols in (b): o, MH; I,
—Bgrh; o, —Pgrb; o, Df,,’ea”. Symbols in (¢): A, 9kT /o1 O, 7;5,) Symbols in (d): B, Bgrb; o, grb; o,
Dgrb. The dimensionless time 7 is shown on the top horizontal axis, and the shifted time 7 is shown on the
bottom horizontal axis. The vertical dashed lines correspond to 7' = —0.2, 0.5, 1.2 and 2.8, where Phase I is
—02<T<0.5,Phase [1is 0.5 < T < 1.2, and Phase Il is1.2 < T < 2.8.

Integration of (3.12) over the H—H domain leads to the evolution equation of the mean
flow energy in the H—H domain:

9E" 8E£I H H H H H
7 7 = %ean + M7 — Bturb - Pturb + Dyean (3.13)
where superscript H is used to denote integration over the H—H domain.

Figures 11(a) and 11(b) show the temporal evolution of the contributions to the evolution
equation of the mean flow energy in the H—H domain (3.13) for the collision at Re =
6450. The potential energy and conversion from internal energy of the mean flow, when
integrated over the H—H domain, are identical to their counterparts in the total energy
equation in the H—H domain (cf. (3.11)), therefore the temporal evolutions of BEI‘? /0t and

MM are included in figure 11 for reference but not discussed for brevity. As shown in
figure 11(a), the mean flow kinetic energy in the H—H domain increases with positive
dEM /3t in Phase I of collision until T &~ —0.02, then decreases with negative dE /3t
in the rest of Phase I and Phase II. In Phase III, the mean flow kinetic energy in the
H-H domain remains nearly unchanged. The mean flow energy is transported into the
H-H domain, with positive 7 in Phase I, Phase II and early stages of Phase IIT until

mean
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T ~ 1.41., and turns to be transported out of the H—H domain with negative 7.2 in
the rest of Phase III. As shown in figure 11(b), the rate of dissipation of mean flow

energy in the H-H domain, D, reaches its maximum magnitude at T ~ —0.17, which

occurs earlier than the time 7 = 0.22 when Dfolml reaches its maximum magnitude. In
addition, at 7 ~ 0.22 when ngl reaches its maximum magnitude, the contribution to
the total rate of dissipation of energy from DX, is approximately 22 % of the maximum
magnitude of Dgt .- Which suggests that the dissipation of energy in the H—H domain is not
predominated by the strong shears of the mean flow as shown in figures 10(g i—giii). The
rate of transfer of energy away from the mean flow due to production of turbulent kinetic
energy in the H—H domain, —Pgrb, reaches its maximum magnitude at 7 & 0.16, at which
the vertical vortices extending throughout the updraught fluid column begin to become
distorted and then break up into smaller structures. The rate of transfer of energy away
from the mean flow due to turbulent buoyancy flux in the H—H domain, —szrb, reaches
its maximum magnitude at 7'~ (.78, at which the horizontal streamwise vortices close
to the top boundary have broken up into smaller structures. It is interesting to note that
the rate of transfer of energy away from the mean flow is due primarily to the production
of turbulent kinetic energy in Phase I of collision and is due primarily to the turbulent
buoyancy flux in Phase II of collision.

The evolution equation of the turbulent kinetic energy can be written as

ok
E = Turp + Bturb + Pturb + Dturba (3'14)

where k = (%u;u;) is the turbulent kinetic energy, 7y, is the rate of transport of turbulent

kinetic energy, By, is the rate of transfer of energy to the turbulent flow due to turbulent
buoyancy flux, Py, is the rate of transfer of energy to the turbulent flow due to production
of turbulent kinetic energy, and Dy, is the rate of dissipation of turbulent kinetic energy.
While — B, and — Py, terms transfer energy away from the mean flow in (3.12), By
and Py, terms supply energy to the turbulent flow in (3.14). It becomes clear that the
turbulent buoyancy flux and the production of turbulent kinetic energy simply transfer the
energy away from the mean flow into the turbulent flow without changing the total energy.

Figure 10 also shows the spatial distribution of the turbulent flow characteristics in
the H—H domain at five instances (7 = —0.5, 0.16, 0.34, 0.81 and 2.0) during the
three phases of collision at Re = 6450. The turbulent kinetic energy demonstrates that
the vertical vortices along the interface separating the two colliding gravity currents
create strong turbulence extending throughout the updraught fluid column, as shown in
figures 10(b i—b iii), and dissipation in Phase I of collision, as shown in figures 10(4 i—A iii).

Integration of (3.14) over the H—H domain leads to the evolution equation of the
turbulent kinetic energy in the H—H domain:

k" H H H H
? = Zurb + Bturb + Pturb + Dturb’ (3.15)
where superscript H is used to denote integration over the H—H domain.

Figures 11(c) and 11(d) show the temporal evolution of the contributions to the evolution
equation of the turbulent kinetic energy in the H—H domain (3.15) for the collision at
Re = 6450. As shown in figure 11(a), the turbulent kinetic energy in the H—H domain
increases at its maximum rate in Phase I, continues to increase at a lower rate in Phase 11
until 7'~ 1.17, and decreases in the rest of Phase II and Phase III. The turbulent kinetic
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energy is transported into the H—H domain with positive Zgb in Phase I and early stages

of Phase II until 7~ 0.57, and turns to be transported out of the H—H domain with
negative ’];gb in the rest of Phase II and Phase III. As shown in figure 11(d), the rate
of dissipation of turbulent kinetic energy in the H—H domain, szrb, reaches its maximum
magnitude at 7 & 0.43, which occurs after both the time T ~ —0.17 when DX reaches
its maximum magnitude, and the time 7 = 0.22 when ngl reaches its maximum
magnitude. Furthermore, at 7 ~ 0.22, when Dfolt .
contribution to the total rate of dissipation of energy from D, ,
of the maximum magnitude of ng,, which suggests that the dissipation of energy in the
H-H domain is predominated by Dgrb, as shown in figures 10(hi-hiii). As discussed
above, the energy transferring away from the mean flow is supplied to the turbulent
flow. As such, the contribution to the turbulent kinetic energy budget is due primarily
to production of turbulent kinetic energy in Phase I of collision and is due primarily to

turbulent buoyancy flux in Phase II of collision.

; reaches its maximum magnitude, the
H is approximately 78 %

4. Conclusions

In this study, we investigated the collision of two counterflowing gravity currents of
equal densities and heights using three-dimensional high-resolution simulations of the
incompressible Navier—Stokes equations with the Boussinesq approximation. The goal is
to deepen our understanding of the flow structures and energetics, including the spatial
distribution and temporal evolution of the mean flow and turbulence characteristics, in the
collision region, in more detail.

According to Zhong et al. (2018), there are four flow stages in the experiments of
colliding gravity currents: independent propagation of gravity currents, their approach
while influencing each other, collision stage, and post-collision slumping of collided

fluid. The lifetime of the collision stage is approximately 3H/ ug, where H is the depth
of heavy and ambient fluids, and uy is the front velocity of the approaching gravity
currents. Our focus in this study is on the collision stage and, specifically, the three
phases involved in the collision stage. The three phases involved in the collision stage
are: Phase I, —0.2 < (f — ?c)itf/l:l < 0.5; Phase II, 0.5 < (f — fc)itf/l:l < 1.2; Phase 111,
1.2 < (1 —10)uy /H < 2.8, where 7 is the time, and 7. is the time instance at which the two
colliding gravity currents have fully osculated.

During Phase I of collision, geometric distortions of the gravity current fronts result in
stretching of pre-existing wall-normal components of vorticity inside the gravity current
fronts, and consequently an array of vertical vortices extending throughout the updraught
fluid column develop along the interface separating the two colliding gravity currents.
These vertical vortices along the interface, in both positive and negative wall-normal
directions, are responsible for the mixing between the heavy fluids of the two colliding
gravity currents and for the strong turbulence extending throughout the updraught fluid
column. Based on our analysis of the energy budget, the turbulent kinetic energy is
supplied primarily by the production of turbulent kinetic energy term in Phase I of
collision, and the dissipation of energy in the collision region is predominated by the
dissipation of turbulent kinetic energy instead of by the strong shears of the mean flow.

Towards the end of Phase I, the presence of the top boundary deflects the updraughts
of collision into the horizontal direction, and a number of horizontal streamwise vortices
aligned close to the top boundary are created. These horizontal streamwise vortices close
to the top boundary induce turbulent buoyancy flux and, during Phase II of collision, break
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up into smaller structures. While the production of turbulent kinetic energy weakens in
Phase II and in Phase III, the transfer of energy from the mean flow to the turbulent flow
due to turbulent buoyancy flux reaches its maximum in Phase II of collision. In contrast
to Phase I of collision, in which the production of turbulent kinetic energy term is the
primary supply in the turbulent kinetic energy, the transfer of energy from the mean flow
to the turbulent flow due to turbulent buoyancy flux becomes the primary supply in the
turbulent kinetic energy in Phase II of collision. From the point of view of energetics, the
production of turbulent kinetic energy and turbulent buoyancy flux simply transfers energy
away from the mean flow into the turbulent flow without changing the total energy. During
Phase III of collision, the collided fluid slumps away from the collision region, while the
production of turbulent kinetic energy, turbulent buoyancy flux and dissipation of energy
attenuate.

The three-dimensional high-resolution simulations reported in this study complement
the experimental investigation by Zhong et al. (2018). While it was evident in the
experiments that mixing occurs at the interface between the heavy fluid and the ambient
fluid, such as the breakdown of Kelvin—Helmholtz billows in the proximity of the density
interface, the mechanism responsible for the mixing between the heavy fluids of the
two gravity currents, and a discernible amount of turbulence extending throughout fluid
column in the collision region, remained unresolved in the literature. With the help of
high-resolution simulations, the flow structures responsible for the mixing between the
heavy fluids of the two gravity currents are now revealed, and the spatial distribution and
temporal evolution of the mean flow and turbulent flow characteristics in the collision
region are presented. It is our understanding that such complete information on the flow
structures and energy budgets in the collision of gravity currents can be difficult to attain
in laboratory experiments.

The present study is for the collision of gravity currents of equal strengths from a
full-depth lock-exchange configuration. Future extensions may include, for example, the
collision of gravity currents of different densities and heights, collision of two cylindrical
gravity currents relevant for colliding microburst pairs, collision of inwardly propagating
gravity currents in a radially symmetric set-up relevant for the collision of sea breezes
over near-circular islands, and the collision of gravity currents under the influence of the
Coriolis forces. These other aspects would be worth further study.
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Appendix A. Derivation of the energy equations

This appendix contains the derivation of the total energy, mean flow energy and turbulent
kinetic energy equations.
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A.1. Derivation of the total energy equation

The evolution equation of the total energy is obtained by multiplying the momentum
equation (2.2) by u;, i.e.

D (1 D o) 2 ) 2 "
— | zwini | = —puz — — (puj) + — — (wisij) — — sijsij,
Dr \ 211 ) T TP T 5y ) T Re g ) T R MU

where D/Dr denotes the material derivative, s; denotes the strain rate tensor, s; =

%(ui,j—i—uj,,-), and u3 denotes the velocity component in the x3 direction. Using the
relationship

— D 22 (A2)
puz = 5 (px3) — X3

and D/Dt = 9/t + u; 9/9x;, we may rewrite (Al) as

0 (1 0 0 1 2
37 \ o it + Py (px3) = _a_xj puj + pxsuj + o Uittitl = oo Wisij
Ey Tiotal
(L P 2 (A3)

X3 — — 8jiSii,

Re Sc 0x; 0x; 3 Re 7Y

———

M Dtotal

where Ej, = %u,-ui is the total kinetic energy, E, = px3 is the total potential energy, Zzas
is the rate of transport of total energy, M is the rate of conversion from internal energy
due to irreversible diffusion of density, and Dy, is the rate of dissipation of total energy.

A.2. Derivation of the mean flow energy equation

To decompose the flow field into the mean flow and turbulent fluctuations, the mean flow
is derived by taking the ensemble (Reynolds) average of the flow field. The ensemble
average, denoted by the brackets (), is performed in the spanwise direction following (3.1),
and the deviations from the mean flow are taken as the turbulent fluctuations. With the
ensemble average, U; = (i;), P = (p) and p = (p) are the mean flow velocity, pressure
and density, respectively; and u; = u; — U;, p' =p — P and p’ = p — p are the velocity,
pressure and density fluctuations, respectively.

The evolution equation of the mean flow energy can be derived by taking the ensemble
average of (2.2) and then multiplying the averaged equation by Uj, i.e.

aluu; aluu; 9 2
2 1 1 2 1 1
b of 7 = o <PU, + Ui (uus) — e Ul-S,-j)
) L, U 2
— pU3 + (uu;) a—x] ~ e SiiSijs (A4)

where §;; = %(U,-, j + Uj,i) denotes the mean flow strain rate tensor. Using the relationship

0 0 sy 220 sy
= "o o (pUjxs) [at+axj (pUJ)]x3’ (A3)

pU3
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and noting that taking the ensemble average of (2.3) gives

95 | 9 1 9% 9p'w)

— (pU;) = — , A6
ot + 0x; ('O ]) Re Sc 0x;j dx; 0x; (A6)

we may rewrite (A4) as

a (1 a 0 _ 1 2
————

E/’
E Tmean
1 9% d(p'u;)
+ i X3 — / X3
Re Sc 0x;j dx; 0x;
—_—
M —Buurp
aU; 2
/oy i
—_——
—Prurb Dinean

where E = %Ui Ui is the mean flow kinetic energy, E, = px3 is the mean flow potential
energy, Tmean is the rate of transport of mean flow energy, M is the rate of conversion
from internal energy due to irreversible diffusion of density, —B;,,, is the rate of transfer
of energy away from the mean flow due to turbulent buoyancy flux, —Py, is the rate of
transfer of energy away from the mean flow due to production of turbulent kinetic energy,
and Dyyeqy 1s the rate of dissipation of mean flow energy.

A.3. Derivation of the turbulent kinetic energy equation

The evolution equation of the turbulent kinetic energy can be derived by subtracting the
ensemble average of (2.2) from (2.2) itself, multiplying the resulting equation by u;, and
then taking the ensemble average again, i.e.

8(%”;“;) a<%u;u;) 8 1 s /7 2 !/
o1 + U; o, = _S_Xj <<§ uju,-u,-> + (pu;) — R (uisl-j))
ou; 2
— (0ul) — (uju) a_x]l ~ (s7;7)- (A8)
Using the relationship
d d(p"ut)
oI v J
i) = 5 (1) = ( ) (A9)
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Figure 12. Energy budget in the entire flow domain for the collision of gravity currents at Re = 14450 (Rey =
2954). All energies are normalized by the initial potential energy in the entire flow domain E[ftzo. Symbols: A,

E,fZ; v, Ef; o, Ej?; o, EIQ; O, E,\Q + Ef + E;? — ElQ The dimensionless time ¢ is shown on the top horizontal
axis, and the shifted time 7" is shown on the bottom horizontal axis. The vertical dashed lines correspond to
T = —0.2, 0.5, 1.2 and 2.8, where Phase I is —0.2 < T < 0.5, Phase I 'is 0.5 < T < 1.2, and Phase III is

12<T<28

we may rewrite (A8) as

d 1 0 1 1
2 ((3ut)) = =2 (wap + o+ (i) 0+ St
]

2 i
)~ e i)

k Tourb
d(p'u) ou; 2
J -~ l 1
[ —
_—
Biurp Prurb Durb

where k = (%u;u;) is the turbulent kinetic energy, 7y, is the rate of transport of turbulent
kinetic energy, By, is the rate of transfer of energy to the turbulent flow due to turbulent
buoyancy flux, Py, is the rate of transfer of energy to the turbulent flow due to production

of turbulent kinetic energy, and Dy, is the rate of dissipation of turbulent kinetic energy.

Appendix B. Influence of the Reynolds number

The collisions between gravity currents on the geophysical scale often have Reynolds
numbers of orders of magnitude larger than the Reynolds numbers achievable in laboratory
experiments and numerical simulations. When the Reynolds number becomes high
enough, the turbulent flow reaches a self-similar stage and the scale effects are insignificant
(Barenblatt 1996). As investigated by Zhong et al. (2018), the collisions between gravity
currents appear to enter the self-similar stage when Rey 2 3000, which was proposed by
Breidenthal (1981) and discussed by Princevac, Fernando & Whiteman (2005).
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(b) !
(x102)

Figure 13. Contributions to the evolution equations of the mean flow energy and the turbulent kinetic energy
in the H—H domain, i.e. (3.13) and (3.15), for the collision of gravity currents at Re = 14450 (Rey = 2954). All
contributions are normalized by u;Hz. Symbols in (a): A, BEH/Bt; v, aEﬁ/Bt; O, man. Symbols in (b): ©,
M A, —B{Zrb; o, —Pgrb; o, D,’Zmn. Symbols in (¢): A, 8kH/8t; O, ’Z;’;’rb. Symbols in (d): B, B,Hurb; o, Pgrb;

o, Dzrb. The dimensionless time ¢ is shown on the top horizontal axis, and the shifted time 7 is shown on the

bottom horizontal axis. The vertical dashed lines correspond to 7' = —0.2, 0.5, 1.2 and 2.8, where Phase I is
—02<T<0.5,PhaseIis 0.5 < 7T < 1.2, and Phase ITis 1.2 < T < 2.8.

Our numerical simulations, like the laboratory experiments, provide a controlled
environment for the study of the collisions between gravity currents. The Reynolds
numbers considered in this study, 751 < Rey < 2954, are smaller than the Reynolds
number for the flow to reach the self-similar stage, but it can be expected that the
Rer = 2954 case (Re = 14 450) approaches the self-similar stage.

For illustrative purposes, in the paper we show the energy budget for the colliding
gravity currents at Re = 6450 (Rey = 1398). This appendix contains the energy budget
for the colliding gravity currents at Re = 14450 (Rey = 2954). Figure 12 shows that
the energy budget in the entire flow domain for the colliding gravity currents at Re =
14450 (Rey = 2954) exhibits initial propagation of gravity currents, their approach while
influencing each other, collision stage and post-collision, and appears to be similar to
figure 8. Figure 13 shows the temporal evolution of the contributions to the evolution
equation of the mean flow energy and the turbulent kinetic energy in the H—H domain for
the collision at Re = 14450 (Rey = 2954). It is observed that the dissipation of energy in
the H—H domain is predominated not by the mean flow but by the dissipation of turbulent
kinetic energy. In addition, the contribution to the turbulent kinetic energy is due primarily
to the production of turbulent kinetic energy in Phase I of collision, and is due primarily
to the turbulent buoyancy flux in Phase II of collision. Our findings presented in the paper
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Figure 14. (a) Time evolution of the eddy diffusivity spatially averaged over the H—H domain. Line colours:
black, Re = 3450 (Rey = 751); red, Re = 6450 (Rey = 1398); blue, Re = 8950 (Rey = 1939); green, Re =
14450 (Rep = 2954). The dimensionless time ¢ is shown on the top horizontal axis, and the shifted time T
is shown on the bottom horizontal axis. The vertical dashed lines correspond to 7 = —0.2, 0.5, 1.2 and 2.8,
where Phase Iis —0.2 < T < 0.5, Phase I1is 0.5 < T < 1.2, and Phase Il is 1.2 < T < 2.8. (b) The overall
eddy diffusivity spatially averaged over the H—H domain and temporally averaged over Phases [-III against
Rey. Symbols: o, experimental data by Zhong et al. (2018); e, present study. The error bars are the standard
deviations of fluctuations from the temporal averaging.

are evidently supported by the collision of gravity currents at Re = 14450 (Rey = 2954).
It becomes clear now that the Rey = 2954 case (Re = 14 450) is qualitatively similar to the
Rey = 1398 case (Re = 6450), and the collisions between gravity currents at even higher
Reynolds numbers are expected to reach the self-similar stage.

Appendix C. Eddy diffusivity
In modelling environmental turbulent flows, it is conventional to use the eddy diffusivity
k; to describe turbulent buoyancy flux:
/., —
00 92p
— Rt )
0x; 0x;j 0x;

(ChH

where k; is made dimensionless by the lock height H as the length scale, and the buoyancy
velocity iy, as the velocity scale. Note that &, is a function of space and time. For practical
purposes, it would be useful to obtain an averaged eddy diffusivity k;, spatially averaged
over the H—H domain, rather than pointwise description of eddy diffusivity and an overall
eddy diffusivity K7, space—time-averaged over the H—H domain and Phases I-III, for a
parametrization of collision events in mesoscale models.

As validation for our results and a comparison with the laboratory experiments by Zhong
et al. (2018), figure 14(a) shows the time evolution of k;, spatially averaged over the H—H
domain, and figure 14(b) shows the overall eddy diffusivity K7, space—time-averaged over
the H-H domain and Phases I-1II, against Rey. It is gratifying to note that our results are
quantitatively consistent with the experimental data and supportive of the value K7 /us ~
3.6 x 1073 for Rer 2 3000 proposed by Zhong et al. (2018).
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