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CERTAIN VALUES OF COMPLETENESS AND 
SATURATEDNESS OF A UNIFORM IDEAL 

RULE OUT CERTAIN SIZES OF THE 
UNDERLYING INDEX SET 

BY 

FRANTISEK FRANEK 

ABSTRACT. Using the method of non-well-founded generic ultra-
powers, we shall prove a generalization of a theorem of Taylor that certain 
values of completeness and saturatedness of a uniform ideal rule out certain 
sizes of the underlying index set. 

1. Introduction. "There is no K+-complete K+-saturated ideal over K \ K an un­
countable cardinal" is the straightforward generalization of the classical result of Ulam 
(see [2] or [6]) "there is no nontrivial cr-additive measure on Xi", proved by so-called 
Ulam matrices. The method of well-founded generic ultrapowers was first used by 
Solovay (see [4]) to prove that if "there exists a K-complete K-saturated ideal over K", 
K must be a large cardinal (badly Mahlo). Later they were extensively studied by Jech 
and Prikry (see [3]) in connection with precipitous ideals. 

The method of non-well-founded generic ultrapowers was first used by Silver (see 

[5]). 
Kunen observed (private communication) that using the method of well-founded 

generic ultrapower one can show that there is no Xi-complete X2-saturated uniform ideal 
over a cardinal K if Xw < K < XWl. 

Taylor (private communication) proved a generalization of this, namely "there is no 
Xa-saturated X+-complete uniform ideal over a cardinal K if Xx < K < Xx+ and 
a < X and X is an infinite cardinal", using some combinatorial results of Jech and 
Prikry. His proof is purely combinatorial. 

Inspired by Kunen's observation and using a technical insight into generic ultra-
powers developed in [3], we shall prove a generalization of Taylor's theorem with a 
significantly shorter proof. 

2. Definitions. (For details, though for K-complete ideals over K rather than 
X-complete ideals over K, X ̂  K, see [3]). 

Let / be an ideal over a set S. 
Then /+ - {X C S: X £ / } . 
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W C / + is I-disjoint if (VX, Y E W)(X H Y E / ) . 
Let X be a cardinal, / is X-saturated if no X E [I+Y is /-disjoint. 
/ is \-complete if for any £ < X and any {Xa: a E £} C /, £/{Xa: a E £} E /. 
Let M be a transitive model of ZFC. Let K E OrdM and X E CardM. G C M is a 

non-principal M-\-complete M-ultrafilter over K if 
(1) (VJC E G)(Vy E P(K) H M)(y D i ^ > ^ G G ) ; 
(2) (VJC E P ( K ) D Af)(jc EGOTK- xEG)-
(3) (VX E [M]< x H M)(X C G => HX E G); 
(4) HG = (|>. 
If/, ^ e K M f l M , then 

/ E * g iff { a E K : / ( a ) E g ( a ) } E G 

/ = * « iff { a E K : / ( a ) = g(a)} E G. 

For every / E KM fl M let us choose (in V) a representative [ / ] from the class 
{g E KM H M: g = * / } , and form (in V) generalized ultrapower Ult(M, G) = { [ / ] : 
fEKM RM}. 

Let ext([f]) = {[g] E KM H M: [g] E* [ /]}. 
For every JC E M define cx E

 KM D M by c^(a) = JC for ail a E K. Then as usual 
j defined by j (x) = [cx] is an elementary embedding of M into Ult(M, G) (it is often 
called canonical embedding) and (Los theorem) Ult(M, G) N 4>([/o], • . . , [/n]) iff 
{a E K: M N <|)(/o(a), • . . ,/w(a))} E G, for every formula <J>(JC0, •. • ,xn) and every 
sequence ( [ / 0 ] , . . . , [ / „ ] ) E Ult(M,G). In the case that E* is well-founded on the 
whole class Ult(M, G), we identify Ult(M, G) with its transitive collapse. 

3. Preliminaries. 

LEMMA 1. Let M C V be a transitive model of ZFC. Let G E V be a non-principal 
M-\-complete M-ultrafilter over K, X7 ^ X ^ K cardinals in M. Let] : M -* Ult(M, G) 
be the canonical embedding. Then 

(1) |a| ^ |extO'(a))|/or all a E OrdM; 
(2) jaj = |ext(7(ct))| (since ext(y(a)) = {[<*]: P E a})/or A// a E X; 
( 3 ) | e x t ( 7 ( 0 | ^ K ^ r f l / Z a E X ; 
(4) {[cp]: P E X} w an wirw/ segment c/Ordult(MG); 
(5) Ï / G w uniform, i.e. (VJC E G)(|JC|M = K), then |(K + )M | ^ |extO(K»|. 

(Note: the cardinalities are computed in V.) 

PROOF. ( l)-(4) follow from 2.2.2, 2.2.4, 2.2.5 and 2.3.1 in [3], when generalized 
from M-K-complete M-ultrafilters over K to M-X-complete M-ultrafilters over K, 
X ^ K. 

(5) Choose, in M, a family F C KK of size K+ of almost disjoint functions (such 
family always exists, see e.g. [2]). Since G is uniform,/ i= g E F => [ / ] =£ [g] as 
{7 E K : / ( 7 ) = #(7)} D P for some P E K and hence {7 E K : / ( 7 ) =É #(7)} E G. 
So|extO'(K)) |^ |F | . D 
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NOTE. Let M be a transitive model of ZFC. Let, in M, / be an ideal over S. Let 
X C* Y mean X - Y E /. One can view the poset (/ + , C*) as a forcing notion. Then, 
if G is (/+, C*)-generic over M, we shall say that G is I-generic over M. 

LEMMA 2. Let M be a transitive model of ZFC. Let I be, in M, a \-complete (uniform) 
ideal over a cardinal K SO that X, ^ X ^ K. Let G be I-generic over M. Then G is a 
non-principal M-X-complete (uniform) M-ultrafilter over K. 

PROOF. Easy. Left to the interested reader, or see [3]. • 

4. Main result. 

THEOREM 3. Let X be an uncountable cardinal, a < X and \x = (o0*a. Let X̂  < 
K < Xx. Then there is no k-complete ^-saturated uniform ideal over K. 

PROOF. Assume that there are an M, a transitive model of ZFC, and /, a X-complete 
Xa-saturated uniform ideal over K in M, and that a < X, X is an uncountable cardinal 
and X̂ f < K < Xf and |x = co0'a. Let G be /-generic over M. 

Since / is N^-saturated, Xjf is a cardinal in M[G]. Let X^ = XfG] for some 8 *£ a. 
Let Ê = a - 8. Then a + a v £ = 8 + a)0-£ ^ o v a = |x. Thus X^ = XfG] for all 
7 ^ |x. Let K = Xp for some (3. Then JJL < (3 < X. By Lemma 1 (5) and (3) (since 
P < X ) , 

< ? = <+1 = \tf+l\< |extO'(<))| *£ X£[c], 
a contradiction. D 

COROLLARY 4. Taylor's theorem. 

PROOF. Let / be a ^-complete Xa-saturated uniform ideal over a cardinal K, a < £, 
£ an infinite cardinal and X̂  < K < X +̂. Let X = £ + . Let |x = o)0-a. Then X̂  < K < 
Xx, X is an uncountable cardinal and / is X-complete, Xa-saturated and uniform, which 
contradicts Theorem 3. • 

NOTE. (1) K ^ Xx is the best upper bound, for Foreman and Magidor (private 
communication) constructed a model with an Xj-complete X2-saturated ideal over 

(2) Theorem 3 gives a better lower estimate for K than Taylor's theorem, and if £ is 
weakly inaccessible, then Theorem 3 shows the non-existence of ^-complete 
Xrsaturated uniform ideals over K, X^.Ç < K < X +̂, while Taylor's theorem deals only 
with Xa-saturated ideals for a < £. 
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