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CURVATURE OF LEVEL CURVES OF
HARMONIC FUNCTIONS

BY
MARVIN ORTEL AND WALTER SCHNEIDER

ABSTRACT. If H is an arbitrary harmonic function defined on an
open set Q< C, then the curvature of the level curves of H can be
strictly maximal or strictly minimal at a point of (). However, if Q is
a doubly connected domain bounded by analytic convex Jordan
curves, and if H is harmonic measure of () with respect to the outer
boundary of ), then the minimal curvature of the level curves of H
is attained on the boundary of Q.

§1. Introduction. To our knowledge, all earlier theorems regarding the
curvature of level sets of harmonic functions pertain exclusively to Green’s
functions on simply connected domains. For instance, [1] contains the well-
known result that level curves of Green’s functions on simply connected convex
domains in the plane are convex Jordan curves. More difficult versions of these
results (in higher dimensions) appear in [2], [3], [4].

In the present paper we prove a general extremum principle for the curva-
ture of level curves of harmonic functions (Theorem 2.1) as well as a particular
extremum principle for curvature in the case of harmonic measure on a doubly
connected plane domain (Theorem 3.1). By the latter theorem the level curves
of harmonic measure (with respect to the outer boundary) of an annular
domain bounded by convex Jordan curves are, themselves, convex.

These two theorems suggest that broader extremum principles for the
curvature may be valid. We formulate two conjectures to this effect. Then we
provide a counter example to the stronger conjecture by constructing a
particular harmonic function whose level curves attain strictly maximal curva-
ture at an interior point of its domain. The weaker conjecture, which concerns
harmonic measure, remains open.

§2. The curvature function. The following definition is convenient for the
study of the curvature of level curves.

DerFINITION 2.1 Let H be harmonic in the open set Q<=C. Suppose the
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derived analytic function g= H, —iH, never vanishes in ) and set
1 7
k(H, z)=|g(2)] Re(—) (z), all zeQ.
g/.

We refer to k(H, -) as the curvature function for H. [

To justify the terminology, let I be an open interval of real numbers and
suppose s — z(s) is a differentiable function on I taking values in ) and
satisfying

all sel

oo ig(z(s))
21 29 ol

Then s — z(s) is a unit speed parametric arc and H(z(s)) is constant on the
interval I. For seI set x(s)=Re z(s), y(s)=Im z(s), and

Q(s) =|g(z(s)] (x(s)§(s) — X(s)y(s)) = Im(2(s)(s) |g(z(s)))).

Since
Im (Z(S)Z(s) d—ds lg(z(s))l) =0 forall sel,

the product rule leads to

Q(s) = Im[z"(s) —dis (z(s) |g(2(s))l)] , all sel

In this expression for Q(s) replace z(s)|g(z(s))| by ig(z(s)), then employ the
chain rule, and then substitute for z(s) according to (2.1). We obtain

o<s>=Re<g’<z<s>)<2(s>)2>:!g(z(s»lZRe(i) (2(s)), all sel

Therefore

x(s)¥(s)—x(s)y(s)=«(H, z(s)), all sel
Since |z(s)]=1 the left-hand side above is the curvature at z(s) of the
parametric level arc of H defined by (2.1). So «(H, z) is the curvature at z of

any parametric level arc of H passing through z.
There are simple extremum principles for the curvature function.

THEOREM 2.1. Let ) be a connected open subset of C, let z€ (), and let H be

harmonic and have no critical points in ().
(1) Suppose «k(H, w)=0, all we Q. Then

k(H, z)=lim inf k (H, w)

w—9)

and equality holds if and only if k(H, *) is a constant function.
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(2) Suppose k(H, w)=<0, all we Q. Then

k(H, z) <limsup «(H, w)
w—9Q
and equality holds if and only if «k(H, -) is a constant function.
(3) If k(H, -) is a constant function then k(H, w) =0, all w € Q) and there exist
three real numbers A, B, C, and one complex number a¢ Q such that H(x + iy) =
Ax+By+C, all x+iyeQ or Hw)=Aarg(w—a)+B, all weQ. O

Proof. Set ¢ = H, —iH,. By hypothesis g has no zeros in ().

(1) The hypothesis of statement (1) implies Re(1/g)(w)=0 for all we.
Hence there are two cases: (a) Re(1/¢g)'(w) =0, all weQ; (b) Re(1/g)(w)>0,
all we Q. In case (a) x(H, w) =0, all we ). In case (b) Jensen’s inequality and
the mean value theorem for harmonic functions imply that the average of
log Re(1/g)’, over any sufficiently small circle centered at a point w € (), is less
than log Re(1/g)'(w). Therefore, in case (b) log Re(1/g)" is super harmonic in
and log k(H, -) is super harmonic in . By the minimum principle for super
harmonic functions

log k(H, z) =lim igf log k(H, w)

and log k(H, ) is a constant function if and only if equality holds. The
conclusions of (1) are now immediate.

(2) Apply part (1) to «(—H, *) = —«k(H, ).

(3) Suppose k(H, w)=constant, all we{). Then either Re(1l/g)'=0 (if
constant =0) or |g|™' = (constant)"' Re(1/g)’ is harmonic in €. In the second
instance the mean value theorem implies (for appropriate r>0)

]“Lrﬁ do >1r" de 1
8(2)l 2w )y gz +re™) 12w )y g(z+re®)] J2(2)]

We conclude that g(w) is identically constant in ). So in both cases constant =
0 and Re(1/g)'=0. Thus

21

g(w) =[i (real constant w +complex constant] ™"
and it is evident that H is of the expressed form. [J

§3. Theorem 3.1 is a minimum principle for curvature of level curves of
harmonic measure with respect to the outer boundary of an annulus bounded
by convex Jordan curves. Thus, for completeness, we first define these terms
precisely.

By definition, a proper Jordan curve T is a pair (I'*, p) for which the following
statements are valid:

(1) p is an analytic function defined in a neighborhood of the real line with
non-vanishing derivative.
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(ii) T*={p(t): t real} is a Jordan curve.

(iii) |dp/dt(t)|=1, all te (—oe, ).

(iv). There is a number e >0 such that if ¢ is real, and p(1) = x(1) +iy(1), and
0<e<e, then p(t)+e(—=y(t)+ix(t)) lies in the interior of I'*.

If z=p(t)eT*, we define the curvature of I at z by

c(, 2) =y()x(t) —X()y(1).
The choice of the parameter t corresponding to z is irrelevant; it can be shown
that p is periodic with some period T>>0 and that p maps [0, T') one-to-one
onto I'*,

If [, and ', denote proper Jordan curves with I'Yy contained in the interior of
I'* then A = A(T',, T';) shall denote the region bounded by I'f and T'¥. Since I,
and I'; are proper Jordan curves there is a region ) and a function H such that
A < Q, H is harmonic in Q, H has no critical points in ), H is identically zero
on I'f, and H is identically one on I'¥. There is at most one such function H in
any fixed region  containing A and any candidate will be called harmonic
measure for the annulus A with respect to I',. Then, if 0=r=1, we set
I'*={ze A:H(z)=r} and assert that there is a function p, such that I', =
(T*%, p,) is a proper Jordan curve. Moreover, 1™ lies in the interior of T'* and
r=H(z)=<s if 0=r<s=1 and ze AT, I',). These statements are standard
(but non-trivial). Finally, we introducc the following notation for the minimum
and maximum curvatures of I'yUT:

kU, T =min{c(T,,z):(r=0or r=1) and ze I}
KTy, T')=max{c(I,,z):(r=0o0r r=1) and zeT'%}

TheoreM 3.1. Let Ty=(I'§, po) and T, =(I"F, p,) denote proper Jordan curves
with T lying in the interior of T¥, let H denote harmonic measure for the
annulus A = Ay, T'y) with respect to Ty, and let ', = (1", p,), 0<<r<1, denote
proper Jordan curves for which T ={zec A:H(z) =r}. Then

(1) ¢, z)=k(H, z), all r[0,1] and all zeT%*,

2) If kT, T)=0 and 0<r<1 and zT™ we have

K(Hw Z) = C(I‘rs Z) > K(;F(), Iil)
and T%* is strictly convex. [

Proof. (1) Fix re[0, 1] and set p(t)=p,(t)=x(t)+iy(1), all tc(—x, x). We

claim that p is a solution of the differential equation (2.1) with g = H, —iH,
(for the case r=0 or 1 recall that H is harmonic with no critical points in a
neighborhood of A). Since H(p(t))=r we have H, (p(t)x(t)+ H,(p(t)y(t)=0.

Thus
(%) Re p(t)g(p(1))=0.

By the discussion of terminology, H(z)=r if z lies in the interior of I'¥;
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therefore a number e(r)>0 can be chosen so that H(p(t) + e(—y(t)+ix(t))) —
H(p(t))=0, all £(0, e(r)] and all t € (—o0, ). Divide by £ and allow £ — 0.
We see

() Im p(1)g(p(1))=0
Together () and (*+*) imply
p(gp)=ilp®|lgp()],

and since |p(t)]=1 and |g(p(t)|#0, it follows that p satisfies (2.1). We
conclude

k(H, p(1)) = y(0)x(1) = %(0)y (1) = c(T',, p(1))

as required.

(2) By the hypothesis and part (1) x(H, z)=c¢(',, z)=0 if r=0 or 1 and
zeT*. Thus Re(1/g)’=0 on dA. And this implies that both Re(1/g)’ and
k(H, -) are non-negative at each point of A. Moreover

lim inf k(H, w) = min «(H, w)=k({,,T'})

w-—>3A wedA
by part (1) of the present theorem. We appeal to part (1) of Theorem 2.1 and
conclude ¢(T,, z) =« (H, z)>k([,,T,), all re(0, 1) and all zeI*.

It is well known that Jordan curves with non-vanishing curvature are strictly
convex. [

A conjecture. To our knowledge there is no counterexample to any part of
the following conjecture.

CONJECTURE 3.2. Let Ty and T'; denote proper Jordan curves with T'§ in the
interior of T}, let H denote harmonic measure for A = AT, T',) with respect to
Iy, and let T, denote a proper Jordan curve with I*={zc A:H(z)=r}. Then
KTy, T)=c, 2)=k(H, z)<KT,,T)), all re[0,1] and all zeT*. O

Conjecture 3.2 pertains to the theory of conformal mapping because H is
essentially the logarithm of the modulus of a conformal map of A onto a
circular annulus. Moreover, the upper and lower bounds in the conjectured
inequalities are geometrical quantities associated with A, while «(H, -) has a
simple analytic expression in terms of the mapping function mentioned above.

§4. Counterexample to a stronger conjecture. The purpose of this section is
to provide a counterexample to the following conjecture, the truth of which
would immediately imply the truth of Conjecture 3.2.

CONIECTURE 4.1. Let H be harmonic with no critical points in a region ().
Then

lim L?f k(H,w)=k(H, z)<limsupx(H,w), all zeQ. O

w-—>9Q
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Because Conjecture 4.1 is false the geometrical hypotheses of Conjecture
3.2 arc scen to be essential. We require Lemma 4.2 in the construction.

Lemma 4.2, Set h(w)=exp[—(w—1)+4(w —1)?]. Then there are positive
numbers r and & and there is an analytic function g defined for |z| <r such that
the following statements are valid.

(1) Jh(W) Rew<<h(1) if 0<|w—1|<8

(2) g(w) #0 if [w[<r.

(3) (1/g)(0)=1 and g(0)=1.

@ 0<|(1/) (@) —1<sif 0<|zl<r.

(5) h((1/g)(2))=g(z) if [z|<r. O

Proof. (1) The remainder after two terms in Taylor’s expansion of logx
about x =1 is 0(lx — 1*). Thus we may choose 8 >0 so that

logx —(x—D+3x-1Y’<ix—-1)Y if 0<|x-1]<8.

This implies log x — (x — D+ 3{(x — 1D* - yZ]<0 if 0<(x —1)*+y><<8?; or equi-
valently, with w = x +1iy,

lexpl—(w - D+iw—1)Rew<1 it 0<|w—1]<8.

This is statement (1).

(2) — (5) The function h is one-to-one in a neighborhood N, of the complex
number 1; also h(1) = 1. Denote by h™' the inverse function of h|y,, denote the
domain of h™' (a neighborhood of 1) by N,, and note that h '¢1)=1. Since
h (1) #0, there is a unique analytic solution g of the initial value problem

() g'(z)=—g(2’h '(g(z)), gO)=1,

defined in a neighborhood N, of zero (so that g(N,) < N)).

The following properties of g are successively evident in light of () and the
fact that h ' is one-to-one in N, with h '(1)=1.

(a) There is a neighborhood N5 of 0 such that Ny« N,, g(z) #0 for z in N;,
g'(z)# 0 for z in N5, and g is one-to-one in Nj.

(b) (1/g)'(z)=h"'(g(2)), all ze N;.

(¢) (1/g) is one-to-one in N5 and (1/g)(0)=1.

(d) With & as in statement (1), there is a neighborhood N, of 0 such that
N,= N3, (1/g)(z)e N, if ze N,, and

0< ‘(3(2)4 1 ‘ <&, all zeN,—{0}.

Now choose r>0 so that {|z] <r}< N, and choosec g as above, but restricted
to {lz]<r}. Then (2) tollows from (a), (3) follows from (¢) and (), and (4)
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follows from (d). Finally, by (d), (1/g)'(z) € N, if |z|<r. Hence, by (b),

h(@(z)): hh(g(2) = g(z) if |zl<r.

The proof is complete. [

We may now exhibit a curvature function which assumes a strict global
maximum, or a strict global minimum, and thus serves as a counterexample to
Conjecture 4.1. Strictness is the main point of the construction; it is easy to
find examples with weak global extrema.

ExampPLE 4.3. With g and r as in Lemma 4.2 set

H(z)=Re rg(t) dr if |z|<r

0
Then «(H, z)<k(H, 0) if 0<|z|<r and «(—H, z)>«k(—H, 0) if 0<|z|<r. O

Proof. By (2) of Lemma 4.2, k(H, z) =|g(z)| Re(1/g)'(z) is defined in |z|<r.
By (5) of Lemma 4.2,

k(H, z)<h(1) if 0<|z|<r
Then, by (4) and (1),

Finally (3) implies
1 ’
h(1)=1=|g(0)] Re(—) (0) = k(HL 0).
g

Thus «(H, z) <k(H, 0) if 0<|z|<r. The second statement follows since
k(—H,-)=—-«(H,-). O

REFERENCES

1. L. V. Ahlfors, Conformal Invariants. McGraw-Hill, New York, 1974 (pp. 5, 6).

2. R. M. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions.
J. London Math. Soc. 32 (1957), 286-294. (MR 19-848).

3. R. M. Gabriel, Further results concerning the level surfaces of the Green’s function for a
3-dimensional convex domain. 1. J. London Math. Soc. 32 (1957), 295-302. (MR 19-848).

4. R. M. Gabriel, Further results concerning the level surfaces of the Green’s function for a
3-dimensional convex domain. II. J. London Math. Soc. 32 (1957), 303-306. (MR 19-848).

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HAwWAI
HonNoruru, HI 96822

DEPARTMENT OF MATHEMATICS
CARLETON UNIVERSITY
Ot1TAWA, ONTARIO, K1S5B6

https://doi.org/10.4153/CMB-1983-066-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1983-066-4

