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CURVATURE OF LEVEL CURVES OF 
HARMONIC FUNCTIONS 

BY 

M A R V I N O R T E L A N D W A L T E R S C H N E I D E R 

ABSTRACT. If H is an arbitrary harmonic function defined on an 
open set ft<=C, then the curvature of the level curves of H can be 
strictly maximal or strictly minimal at a point of O. However, if Cl is 
a doubly connected domain bounded by analytic convex Jordan 
curves, and if H is harmonic measure of ft with respect to the outer 
boundary of H, then the minimal curvature of the level curves of H 
is attained on the boundary of H. 

§1. Introduction. To our knowledge, all earlier theorems regarding the 
curvature of level sets of harmonic functions pertain exclusively to Green's 
functions on simply connected domains. For instance, [1] contains the well-
known result that level curves of Green's functions on simply connected convex 
domains in the plane are convex Jordan curves. More difficult versions of these 
results (in higher dimensions) appear in [2], [3], [4]. 

In the present paper we prove a general extremum principle for the curva­
ture of level curves of harmonic functions (Theorem 2.1) as well as a particular 
extremum principle for curvature in the case of harmonic measure on a doubly 
connected plane domain (Theorem 3.1). By the latter theorem the level curves 
of harmonic measure (with respect to the outer boundary) of an annular 
domain bounded by convex Jordan curves are, themselves, convex. 

These two theorems suggest that broader extremum principles for the 
curvature may be valid. We formulate two conjectures to this effect. Then we 
provide a counter example to the stronger conjecture by constructing a 
particular harmonic function whose level curves attain strictly maximal curva­
ture at an interior point of its domain. The weaker conjecture, which concerns 
harmonic measure, remains open. 

§2. The curvature function. The following definition is convenient for the 
study of the curvature of level curves. 

DEFINITION 2.1 Let H be harmonic in the open set ftczC. Suppose the 
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derived analytic function g = Hx — iHy never vanishes in ft and set 

K(H,z) = | g ( z ) | R e ^ ) ( z ) , all z e f t . 

We refer to K(H, •) as the curvature function for H. • 

To justify the terminology, let J be an open interval of real numbers and 
suppose s-> z(s) is a differentiate function on I taking values in 11 and 
satisfying 

(2.1) z(s) = ^ ^ - r all sel. 
|g(z(s))| 

Then s^z(s) is a unit speed parametric arc and H(z(s)) is constant on the 
interval I. For s el set x(s) = Rez(s) , y(s) = Imz(s) , and 

Q(s) = |g(z(s))|(x(s)y(s)-Jc(s)y(s)) = Im(i(s)z(s)|g(z(s))|). 

Since 

Im (z(s)z(s) — |g(z(s))|j = 0 for all s e J, 

the product rule leads to 

Q(s) = Im[z(s )£ (z ( s ) |g (z ( s ) ) | ) ] , all seL 

In this expression for Q(s) replace z(s) |g(z(s))| by ig(z(s)), then employ the 
chain rule, and then substitute for z(s) according to (2.1). We obtain 

Q(s) = Re(g'(z(s))(z(s))2) = |g(z(s))|2 R e ( - ) (z(s)), all s e L 

Therefore 

x(s)y(s) — x(s)y(s) = K(H, Z(S)), all s e I. 

Since |z(s)| = l the left-hand side above is the curvature at z(s) of the 
parametric level arc of H defined by (2.1). So K(H, Z) is the curvature at z of 
any parametric level arc of H passing through z. 

There are simple extremum principles for the curvature function. 

THEOREM 2.1. Let il be a connected open subset of C, let zed, and let H be 
harmonic and have no critical points in ft. 

(1) Suppose K ( H , w)>0 , all wef t . Then 

K(H, z) >lim inf K(H, W) 

and equality holds if and only if K(H, •) is a constant function. 
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(2) Suppose K(H, W ) < 0 , all w e d . Then 

K(H, z)<lira sup K(H, W) 

and equality holds if and only if K(H, •) is a constant function. 
(3) If K(H, •) is a constant function then K(H, W) = 0, all w ed and there exist 

three real numbers A, JB, C, and one complex number a<£Q such that H(x + iy) — 
Ax 4- By 4- C, all x + iy ed or H(w) = Aarg( w - a) + JB, all weft. • 

Proof. Set g = Hx- iHy. By hypothesis g has no zeros in ft. 
(1) The hypothesis of statement (1) implies Re(l/g) '(w)>0 for all weft. 

Hence there are two cases: (a) Re(l/g)'(w) = 0, all w e d ; (b) Re(l/g) '(w)>0, 
all wef l . In case (a) K(H, W) = 0, all we CI. In case (b) Jensen's inequality and 
the mean value theorem for harmonic functions imply that the average of 
logRe(l/g)', over any sufficiently small circle centered at a point weft, is less 
than log Re(l/g)'(w). Therefore, in case (b) log Re(l/g)' is super harmonic in ft 
and log K(H, •) is super harmonic in Ci. By the minimum principle for super 
harmonic functions 

log K(H, z) >lim inf log K(H, W) 

and log K(H,-) is a constant function if and only if equality holds. The 
conclusions of (1) are now immediate. 

(2) Apply part (1) to K(-H, -) = -K(H, •)• 
(3) Suppose K(H, W) = constant, all we Ci. Then either Re(l/g)' = 0 (if 

constant = 0) or \g\~~l = (constant)-1 Re(l/g)' is harmonic in Ci. In the second 
instance the mean value theorem implies (for appropriate r > 0 ) 

1 1 f2" dO I 1 f2" dO _L f de i l r 
ZTJO \g(z + rew)\-\27rl |g(z)| 2TTJ0 |g(z + reie)| |2TT J0 g(z + rew) 

1 
"k(z)\ 

We conclude that g(w) is identically constant in Ci. So in both cases constant = 
0 and Re(l/g)' = 0. Thus 

g(w) = [i (real constant w + complex constant]"1 

and it is evident that H is of the expressed form. • 

§3. Theorem 3.1 is a minimum principle for curvature of level curves of 
harmonic measure with respect to the outer boundary of an annulus bounded 
by convex Jordan curves. Thus, for completeness, we first define these terms 
precisely. 

By definition, a proper Jordan curve T is a pair (T*, p) for which the following 
statements are valid: 

(i) p is an analytic function defined in a neighborhood of the real line with 
non-vanishing derivative. 
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(ii) r* = {p(t):t real} is a Jordan curve, 
(iii) \dp/dt(t)\ = 1, ail te (-00, 00). 
(iv). There is a number e X ) such that if t is real, and p(f) = x(t) + /y(f), and 

0 < e < e , then p(t) +e(-y(t) + ix(t)) lies in the interior of r*. 
If z = p(t)eT*7 we define the curvature of T at z by 

c ( r , z ) = y(f)jc(r)-ic(f)y(f). 
The choice of the parameter t corresponding to z is irrelevant; it can be shown 
that p is periodic with some period T > 0 and that p maps [0, T) one-to-one 
onto r*. 

If r() and T{ denote proper Jordan curves with T* contained in the interior of 
Ff, then A = A(T(h T{) shall denote the region bounded by T* and Ff. Since F() 

and Tl are proper Jordan curves there is a region II and a function H such that 
Â c ( ] , H is harmonic in 12, H has no critical points in 12, H is identically zero 
on T*, and H is identically one on r*. There is at most one such function H in 
any fixed region 12 containing Â and any candidate will be called harmonic 
measure for the annulus A with respect to IY Then, if 0 < r < l , we set 
r* = {z G Â : H(z) = r} and assert that there is a function pr such that Fr = 
(T*, pr) is a proper Jordan curve. Moreover, F* lies in the interior of F* and 
r<H(z)<s if 0 < r < s < l and zeA(Tr,Ts). These statements are standard 
(but non-trivial). Finally, we introduce the following notation for the minimum 
and maximum curvatures of FoUTi: 

k(r(), TO = min{c(rr, z) : (r = 0 o r r = 1) and z e F*} 

K(r(), TO = max{c(Fr, z) : (r = 0 or r = 1 ) and z G F*} 

THEOREM 3.1. Let r 0 = (r*, Po) ^^d r 1 = (rf, p j denote proper Jordan curves 
with F* lying in the interior of T*, let H denote harmonic measure for the 
annulus A = A(r o , T^ with respect to F l5 and let Fr — (T*, pr), 0 < r < 1, denote 
proper Jordan curves for which T* = {z e A: H(z) -• r}. Then 

(1) c(Fr, z) = K (H , Z), a/I r e [0 , 1] and all z eF*; 
(2) If K(T0, T{)^0 and 0 < r < l and z e F * we have 

K(H,z) = c(r n z)>K(r ( ) , r I ) 
and F* is strictly convex. • 

Proof. (1) Fix r e [0 ,1 ] and set p(r) = p r(r)-x(r) +/y(0, all r e ( - ^ , ^ ) . We 
claim that p is a solution of the differential equation (2.1) with g = Hx~iHy 

(for the case r = 0 or 1 recall that H is harmonic with no critical points in a 
neighborhood of Â). Since H(p(t)) = r we have Hx(p(f))x(f) + Hy(p(f))y(f) = 0. 
Thus 

(*) Rep(0g(p(0) = 0. 

By the discussion of terminology, H(z)<r if z lies in the interior of T*; 
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therefore a number e( r )>0 can be chosen so that H(p(0 + e ( -y (0 + ^ ( 0 ) ) -

ff(p(f))<0, all eE(0, e(r)] and all fe (-00,00). Divide by e and allow e ^ O . 
We see 

(**) Imp(r)g(p(0)^0 

Together (*) and (**) imply 

p(0g(p(r))-i |p(0l |g(p(0)l , 

and since |p(f)| = l and |g(p(t))|^0, it follows that p satisfies (2.1). We 
conclude 

K(H, p(t)) = y(t)Ht)-x(t)y(t) = c(rr, p(t)) 

as required. 
(2) By the hypothesis and part (1) K(H, Z) = c(Tr, z ) > 0 if r = 0 or 1 and 

zeT* . Thus Re( l /g) '>0 on dA. And this implies that both Re(l/g)' and 
K(H, •) are non-negative at each point of A. Moreover 

lim inf K(H, W) = min K(H, W) = fc(F0, I \) 
w—>aA w e d A 

by part (1) of the present theorem. We appeal to part (1) of Theorem 2.1 and 
conclude c(Tr, Z) = K(H, z)>k(TlhTi\ all re (0 , 1) and all zeT*. 

It is well known that Jordan curves with non-vanishing curvature are strictly 
convex. • 

A conjecture. To our knowledge there is no counterexample to any part of 
the following conjecture. 

CONJECTURE 3.2. Let TQ and Tx denote proper Jordan curves with T* in the 
interior of Tf, let H denote harmonic measure for A = A(T0, r \ ) with respect to 
r l 5 and let Tr denote a proper Jordan curve with T* = {z e A : H(z) = r}. Then 
fc(r(),r1)<c(rr,z) = K(H,z)<jK:(r0,r1), all re [0 , l ] and all Z G T * . D 

Conjecture 3.2 pertains to the theory of conformai mapping because H is 
essentially the logarithm of the modulus of a conformai map of A onto a 
circular annulus. Moreover, the upper and lower bounds in the conjectured 
inequalities are geometrical quantities associated with A, while K(H, •) has a 
simple analytic expression in terms of the mapping function mentioned above. 

§4. Counterexample to a stronger conjecture. The purpose of this section is 
to provide a counterexample to the following conjecture, the truth of which 
would immediately imply the truth of Conjecture 3.2. 

CONJECTURE 4.1. Let H be harmonic with no critical points in a region ft. 
Then 

lim inf K(H, W ) < K ( H , Z ) < l i m sup K(H, W), all ze f t . • 
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Because Conjecture 4.1 is false the geometrical hypotheses of Conjecture 
3.2 are seen to be essential. We require Lemma 4.2 in the construction. 

LEMMA 4.2. Set h(w) = exp[ — (w — l) + ̂ (w— l)2]. Then there are positive 
numbers r and 8 and there is an analytic function g defined for \z\<r such that 
the following statements are valid. 

(1) | h ( w ) | R e w < h ( l ) i / 0 < | w - l | < o 
(2) g (w)^0 i / | w | < r . 
(3) (l/g)'(0) = l and g(0) = l. 
(4) 0 < | ( l / g ) ' ( z ) - l | < 8 î / 0 < | z | < r . 
(5) h((l/g)'(z)) = g(z) if\z\<r. D 

Proof. (1) The remainder after two terms in Taylor's expansion of log x 
about x = 1 is 0(|x —1|3). Thus we may choose 8>Q so that 

log x-(x - 1) + K x - \?<\{x - I)2 if 0 < | x - 1 | <ô . 

This implies log x -(x - 1)+ *[(*- l ) 2 - y 2 ] < 0 if 0< ( JC - l)2-f y 2 < S 2 ; or equi-
valently, with w = x + iy, 

| e x p [ - ( w - 1)4-Kw- 1)2]| Re w < 1 if 0 < | w - 1| <Ô. 

This is statement (1). 
(2) —> (5) The function h is one-to-one in a neighborhood N0 of the complex 

number 1; also h(\) = 1. Denote by fi_1 the inverse function of h|N(), denote the 
domain of h l (a neighborhood of 1) by N{, and note that h l( 1 ) = 1. Since 
h ] (1 )^0 , there is a unique analytic solution g of the initial value problem 

(*) g'(z)---g(z)2hHg(z)), g (0 )= l , 

defined in a neighborhood N2 of zero (so that g(N2)
<= N,). 

The following properties of g are successively evident in light of (*) and the 
fact that h~l is one-to-one in Nx with h~\l) = 1. 

(a) There is a neighborhood N3 of 0 such that N3 c N2, g(z) ^ 0 for z in N3, 
g'(z) T̂  0 for z in N3, and g is one-to-one in N3. 

(b) (l/g)'(z) = »i-r(g(z)), all zeN3. 
(c) (1/g)' is one-to-one in N3 and (l/g)'(0)= 1. 
(d) With 8 as in statement (1), there is a neighborhood N4 of 0 such that 

N4aN3, (l /g) '(z)eN ( ) if Z G N 4 , and 

0 < i | (z ) - . <Ô, all Z G N 4 - { 0 } . 

Now choose r > 0 so that {|z|<r}c=N4 and choose g as above, but restricted 
to {|z|<r}. Then (2) follows from (a), (3) follows from (c) and (*), and (4) 
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follows from (d). Finally, by (d), ( l /g) ' (z)eN0 if \z\<r. Hence, by (b), 

f i((-) ,(z)) = h(h-1(g(z))) = g(z) if |z |<r . 

The proof is complete. D 
We may now exhibit a curvature function which assumes a strict global 

maximum, or a strict global minimum, and thus serves as a counterexample to 
Conjecture 4.1. Strictness is the main point of the construction; it is easy to 
find examples with weak global extrema. 

EXAMPLE 4.3. With g and r as in Lemma 4.2 set 

H(z) = Re J g{t)dt if |z |<r . 
Jo 

Then K(H, Z)<K(H, 0) if 0<\z\<r and K(-H9 Z)>K(-H, 0) if 0 < | z | < r . • 

Proof. By (2) of Lemma 4.2, K(H, Z) = |g(z)| Re(l/g)'(z) is defined in |z |<r . 
By (5) of Lemma 4.2, 

K(H,z)<h( l ) if 0 < | z | < r . 

Then, by (4) and (1), 

Finally (3) implies 

h(l) = l = |g(0) |Re(-y(0) = ic(H,0). 

Thus K(H, Z ) < K ( H , 0) if 0 < | z | < r . The second statement follows since 
K ( - H , - ) = - K ( H , - ) . • 
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