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Due to the curvature of the droplet surface, the propagation of transmitted waves is
complex inside a droplet impacted by an incident shock wave. The wave converging
phenomena inside a two-dimensional water column impacted by different curved shock
waves are explored in this paper by means of theoretical ray analysis and high-resolution
numerical simulations. An analytical method describing the wave structure evolution
characteristics inside the shocked water column is established. Hence, the morphological
pattern and focus locations of these waves are theoretically obtained. The analysis
shows that both the first and the second reflected waves focus inside the water column
regardless of the convergent, planar or divergent nature of the incident shock wave shape.
The dimensionless distances from focusing points to the column centre are derived as
κ/(3κ − M0fs) for the former and κ/(5κ − M0fs) for the latter, respectively. Here, κ ,
M0 and fs represent the sound-speed ratio of the two phases, the incident shock wave
strength and a function characterising the shock wave shape effect, respectively. Moreover,
highly negative pressures due to the first reflected wave focusing and significant pressure
oscillations due to the second reflected wave focusing are numerically tracked for three
shapes of the incident shock. The effects of the incident shock wave intensity on the
pressure variations at focus points are further studied. As the incident shock wave intensity
increases, stronger negative pressure and higher pressure oscillation are induced. The
converged incident shock wave can enhance the above phenomena, but the diverged one
can weaken them.
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1. Introduction

The phenomenon of a droplet impacted by shock waves occurs widely in natural
and industrial scenarios such as two-phase supersonic combustors (Malik et al. 2022),
supernova explosions (Abgrall & Karni 2001), cavitation (Brennen 2013) and shock wave
lithotripsy (Johnsen & Colonius 2009). In the development of hypersonic propulsion
systems, in particular, it is of great interest to understand the behaviours of fuel droplets
interacting with shock waves. In previous studies, this thread of investigations has mainly
been presented in regard to three aspects, which are: the deformation mechanism of the
shocked droplet, the wave evolution characteristics and the cavitation behaviours inside
the shocked droplet.

Over the past decades, continuous efforts to reveal the deformation and breakup
mechanism of the shocked droplet or liquid column have been made via theoretical
analyses, experimental investigations and numerical simulations. As a classical result,
the breakup modes of droplets, without the impacts of the shock wave, are classified
into five regimes denoted as vibrational, bag, bag and stamen, stripping and catastrophic
breakup, which are described in the works of Pilch & Erdman (1987) and Hsiang & Faeth
(1992, 1993). Furthermore, Theofanous, Li & Dinh (2004) and Theofanous & Li (2008)
reclassified the breakup modes into two regimes with consideration of the effect of incident
shock wave impaction, namely the Rayleigh–Taylor piercing mode and shear-induced
entrainment mode. Meng & Colonius (2015) numerically studied the interaction of a
planar shock wave with a water column and described the deformation characteristics of
the water column under different shock wave intensities. Then, Meng & Colonius (2018)
studied the interaction between a planar shock and a spherical droplet, hence analysing the
droplet deformation characteristics. Through high-magnification and high-speed breakup
images, Biasiori-Poulanges & El-Rabii (2019) demonstrated the evolution dynamics of the
breakup process at a higher Weber number. Sharma et al. (2021) detailly investigated the
initial wave dynamics and droplet breakup dynamics of the interaction dynamics between
a liquid droplet and a planar shock wave in a wide range of Weber numbers and Reynolds
numbers.

In this area of study, the evolution characteristics of waves inside a droplet are still a
subject that is under studied. Igra & Takayama (2001a,b), Igra & Sun (2010) and Meng
& Colonius (2015) showed that early stages of shock wave propagation events inside the
liquid droplet are an inherent part of the aero-breakup problem. In addition, Igra & Sun
(2010) pointed out that the two-dimensional cylindrical water column behaves similarly
to a spherical droplet when comparing droplet deformation and disintegration. However,
considering the transient time scale, visualising the complex wave structures propagating
inside the spherical droplet presents a huge challenge in experimental studies. Numerous
studies have been the primary choice in investigating the flow characteristics inside a liquid
column. Sembian et al. (2016) detailly reported the wave structure evolution at the early
stages of planar shock wave interaction with a cylindrical water column under different
incident shock wave intensities. The work revealed the evolution characteristics of the wave
structures inside the liquid column impinged by a planar shock wave. Boyd & Jarrahbashi
(2021) extended the shock–droplet interaction problem from the subcritical condition to
the supercritical condition and studied the effects of temperature, pressure and shock
intensity on the interaction. Based on the ray analysis method (Heymann 1969; Haller
et al. 2003; Wu, Xiang & Wang 2018), Biasiori-Poulanges & El-Rabii (2021) theoretically
investigated the interaction of a planar shock wave with a liquid column and derived
the concentration of rays with different reflection times and then verified their results
by numerical simulations. Guan et al. (2018) numerically and theoretically investigated
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Curved shock interaction with water column

the establishment of an internal flow field inside a water droplet subjected to shock wave
impact. In their work, a saddle point inside the water droplet is observed for the first time,
chosen as a characteristic point to describe the internal flow.

In the current literature, it has been stated that the propagating expansion waves inside
the droplet can induce a cavitation phenomenon. However, the criteria are yet to be
established since the process is highly transient. The possibility of cavitation in the water
column due to the expansion wave focusing at higher shock Mach numbers was observed
in the works of Sembian et al. (2016). Field, Dear & Ogren (1989) and Field et al.
(2012) observed that, when a high-speed droplet impacts a rigid wall, convergence of
reflected expansion waves could cause cavitation bubbles. The possibility of cavitation of
a high-speed droplet impacting the wall was verified by Kondo & Ando (2016), Wu et al.
(2018) and Wu, Liu & Wang (2021b) via the numerical method. Xiang & Wang (2017)
and Biasiori-Poulanges & El-Rabii (2021) expounded that the occurrence of cavitation
inside the shocked water column is dependent on the incident shock wave intensity and the
value of the cavitation threshold pressure. Moreover, Xiang & Wang (2017) performed a
numerical study on the interaction of a planar shock wave with a water column embedded
with air cavities of different sizes at high Weber numbers. Liang et al. (2020) captured
the deformation of a water droplet embedded within a vapour cavity and analysed the
influence of the relative size and eccentricity of the vapour cavity on the mechanism of
droplet deformation. The results show that the embedded cavity inside the water column
or droplet can significantly affect the deformation characteristics.

Summarising the past decades, the planar shock wave interacting with a liquid
droplet/column has been widely studied, and the droplet deformation and the inherent
evolution characteristics of wave structures have been well investigated experimentally,
numerically and theoretically. However, in some practical application scenarios, such as
the ultrasound-assisted treatment of human tissues (Feril & Kondo 2004; Kim et al. 2008;
Lukka et al. 2010), it is quite hard for the wavefront to achieve an ideal plane (Sembian
et al. 2016). Moreover, Mittelstein et al. (2020) and Landgraf et al. (2022) reported that,
in obtaining the desirable cavitation phenomena, e.g. the micro-bubble cavitation process
as being an enhancer of bioeffects reported by Feril & Kondo (2004), the regulation of
the location of the focus point and the negative pressure intensity near the focus point
are critical. For this reason, the utilisation of the cavitation effect is subject to a certain
deviation when only the influence of the planar shock wave intensity is considered. In
addition, even when an ideal planar shock wave would be achieved by more advanced
technologies, simultaneously achieving precise regulation of the focus point position and
the negative-pressure intensity by adjusting the intensity of the incident wave remains
a challenge. In this context, it is of interest to reveal the effects of the incident shock
wave shape on the focus point location and negative pressure intensity. Therefore, through
theoretical analysis and numerical simulations, this study aims to investigate the wave
converging phenomena inside a two-dimensional water column impinged by a curved
shock wave. The findings concluded in this study are expected to help researchers attain the
migration of the focus point and amplify or reduce the negative-pressure intensity near the
focus point through suitable wavefront shape designs and the adjustment of the incident
shock wave intensity.

This paper is organised as follows. In § 2, the physical model of the interaction between
the curved shock wave and a water column is described, and the theoretical tool of the
ray analysis method is established, and the governing equations, numerical treatments and
numerical validation are presented. In § 3, the morphology and dynamical evolutions of
wave structures are analysed qualitatively and quantitatively, taking the interaction of a
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Figure 1. Schematic diagram of the interaction of a cylindrical shock with a water column. (a) The
interaction of a converged shock with a water column; (b) the interaction of a diverged shock with a water
column.

cylindrical converged shock wave with a water column as an example. In § 4, the effects of
intensities and shapes of the incident shock wave are investigated. Finally, the conclusions
are presented in § 5.

2. Physical model and numerical procedure

2.1. Physical model
The previous study (Igra & Sun 2010) has shown that the flow characteristics inside
the two-dimensional water column are similar to those inside the spherical droplet, and
that three-dimensional numerical simulation comes at a huge CPU time cost. Hence,
the two-dimensional water column is chosen in the present study to save computing
resources as much as possible and improve computing efficiency. A schematic diagram
of the interaction of a cylindrical incident shock wave with a water column is shown in
figure 1, including a converged and diverged one. We use R0 to represent the radius of
the cylindrical shock wave when it just touches the water column and RD to represent the
radius of the water column. Moreover, the dimensionless radius ω(= R0/RD) is used to
normalise the curvature effect of the incident shock wave. Referring to the experiment
(Igra & Takayama 2001a) and numerical simulation (Xiang & Wang 2017), the initial
value of RD is taken as 2.4 mm. Moreover, we use C and O to represent the water column
centre and the origin of coordinates, respectively. The water column and the air ahead of
the shock wave are initially in equilibrium with a temperature of 300 K and a pressure
of 101 325 Pa. The Weber numbers in the present numerical simulations are higher than
1000, and the corresponding Reynolds numbers are over 40 000. Therefore, the viscosity
and the surface tension can be neglected in the present study (Meng & Colonius 2015).

In the present study, the generation of the cylindrical shock wave is based on the
theory of shock dynamics, which can characterise the propagation of shock waves with
an arbitrary profile. The Chester–Chisnell–Whitham (CCW) relation is the basis of shock
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Figure 2. The schematic drawing of the wall profile, transforming the planar shock into a cylindrical one. Here,
H is the half-height of the V-shaped geometry; l the length of the V-shaped geometry; Ma0 the Mach number of
the incident planar shock waves; MaD the Mach number of the cylindrical shock wave; θ0 the half-converging
angle.

dynamics for a uniform quiescent gas ahead of shock, which is referred from Chester
(1954), Chisnell (1957) and Whitham (1957, 1958, 1959). The CCW relation describes
how the shock wave Mach number M varies with the shock-front area A (= 2πR in
two-dimensional cases), which can be written as

2M dM
(M2 − 1)K(M)

+ dA
A

= 0, (2.1)

where

K(M) = 2
[

2μ+ 1 + 1
M2

]−1[
1 + 2

γ + 1

(
1
μ

− μ

)]−1

, μ =
√
(γ − 1)M2 + 2

2γM2 − (γ − 1)
.

(2.2)

Zhai et al. (2010) used this shock dynamics theory to design a curved wall profile
(V-shaped geometry) and realised the transformation from a planar shock wave to a
cylindrical converged shock wave, as shown in figure 2. Both numerical and experimental
results show a perfect circular shock front. However, this method comes at enormous
computing resource cost due to the large computation domain and usually can only obtain
a cylindrical shock wave with a small converging angle (= 2θ0), which leads to a small
range of radius of the water column that can be investigated in the present study. Hence, a
90◦ computational domain is used in this paper, as shown in figure 1(a), which is widely
used in the literature (Lombardini, Pullin & Meiron 2014; Zhai et al. 2019; Wu, Liu &
Xiao 2021a). The fluid variables behind the cylindrical shock wave are calculated by the
following algorithm: given the cylindrical shock radius of R0, the cylindrical shock wave
intensity M0 and fluid variables ahead of the incident cylindrical shock wave p0 and T0.
When the radius of the cylindrical shock wave is R, the intensity of the cylindrical shock
wave M satisfies ∫ M

M0

2m dm
(m2 − 1)K(m)

= −
∫ R

R0

dr
r
. (2.3)

Integrating (2.3) by numerical iteration, the value of M is obtained. Further, using the
Rankine–Hugoniot conditions, the fluid variables behind the cylindrical shock wave can
be calculated, including pressure p, density ρ, temperature T and velocity magnitude Vm.
The accuracy verification of CCW theory is presented in detail in Appendix A.
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Figure 3. Schematic diagram of the Huygens principle.

2.2. Method of the ray analysis
In this sub-section, the ray analysis method (Heymann 1969; Haller et al. 2003; Wu
et al. 2018), which is based on the Huygens principle used in the theoretical analysis
of wave configurations, is presented. For convenience, two moving point disturbances,
which are denoted as S1 and S2, and a straight material interface are used to briefly
introduce the ray analysis method, as shown in figure 3. At the initial instant, two moving
point disturbances coincide at point S0, located on the straight interface. Then these two
point disturbances move away from S0 in opposite directions with the same speed, which
gradually decreases with distance s from S1 (S2) to S0 and is denoted as V(s). Based on the
Huygens principle, an individual wavelet will be emitted at each instant at S1(s) and these
individual wavelets propagate at a constant speed of W. It can be seen that the envelope
of all individual wavelets generated before t forms the wavefront induced by these two
moving point disturbances. According to the relationship between V(s) and W, there are
four envelope shapes, as shown in figure 3(a–d). Note that, for the case corresponding
to figure 3(b), when the propagation speed of the point disturbance V(s) is less than W,
the newer individual wavelets cannot catch up with the envelope of wavelets, as will be
explained in detail in § 3.1.

For three cases except for the case corresponding to figure 3(b), it is not difficult to
understand the position and shape of the envelope of wavelets, while it is still confusing to
understand the evolution characteristics of the envelope for the rest of the cases. Hence, the
ray analysis method is used, as shown in figure 4. The propagation of each wavelet can be
equivalent to the propagation of infinite rays emitted at its origin, and the length of the ray
is equal to the propagation distance of the wavelet. It is obviously found that not all of the
rays emitted from the same wavelet can effectively contribute to the envelope of wavelets.
Therefore, to reveal the physical mechanism of the motion of the wavefront induced by
point disturbances, it is necessary to find these special rays which have contributed to the
envelope of wavelets. Here, the two wavelets emitted from Ss and Ss+�s are selected for
detailed discussion, as shown in figure 4(b), and these two emission points are very close
to each other. The radii of these two wavelets are r(t, s) and r(t, s +�s), respectively,

r(t, s) = W(t − ts), r(t, s +�s) = W(t − ts+�s), (2.4)

where ts represents the time for moving point disturbance S1 from S0 to S1(s).
The intersection point of these two wavelets is Gs, and the angle between the vector−−−−→

SsSs+�s and
−−→
SsGs is αs, as shown in figure 4(b). The expression αs is derived from the law
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Figure 4. Schematic diagram of the ray analysis method.

of cosines in the triangle �SsSs+�sGs

cosαs = (2t − ts − ts+�s)

2(t − ts)
(ts+�s − ts)W

�s
+ �s

2(t − ts)W
. (2.5)

When Ss+�s is infinitely close to Ss (�s → 0+), αs is the angle between the vector of the
emitted ray and the material interface. The endpoint of this ray is the unique contribution
of the wavelet emitted from Ss to the envelope of wavelets

cosαs = lim
�s→0+

[
(2t − ts − ts+�s)

2(t − ts)
(ts+�s − ts)W

�s
+ �s

2(t − ts)W

]

= lim
�s→0+

(ts+�s − ts)W
�s

= Wt′s. (2.6)

Equation (2.6) shows that the emission angle of these particular rays is only determined
by the propagation speed of the wavelets and the kinematic characteristics of the moving
point disturbance along the material interface. Note that, if the material interface were
a closed curve, these rays would reflect on the material interface after a period of
propagation. This reflection property will be investigated in detail in § 3.1.

2.3. Numerical models
The interaction between the shock wave and the droplet is a strong compressible
multiphase hydrodynamics problem, which involves complex factors such as a large
density ratio and strong shock waves. In this paper, the numerical simulation is carried
out by the in-house software (SCP-tran©), which was previously applied to study a
variety of compressible multiphase flow problems (Xiang & Wang 2017; Wang, Xiang
& Hu 2018; Wu et al. 2018). The five-equation model (Allaire, Clerc & Samuel 2002;
Johnsen & Colonius 2006) is used to solve the gas–liquid hydrodynamic system, and
the governing equations consist of two continuity equations for each phase, a mixture
momentum equation, a mixture energy equation and a volume fraction advection equation
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of the liquid phase

∂(αlρl)

∂t
+ ∂(αlρlu)

∂x
+ ∂(αlρlv)

∂y
= 0,

∂(αgρg)

∂t
+ ∂(αgρgu)

∂x
+ ∂(αgρgv)

∂y
= 0,

∂(ρu)
∂t

+ ∂(ρu2 + p)
∂x

+ ∂(ρuv)
∂y

= 0,

∂(ρv)

∂t
+ ∂(ρuv)

∂x
+ ∂(ρv2 + p)

∂y
= 0,

∂ρE
∂t

+ ∂[(ρE + p)u]
∂x

+ ∂[(ρE + p)v]
∂y

= 0,

∂αl

∂t
+ u

∂αl

∂x
+ v

∂αl

∂y
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

where ρl and ρg represent the density of the liquid and gas phases, respectively, αl and
αg represent the volume fraction of the liquid and gas phases, respectively, ρ, u, v, p and
E represent the mixture density, x-velocity, y-velocity, pressure and specific total energy,
respectively. The numerical diffusion appears significant at the two-phase interface after
several time steps. In this diffuse region, the mixture variables are given as (Saurel, Petitpas
& Abgrall 2008)

ρ = αlρl + αgρg, (2.8)

ρE = αlρlel + αgρgeg + 1
2ρ(u

2 + v2), (2.9)

ρc2 = αlρlc2
l + αgρgc2

g, (2.10)

where el and eg represent the specific internal energy of the liquid and gas phases,
respectively, cl and cg represent the sound speed of the liquid and gas phases, respectively.
In this study, the stiffened gas equation of state is used to close the governing equations

ρkek = p + γkp∞,k

γk − 1
, k = l, g, (2.11)

ck =
√(

p + p∞,k
)
γk

ρk
, k = l, g, (2.12)

where γ is the specific heat ratio and p∞ is the reference pressure. For air, γ = 1.4 and
p∞ = 0, and the stiffened gas equation of state reduces to the ideal gas equation. Referring
to the works of Kondo & Ando (2016) and Xiang & Wang (2017), the parameters for water
are taken to be γ = 6.12 and p∞ = 343.44 MPa.

2.4. Numerical treatments
The SCP-tran© fluid dynamic software uses a finite volume method (Titarev &
Toro 2004) to discretise the above governing equations in a uniform Cartesian grid
system. The component-wise fifth-order incremental weighted essentially non-oscillatory
reconstruction is applied, as previously proposed by the present author (Wang et al. 2018).
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The Harten–Lax–van Leer contact approximate Riemann solver (Toro 2009) is employed
to solve the numerical flux at the cell face. The third-order total variation diminishing
Runge–Kutta method (Gottlieb & Shu 1998) is chosen to advance the solutions over time.
Considering that part of the boundaries does not coincide with the interface of the grid cell,
such as the immersed non-reflecting boundary as shown in figure 1, a ghost-cell immersed
boundary method (IBM) for distinguishing geometrically complex boundaries is used to
realise the non-reflecting boundary condition (Thompson 1987, 1990), and for the detail
of IBM the reader is referred to the works of Choung et al. (2021) and Saravanan, Choung
& Lee (2021). Since the evolution characteristics of the interaction between shock waves
and the water column are symmetric, to improve the calculation efficiency, the symmetric
boundary condition at the axis of the liquid column is adapted to carry out numerical
simulations. The numerical verification of the grid sensitivity is presented in Appendix B.

2.5. Validation of the solver
Thanks to the experiments in the literature, the interaction of a planar shock wave with
a water column is chosen as a validation case to validate the SCP-tran© fluid dynamic
software. For a qualitative comparison, the dimensionless time t∗ is used, which is the ratio
of the physical time over the characteristic time τ (τ = 2RD/Vts, Vts is the propagation
speed of the transmitted shock wave). For convenience, the zero instant is marked as
t0 (t∗ = 0.0) when the incident shock wave just touches the water column. According
to the Rankine–Hugoniot relation (Haller et al. 2002, 2003; Nagayama et al. 2006), the
transmitted shock wave speed Vts can be estimated as

Vts = γl + 1
4

(
ul +

√
u2

l + 16
1

(γl + 1)2
c2

l,0

)
, (2.13)

where γl represents the specific heat ratio of water, cl,0 (∼1500.0 m s−1) represents the
sound speed of the water at the initial state (300 K and 101 325 Pa) and ul represents the
velocity of the liquid inside the water column behind the transmitted shock wave. Due to
the acoustic impedance of water being much higher than that of air, most of the energy
of the incident shock wave is reflected. Hence, the velocity change of the water is almost
zero, no bigger than 5.0 m s−1, before and after the impingement of the incident shock
wave, and the sound speed of water cl,0 can be chosen as an equivalent of Vts.

Figure 5 shows the comparisons between the numerical result based on the present
numerical methods and the experimental results from Sembian et al. (2016) of the
interaction of a planar shock wave with a water column for M0 = 2.4. When the planar
incident shock wave impinges on the water column, it is reflected off the column surface
and transmitted into the water column. As the interaction continues, the Mach stem and
the slip line appear subsequently. Due to the specific water column surface, the reflected
rarefaction wave (Sembian et al. 2016) (also called the reflected expansion wave) will focus
inside the water column. These flow structures have been observed both in experiments and
simulations. Besides the qualitative analysis, the quantitative comparison of the pressure
profiles of the two sensors inside the water column between the experimental result and
numerical simulations is also presented in figure 6. It is found that our numerical method
(SCP-tran©) can effectively capture the pressure evolutions inside the water column, and
is in good agreement with the numerical result and is also approximately in agreement
with the experimental result. Due to the SCP-tran© software having higher accuracy
of the time advance and the space discretisation causing lower numerical dissipation,
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Figure 5. The comparison between the present simulation results (left side) and the experimental results (right
side) from Sembian et al. (2016) of the interaction of a planar shock wave with a water column for M0 = 2.4.
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Figure 6. Experimental and numerical pressure profile for M0 = 2.4. The locations of sensors 2 and 3 are
given in the work of Sembian et al. (2016). Note that the diaphragm diameter of the sensor is 5.54 mm, and
therefore the values obtained are averaged across the sensor’s face area. Similarly, numerical simulation results
are also averaged.

compared with the work of Sembian et al. (2016), the present numerical result obtains
stronger focus pressures, especially for the focus of the second reflected waves, as shown
in figure 6(a). Note that the sensing geometry is compressed; hence, the sensor cannot
quantitatively measure the negative pressure in experimental research. Both the qualitative
wave configuration analysis and the quantitative pressure profile analysis show that the
present mathematical models and numerical methods are able to solve the problem of the
interaction of the shock wave with a water column.

It is necessary to illustrate that the planar incident wave, in experiments (Sembian
et al. 2016), is a blast wave with gradually decreasing strength rather than a shock wave
with a uniform post-shock flow. This substitution causes different pressure distributions

964 A12-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.239


Curved shock interaction with water column

inside the water column and then induces different cavitation behaviours. However, the
main purpose of the present work is to demonstrate the propagation characteristics of
waves inside the water column, which are almost the same between the blast wave with
a decreasing post-shock flow and the shock wave with a uniform post-shock flow when
the shock intensity is the same. Hence, the planar shock with a constant Mach number
is chosen in the present study for simplification as much as possible and to improve
computing efficiency. Of course, when it is necessary to deeply understand the evolution
characteristics of the cavitation phenomenon inside a water column impacted by a weak
shock wave, an analytical solution for blast waves, described by Bach & Lee (1970), can
be chosen to generate a stable blast wave without much increase in computational cost.

3. Evolution characteristics of wave structures inside the water column

In this section, the cylindrical converged shock wave is taken as an example to analyse in
detail the evolution characteristics of wave structures inside the shocked water column.

Figure 7 shows the numerical results in the early stage of the interaction between
a cylindrical converged shock wave and a water column in the case of ω = 4.0 and
M0 = 2.4. For the visualisation of the numerical simulations, both numerical schlieren
contours and pressure contours are presented. Similar to the planar shock wave/water
column interaction (Sembian et al. 2016; Xiang & Wang 2017), a transmitted shock wave is
generated and propagates inside the water column after the impingement of a cylindrical
converged shock, figure 7(b). As the sound speed in the water is much bigger than the
propagation speed of the incident shock wave, the transmitted shock wave quickly detaches
from the incident shock and the reflected shock wave and forms a precursor transmitted
shock wave, figure 7(d). In the air, the reflection transition of the incident converged shock
wave from the regular to Mach reflection occurs after a while, figure 7(d). Meanwhile,
the transmitted shock wave is reflected by the water column surface as it propagates and
a series of rarefaction waves are generated, as shown in figure 7(e). These rarefaction
waves tend to focus inside the water column due to the curved column surface, and this
causes a rapid decrease of pressure near the first-focus region, figure 7(h). After complete
focus, the rarefaction wave propagates toward the left pole of the water column and is
reflected by the column surface, generating a series of second reflected waves. Different
from the first reflected rarefaction wave, the second reflected wave has two branches
with different properties: the second reflected compression wave and the second reflected
rarefaction wave, as shown in figure 7(j). These two branches of the second reflected waves
focus at the same position inside the water column in a very short time interval, causing
a violent pressure oscillation near the second-focus area, as shown in figure 7(k–l). In
principle, the Nth reflection wave will appear and focus inside the water column, while
the strength of wave structures will be significantly weakened as the times of reflection
increase. Therefore, the evolution characteristics of wave structures generated by the first
two reflections are only investigated in the following content.

To better understand the physical mechanism of wave structures, the early stage of the
interaction between a curved shock wave and a water column can be analysed in three
stages according to the flow characteristics. The different behaviour of the transmitted
waves inside the water column is the main concern for the convenience of division. The
first stage is the generation, propagation and reflection of the transmitted shock wave inside
the water column, corresponding to figure 7(a–f ). The second stage is the propagation
and converging phenomena of the first reflected rarefaction wave, corresponding to
figure 7(g–j). The third stage is the propagation and converging phenomena of the second
reflected waves, corresponding to figure 7(k–l).
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Figure 7. Numerical schlieren contours (top) and pressure contours (bottom) at different time intervals for the
interaction between the cylindrical converged shock and the water column in the case of ω = 4.0 and M0 = 2.4.
Note that the black line in the pressure contours represents the initial outline of the water column.

3.1. The generation and propagation of the transmitted shock wave
The first stage begins at t0 (t∗ = 0.0) when the incident curved shock wave just impacts the
left pole of the water column, figure 7(a). During the interaction of a cylindrical converged
shock wave with a water column, the contact point is denoted as Pθ , and the angle θ
represents the angle between the line PθC and the horizontal axis of the water column, as
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Figure 8. Schematic diagram of the interaction between the cylindrical converged shock wave and the water
column.

shown in figure 8. The radius of the cylindrical shock wave is a function of angle θ and
is denoted as Rθ . The angle between the tangent line of the water column and that of the
converged shock wave is denoted as χ

Rθ = RD

√
1 + (ω − 1)2 + 2(ω − 1) cos θ, (3.1)

sinχ = (ω − 1) sin θ√
1 + (ω − 1)2 + 2(ω − 1) cos θ

. (3.2)

At a specific contact angle θ , the velocity of contact point Pθ along the water column
surface can be expressed by

VP = VS

sinχ
= VS

√
1 + (ω − 1)2 + 2(ω − 1) cos θ

(ω − 1) sin θ
, (3.3)

where the velocity of the cylindrical converged shock wave VS is the product of the sound
speed of air ahead of the shock front cg,0 and the Mach number of the cylindrical shock
wave Mθ at Pθ . Because the strength M0 and the radius R0 of a cylindrical converged shock
wave at t0 are known, the strength of the cylindrical shock wave at Pθ can be solved from
(2.3).

When the contact angle is close to zero, the velocity VP is much higher than the sound
speed of the water, and the transmitted shock wave is attached to the cylindrical incident
shock wave and reflected shock wave at the water column surface. Since VP decreases
rapidly as θ increases, as shown in figure 9, the velocity of the contact point on the column
surface will catch up with the propagation speed of the transmitted shock wave, and the
confined transmitted shock wave will detach from the incident shock wave. The critical
time, representing the transmitted shock wave just being detached, is defined as tcr. At the
critical time, the velocity of contact point VP equals the propagation velocity of transmitted
wave Vts, and the critical contact angle θcr satisfies the following expression:√

1 + (ω − 1)2 + 2(ω − 1) cos θcr

(ω − 1) sin θcr
= cl,0

Mθcrcg,0
, (3.4)

where Mθcr represents the strength of the incident cylindrical shock wave at tcr. In this
section (ω = 4.0 and M0 = 2.4), the value of the critical angle is 44.9◦.
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Figure 9. The velocity of the contact point P, along the column surface, varies with the contact angle θ .

Once θ is larger than θcr, the precursor transmitted shock wave is formed and propagates
to the right pole of the water column. The time for contact point to move from the left pole
of the water column to Pθ is denoted as tθ , and its expression can be written as

tθ =
∫ θ

0

(ω − 1) sin ξRD√
1 + (ω − 1)2 + 2(ω − 1) cos ξMξcg,0

dξ . (3.5)

Combined with (3.4), the critical instant tcr can be obtained when the transmitted shock
wave detaches from the incident shock wave.

Based on the ray analysis method introduced in § 2.2, at each instant, an individual
compression wavelet will be emitted at Pθ that will propagate with the water sound speed
cl,0. Hence, the radius of the compression wavelet emitted from the contact point Pθ ,
at time instant t, can be denoted as r(θ, t) = (t − tθ )cl,0. These compression wavelets,
emitted from different contact points from zero instant to time instant t, form a shock
wave envelope, denoted as TSt, figure 10(a). When t > tcr, the propagation speed of the
compression wavelet is higher than the generation speed of the new compression wavelet,
and the new compression wavelet cannot catch up with the transmitted shock wave and
does not make an effective contribution to the shock wave envelope, forming the precursor
transmitted shock wave, as shown in figure 10(b).

Similar to the discussion in § 2.2, it can be obviously found that not all of the rays
emitted from the same compression wavelet make an effective contribution to the shock
wave envelope of compression wavelets. Therefore, to reveal the physical mechanism
of the motion of the transmitted shock wave, it is necessary to find these special rays
which have contributed to the envelope of compression wavelets. Here, the two different
compression wavelets emitted from Pθ and Pθ+�θ are selected for detailed discussion, and
these two emission points are infinitely close to each other (�θ → 0+). The radii of these
two compression wavelets are r(θ, t) and r(θ +�θ, t), respectively. Similar to (2.5) and
(2.6), the emission angle αθ , which is the angle between the vector of the emitted ray and
the tangent vector of the water column at Pθ , can be derived as

cosαθ = lim
�θ→0+

[
(2t − tθ − tθ+�θ)

2(t − tθ )
(tθ+�θ − tθ )cl,0

RD�θ

�θ/2
sin(�θ/2)

+ RD sin(�θ/2)
(t − tθ )cl,0

]

= lim
�θ→0+

(tθ+�θ − tθ )cl,0

RD�θ
= cl,0

RD
t′θ = κ

Mθ

(ω − 1) sin θ√
1 + (ω − 1)2 + 2(ω − 1) cos θ

,

(3.6)
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Figure 10. Schematic diagram of the generation of transmitted shock wave and the ray analysis: (a) the
schematic diagram at critical time tcr; (b) the schematic diagram at the time instant t1, selected after the
critical time.

where the dimensionless parameter κ represents the ratio of the sound speed of water
to that of air. It is worth noticing that, for the interactions of a planar shock wave (the
radius ratio ω tends to the infinite and the incident shock intensity is a constant M0) with
a water column, the angle αθ satisfies cosαθ = κ sin θ/M0. This theoretical result is the
same as the acoustic principle used by Biasiori-Poulanges & El-Rabii (2021) in studying
the interaction between a planar shock wave and a water column. According to (3.4), it
can be concluded that αθcr of the ray generated by the critical contact point Pθcr equals
zero. That is to verify that when t > tcr, the transmitted shock wave presents a precursory
characteristic. Only one particular ray out of the infinite number of rays generated by
the same contact point, whose emission angle satisfies (3.6), effectively influences the
envelope of compression wavelets. Hence, only these specific rays emitted from different
contact points (θ > θcr) are considered and analysed in the subsequent analysis, and the
influence of the other rays is ignored.

As the transmitted shock wave propagates forwards, the reflected rarefaction waves are
observed behind the transmitted shock and a certain time, t (t∗ = 0.8695) is chosen for
the following analysis, figure 11(a, b). The position and shape of the reflected rarefaction
waves are obtained from the analysis of the emitted rays. Meanwhile, it is assumed that the
rays will be reflected symmetrically on the curved column surface (Wu et al. 2018). At a
specific instant t, the length of the ray emitted by the contact point Pθ is r(θ, t). Moreover,
if the ray is reflected from the water column surface, r will represent the total length of
the ray before and after reflection. Furthermore, the ray could be reflected more than once
from the column surface, and the reflection times are related to the contact angle θ and the
time t, which are elaborated as follows.

If the rays emitted from Pθ are not reflected at an instant t, the emitting angle αθ will
satisfy the following:

αθ ≥ arcsin
r(θ, t)
2RD

= arcsin
[(

t −
∫ θ

0

L′
ξ

Mξcg,0
dξ
)

cl,0

2RD

]
= α

(1)
θ , (3.7)
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Figure 11. The schematic diagram of the ray analysis: (a) the schematic diagram at t (t∗ = 0.8695); (b) the
enlarged view of the schematic diagram at t. (c) The comparison of results between ray analysis and numerical
simulation at t∗ = 0.9543.

where L′
θ represents the derivative of the equivalent propagation distance Lθ of the curved

shock along the symmetrical axis of the water column for the contact angle θ

L′
θ = (ω − 1) sin θ√

1 + (ω − 1)2 + 2(ω − 1) cos θ
RD. (3.8)

If the rays are reflected N times (N = 1, 2, 3, . . .), angle αθ will satisfy

αθ < arcsin
r(θ, t)
2NRD

= arcsin
[(

t −
∫ θ

0

L′
ξ

Mξcg,0
dξ
)

cl,0

2NRD

]
= α

(N)
θ , (3.9)

αθ ≥ arcsin
r(θ, t)

2(N + 1)RD
= arcsin

[(
t −

∫ θ

0

L′
ξ

Mξcg,0
dξ
)

cl,0

2 (N + 1)RD

]
= α

(N+1)
θ .

(3.10)

Thus, the emission angle αθ can be divided into different intervals according to reflection
times N, and the intervals of angle θ can be obtained by combining with (3.6).

Due to the specific column surface, the reflected rarefaction wave has two branches:
the far branch (Re-RWII) and the near branch (Re-RWI), as judged by the distance of
the branch from the axis of the water column. Similarly, the reflected rarefaction will
also reflect on the water column surface and forms the second reflected wave, it has
two branches with entirely different properties: the second reflected compression wave
(Re2-CW) and the second reflected rarefaction wave (Re2-RW). It deviates from the
statement (Xiang & Wang 2017; Wu et al. 2018) that the second reflection forms the
compression wave with a single characteristic, but the phenomenon obtained by the present
study is consistent with the experimental result of Sembian et al. (2016). Nonetheless, we
will not elaborate further on this in the present study.

The comparison of results between ray analysis and numerical simulation at t∗ = 0.9543
is shown in figure 11(c), and more details about the comparison between the numerical
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Figure 12. (a) Schematic diagram of the first reflected expansion wave propagation from t2 (t∗ = 1.0) to t3
(t∗ = 1.2698); (b) schematic diagram of ray analysis for the focusing of the one-time reflected rays.

simulation results and theoretical results are presented in Appendix C. It is obvious that
the shape and position of wave structures obtained by theoretical analysis almost coincide
with the distribution of wave structures in the numerical results. Hence, this verifies the
reliability and accuracy of the theoretical analysis in predicting the motion characteristics
of the wave structures. Moreover, due to the strong stretched effect, a negative-pressure
region is found near the intersection of two branches of the first reflected rarefaction wave.
Meanwhile, the pressure behind the far branch of the first reflected rarefaction waves is
quickly recovered because the subsequently emitted compression wavelets catch up with
these two rarefaction wave branches.

3.2. The first convergence of the first reflected rarefaction wave
The first stage ends when the transmitted shock wave reaches the right pole of the water
column at the time instant t2 (t∗ = 1.0), and the second stage begins. At this moment,
the transmitted shock wave is completely reflected, and two near branches of the reflected
rarefaction wave on both sides of the central axis of the water column merge, forming a
continuous converged rarefaction wave (Re-RWIC). The analytical schematic is presented
in figure 12(a), which demonstrates the first reflected rarefaction wave evolution. It is
observed that the intersection points of Re-RWII and Re-RWI move along the envelope
of the one-time reflected rays from time t2 to t3, and the continuous reflected rarefaction
wave (Re-RWIC) gradually focuses inside the water column. When Re-RWIC completely
focuses, the two branches of the far-branch rarefaction wave meet and form a continuous
diverged rarefaction (Re-RWIIC).

Previous studies (Sembian et al. 2016; Xiang & Wang 2017; Wu et al. 2018;
Biasiori-Poulanges & El-Rabii 2021) have found that the complete focus of the reflected
rarefaction wave decreases the water pressure rapidly, and the maximum negative pressure
inside the water column reaches approximately −10 MPa at the complete focus instant.
The pressure distributions along the centre axis of the water column, just before and after
the complete focus instant, are presented in figure 13, and it can be seen that a similar
focusing pressure (−10 MPa) is obtained in the present study. This extremely negative
pressure has far exceeded the cavitation threshold pressure of −2.3 MPa of unpurified
water reported by Sembian et al. (2016). Therefore, the region inside the water near the

964 A12-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.239


S. Xu, W. Fan, W. Wu, H. Wen and B. Wang

3.0

–3.0

–6.0

–9.0

–12.0
–1.0 –0.6 –0.2 0.2 0.4 1.0

0

t∗ = 1.1648

t∗ = 1.2312

t∗ = 1.2478

t∗ = 1.2644

t∗ = 1.2809

t∗ = 1.3308

(x – xC)/RD

p
(M

P
a)

Figure 13. The pressure distribution along the centre axis of the water column, just before and after the
complete focus instant, for the interaction between the cylindrical converged shock and the water column.

focus point has a high probability of capturing the cavitation phenomenon. Hence, the
focus point of the first reflected rarefaction wave is called the cavitation kernel point in the
present study, denoted as Pcav . Combined with figure 12(b), Pcav is also the left limiting
position of the one-time reflected rays that intersect with the central axis of the water
column.

The position of Pcav can be obtained theoretically according to the ray analysis
(Obreschkow et al. 2011; Wu et al. 2018; Biasiori-Poulanges & El-Rabii 2021) considering
the planar incident shock wave or flat rigid surface. Here, we present the case analysis
considering the curved, cylindrical, incident shock wave.

Some rays emitted by the contact point whose contact angle is less than the critical
contact angle θcr are presented in figure 12(b). In order to ensure that the one-time reflected
rays can intersect with the horizontal central axis, the emission angle αθ and the contact
angle θ will satisfy 4αθ + θ > 180◦. Selecting an arbitrary ray (the black solid lines) for
analysis, the intersection points of the one-time reflected part of this ray with the column
surface and the horizontal central axis are Eθ and Fθ , respectively. And the distance λθ
from Fθ to the column centre can be expressed as follows:

λθ = sinβθ
sinψθ

RD = RD

sin θ sinαθ(4 cosαθ − 1/ cosαθ)+ cos θ(3 − 4 cos2 αθ)
. (3.11)

After substituting (3.6) into (3.11) and simplifying, the expression of distance λθ can be
rewritten as follows:

λθ = RD

F1(θ)− F2(θ)+ F3(θ)
, (3.12)

where, F1(θ), F2(θ) and F3(θ) are shown as

F1(θ) = 4κ(ω− 1)sin2θ√
1 + (ω− 1)2 + 2(ω− 1) cos θMθ

√
1 − κ2(ω − 1)2 sin2 θ

[1 + (ω− 1)2 + 2(ω− 1) cos θ ]Mθ
2 ,

(3.13)
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Curved shock interaction with water column

F2(θ) = Mθ

√
1 + (ω− 1)2 + 2(ω− 1) cos θ

κ(ω − 1)

√
1 − κ2(ω− 1)2sin2θ

[1 + (ω− 1)2 + 2(ω− 1) cos θ ]Mθ
2 ,

(3.14)

F3(θ) = 3 cos θ − 4κ2(ω − 1)2 sin2 θ cos θ

[1 + (ω − 1)2 + 2(ω − 1) cos θ ]Mθ
2 . (3.15)

A maximum limiting value of λθ exists. Accordingly, the position of Pcav , as well as the
focus point of the one-time reflected rays, is obtained, which has the following expression:

λmax

RD
= lim
θ→0

λθ

RD
= 1

lim
θ→0

F1(θ)− lim
θ→0

F2(θ)+ lim
θ→0

F3(θ)
= κ

3κ − M0fs
, (3.16)

where fs = ω/(ω − 1) is the function characterising the effect of shock wave shapes in the
case of the cylindrical converged incident shock wave.

The above expression has indicated that the relative distance from the cavitation kernel
point Pcav to the column centre is determined by three dimensionless parameters: the shock
Mach number M0, the radius ratio ω between the cylindrical converged shock wave and
the water column and the sound-speed ratio κ between the water and the air. If the radius
ratio tends to the infinite, the cylindrical converged shock wave degenerates into a planar
one. Here, we define a new dimensionless parameter n = κ/M0, which represents the ratio
of the wave speed between the transmitted shock wave and the incident shock wave. The
distance xf from the focus point Pcav to the centre of the water column can be written as

xf = n
3n − 1

RD, (3.17)

which is then identical to the expression reported by Biasiori-Poulanges & El-Rabii (2021).
In other words, the theoretical analysis derived in this paper is universal for different
incident shock wave shapes.

3.3. The second convergence of the second reflected waves
When Re-RWIC completely focuses, the continuous diverged rarefaction wave (Re-RWIIC)
propagates upstream of the water column and is reflected by the column surface, forming
the second reflected compression wave (Re2-CW) and the second reflected rarefaction
wave (Re2-RW). Due to the specific column surface, the one branch of the second reflected
wave (Re2-CW) firstly focuses on the central axis of the water column, Ptran, causing
a high-pressure region whose maximum pressure reaches more than 60 times the initial
pressure, as shown in figure 7(k). After an extremely short time, the two symmetrical
reflected rarefaction waves (Re2-RW), located on the upper and lower sides of Re2-CW,
merge and cause a rapid decrease in the local pressure. The pressure distribution along the
centre axis of the water column at six different time instants, before and after the focus of
Re2-CW, is shown in figure 14. Obviously, the maximum pressure in the high-pressure
region increases rapidly as the focus process continues before the complete focussing
of Re2-CW. After that, a significant negative-pressure region appears inside the water
column, and the maximum pressure in the high-pressure region decreases rapidly and then
disappears.

The evolution characteristics of the second reflected wave from t4 (t∗ = 2.0) to t5 (t∗ =
2.326) based on the ray analysis are shown in figure 15(a). Due to the different properties
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Figure 14. The pressure distribution along the centre axis of the water column at six different time instants
for the interaction between the cylindrical converged shock and the water column.

Two-time reflected rays

Envelope of the two-

time reflected rays

Ptran PtranC C

Pθ

Eθ2

Fθ2

Eθ
αθ

δθ

βθ

θ

t5

t4

(a) (b)

Re2-CW

Re2-RW

Re3-CW

Figure 15. (a) Schematic diagram of the second reflected wave propagation from t4 (t∗ = 2.0) to t5 (t∗ =
2.326) and schematic diagram of shapes and positions of the reflected waves at time t5; (b) schematic diagram
of ray analysis for the intersection point between the reflected rays, with two-time reflection, and the central
axis of the water column.

of the two branches of the second reflected wave, the liquid near Ptran undergoes a violent
pressure oscillation in a short time interval. The highly transient characteristics of liquid
pressure have great significance in the biomedical field, which is a valuable measure to
remove diseased tissue. Similar to the derivation of Pcav , the specific position of Ptran can
be obtained by the ray analysis. A schematic diagram of rays emitted from some contact
points when Re2-CW focuses is shown in figure 15(b), selecting an arbitrary ray (the black
lines) for further analysis. Denoting the intersection points of the two-time reflected part
of this ray with the column surface and the central axis of the water column as Eθ2 and
Fθ2, respectively, with the distance from Fθ2 to C being δθ ,

δθ = sinβθ
sin(π − 5βθ + θ)

RD = cosαθ
cos(5αθ + θ)

RD. (3.18)
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After substituting (3.6) into (3.18) and simplifying, the minimum distance of δθ can be
obtained as δmin, which has the following expression:

δmin

RD
= lim
θ→0

[
cosαθ

(16 cos4 αθ − 20 cos2 αθ + 5) cosαθ cos θ − (16 cos4 αθ − 12 cos2 αθ + 1) sinαθ sin θ

]

= κ

5κ − M0fs
. (3.19)

Moreover, to ensure that the two-time reflected rays can intersect with the horizontal
central axis before it is reflected from the column surface, the emission angle αθ and
the contact angle θ will satisfy: 6αθ + θ < 360◦. It is easy to find that, as the reflection
time increases, the maximum contact angle of rays participating in the focus process
gradually decreases. This means that fewer rays participate in the focusing process with the
interaction process continuing, which makes the reflected wave and focus intensity weaker
and weaker.

Similar to the transmitted shock wave and the first reflected rarefaction wave, the second
reflected waves also reflect on the column surface, forming the third reflected compression
wave, figure 15(a), which will focus inside the water column causing a high-pressure
region. As the interaction continues, the high-pressure and low-pressure areas appear
alternately at different positions on the centreline. Their analysis procedure is similar to
the focusing of the first reflected expansion wave and the second reflected compression
wave. The following expression gives a general formula of the distance from the focusing
point xf ,N of the N times reflected wave to the column centre:

xf ,N

RD
= κ

(2N + 1)κ − M0 fs
, N = 1, 2, 3, . . .. (3.20)

However, the intensity of these waves, with three times or more reflection, has been
dramatically reduced compared with the intensity of the transmitted shock wave, the first
reflected rarefaction wave and the second reflected wave. Therefore, we will not elaborate
further in the present study.

4. The effect of incident shock wave shapes and intensities

In addition to converged shock waves, diverged shock waves also widely interact with the
gas–liquid interface in nature, industrial production and scientific research, such as the
interaction of a blast wave with a droplet. The derivation for the interaction of a diverged
cylindrical shock wave with a water column, figure 16, is similar to that of a converged
cylindrical shock wave with a water column, which is introduced in § 3. Again, the initial
shock wave Mach number M0 = 2.4 and radius ratio ω = 4.0 of the diverged cylindrical
shock are chosen in the following analysis, and (3.1) and (3.2) for the interaction between
the diverged shock and the water column can be rewritten as the following expressions:

Rθ = RD

√
1 + (ω + 1)2 − 2(ω + 1) cos θ, (4.1)

sinχ = (ω + 1) sin θ√
1 + (ω + 1)2 − 2(ω + 1) cos θ

. (4.2)
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Figure 16. Schematic diagram of the interaction between the cylindrical diverged shock wave and the water
column.

The critical contact angle θcr, when the transmitted shock wave just detaches from the
incident diverged shock wave and the reflected shock wave, can be obtained as follows:√

1 + (ω + 1)2 − 2(ω + 1) cos θcr

(ω + 1) sin θcr
= cl,0

Mθcrcg,0
. (4.3)

In the case of M0 = 2.4, the value of θcr for the diverged shock wave (ω = 4.0) is
28.3◦ compared with θcr = 44.9◦ for the converged shock wave (ω = 4.0) and θcr = 35.1◦
for the planar shock wave. The critical contact angle is compared in table 1 with the
analytical and numerical results of the three configurations at different incident shock wave
intensities and shapes. The simulation results agree with the analytical values. Meanwhile,
compared with the interaction between the planar shock wave and the water column,
the converged shock wave will delay the percussive behaviour of the transmitted shock
wave, while the diverged shock wave will accelerate the appearance of this phenomenon.
Similarly, the time tθ , which represents the time of contact point moving from the left pole
of the water column to Pθ , and the emission angle αθ at Pθ can be rewritten as follows:

tθ =
∫ θ

0

(ω + 1) sin ξRD√
1 + (ω + 1)2 − 2(ω + 1) cos ξMξcg,0

dξ, (4.4)

cosαθ == cl,0

RD
t′θ = κ

Mθ

(ω + 1) sin θ√
1 + (ω + 1)2 − 2(ω + 1) cos θ

. (4.5)

Further, the location of the cavitation kernel point Pcav for a diverged shock interacting
with a water column can be obtained by the ray analysis, and the distance from Pcav to the
water column centre C is also denoted as λmax

λmax

RD
= lim
θ→0

λθ

RD
= κ

3κ − M0fs
, (4.6)

where fs = ω/(ω + 1) is the function characterising the effect of shock wave shapes in the
case of the cylindrical diverged incident shock wave.

Hence, considering (3.16), (4.6) and the formula for the interaction of the planar shock
with a water column reported by Biasiori-Poulanges & El-Rabii (2021), the function fs
characterising the effect of shock wave shapes can be rewritten in a unified form, that
is fs = ω/(ω − ε). Here, ε represents the types of incident shock shape (−1 represents
the diverged shock, 0 represents the planar shock and 1 represents the converged shock).
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Curved shock interaction with water column

Converged shock wave Planar shock wave Diverged shock wave
ω = 4.0 ω = ∞ ω = 4.0

M0 = 1.6 Numerical 29.8◦ 22.5◦ 18.0◦
Theoretical 30.0◦ 22.5◦ 18.1◦

M0 = 2.0 Numerical 38.0◦ 28.6◦ 22.8◦
Theoretical 38.1◦ 28.6◦ 23.0◦

M0 = 2.4 Numerical 44.6◦ 34.9◦ 28.2◦
Theoretical 44.9◦ 35.1◦ 28.3◦

M0 = 3.0 Numerical 60.7◦ 45.7◦ 36.8◦
Theoretical 61.3◦ 45.9◦ 37.1◦

Table 1. The critical contact angle θcr values at different incident shock wave intensities and shapes.
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Figure 17. The position of Pcav for theoretical analysis for three incident shock wave shapes and three
incident shock wave intensities varies with the dimensionless radius ω.

It can be found that the factors affecting the relative position of Pcav can be divided
into two parts. One part is the physical parameter, including property parameters of the
two-phase system that affects the value of κ and the initial strength of the incident shock
wave that affects the value of M0. Another part is the geometrical parameter which affects
the value of the initial radius ratio ω if the curved shock wave has a cylindrical shape.
A detailed analysis will be introduced in our further works when the shape of the curved
shock wave is not as perfect as that of a cylindrical shock wave. Figure 17 presents the
position of Pcav for theoretical analysis of three incident shock wave shapes and three
incident shock wave intensities varying with the dimensionless radius ω. It can be found
that the position of Pcav , in the case of the converged shock, will be obviously offset with
the increase of the incident shock wave curvature 1/ω, while its offset direction is opposite
to that in the case of the diverged shock. Therefore, we can use a weaker converged shock
to obtain the same focus point of the reflected rarefaction wave compared with the cases
of the planar shock wave.

The comparison of the numerical result at M0 = 2.4 for three different shapes of the
incident shock wave is shown in figure 18. It can be found that the converged shock wave
can delay the reflection transition of the incident shock wave from the regular reflection to
the irregular Mach reflection, while the diverged shock wave can promote this process, as
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shown in figure 18(b). The pressure contours inside the water column for three different
shapes of incident shock waves at their respective focus instants are shown in figure 18(c).
The minimum pressure–time curves inside the water column for three different types of
incident shock waves are shown in figure 19. It is noticed that the converged shock wave
can significantly enhance the phenomenon of the negative pressure induced by the focus of
the reflected rarefaction wave. In contrast, the diverged shock can observably restrain this
negative-pressure phenomenon. In other words, for a certain purity of water, a maximum
probability of cavitation exists in the interactions of the converged shock wave with a
water column and a minimum probability of cavitation exists in the interactions of the
diverged shock wave with a water column compared with the interactions of the planar
shock wave with a water column. The main reason is that the larger critical angle makes the
envelope of the transmitted shock wave have a larger ray density and brings a significant
negative pressure. Similarly, the pressure oscillation (the difference between the maximum
and minimum pressure) caused by the focus of the second reflected wave (Re2-EW and
Re2-CW) is more apparent in the case of the converged shock wave, figure 19.

However, by observing figure 18(d), it can be found that the negative pressure inside the
water column, caused by the second reflected rarefaction wave, is much more significant
in the case of the diverged shock wave than that in the case of the converged shock wave.
It is worth noting that the focus of Re2-CW would not generate a sharp high-pressure peak
in the case of the diverged shock wave and the planar shock wave, which appears in the
case of the converged shock wave. The main reason is that, as the interaction continues,
the intensity of the incident shock wave gradually increases in the case of the converged
shock wave. Hence, the pressure behind the reflected rarefaction recovery is quicker than in
the other two cases. Moreover, figure 19 also shows that the time required for the reflected
rarefaction wave to focus completely is the lowest under the converged shock wave, while it
reaches the maximum under the diverged shock wave. In conclusion, the converged shock
wave can significantly enhance the probability of cavitation inside the water column and
simultaneously shorten the distance from the focus point Pcav to the column centre.

Previous studies in interactions of the planar shock wave with a water column (Sembian
et al. 2016; Xiang & Wang 2017; Biasiori-Poulanges & El-Rabii 2021) have shown that,
with the increase of the incident shock wave intensity, there is a stronger negative-pressure
effect caused by the first reflected rarefaction wave and a greater possibility of cavitation.
In this section, we will determine how the initial shock wave intensity of different shapes
of the incident curved shock wave influences the interaction process.

Figure 20(a) presents the minimum pressure pmin during the focus of Re-RWIC for three
incident shock wave shapes varying with shock wave intensity in the range of 1.2–4.5.
A few trends stand out. One is that pmin decreases rapidly as the shock intensity increases,
and pmin is always negative for all shock wave intensities. Additionally, the minimum
pressure induced by the converged shock wave is always lower than that induced by the
planar shock wave and the diverged shock wave, and this phenomenon becomes apparent
at a higher shock wave intensity. In addition, the cavitation threshold pressure obtained
from Sembian et al. (2016) is added in figure 20(a). It can be found that pmin is supposed
to exceed the cavitation threshold if the shock wave intensity is large enough. In other
words, the stronger the incident shock wave intensity, the higher the cavitation possibility.
Because the focus pressure is the lowest in the case of the converged shock wave, the
converged shock wave can significantly enhance the cavitation possibility. The comparison
of the position of Pcav (pminp) between theoretical analysis and numerical simulations for
different incident shock wave shapes is shown in figure 20(b). It can be seen that, no
matter what shape the incident shock wave is, the distance from Pcav (pminp) to the column
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Figure 18. The comparison of the numerical results of the interaction between the shock wave and a water
column, M0 = 2.4, for three different types of the shape of the incident shock wave (1 represents the diverged
shock wave, 2 represents the planar shock wave and 3 represents the converged shock wave).

centre C increases as the shock wave intensity increases both in theoretical analysis and
numerical simulations. In addition, compared with cases of the planar shock wave, an
obvious left shift, decreasing the distance, is found in cases of the diverged shock wave,
while a considerable right shift, increasing the distance, is found in cases of the converged
shock wave. The numerical simulations show a similar trend to the theoretical analysis,
although it is worth noticing that the theoretical focus point of the first reflected rarefaction
wave Pcav does not coincide with the minimum pressure point pminp in the numerical
results, also presented by Biasiori-Poulanges & El-Rabii (2021). This deviation between
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Figure 19. The evolution of the minimum and maximum pressures inside the water column over time for
three incident shock wave shapes, M0 = 2.4.

the theoretical analysis and numerical simulations is mainly caused by the assumption of
the infinitely thin wave structures in the theoretical analysis. However, this assumption
of discontinuity in mathematics does not exist in numerical simulations and experiments.
Hence, if a higher prediction accuracy of the theoretical analysis is expected, the effect of
wave width must be considered, but it is still hard to achieve in a short time. To this end,
a balanced approach, which means the assumption of the infinitely thin wave structures
is kept in the theoretical analysis, but the effect of grid size on predicting the position
of the focusing point is considered, is used to verify our explanation as also shown in
figure 20(b). It can be found that the deviation between theoretical results and numerical
simulations decreases significantly if the effect of grid size is considered. Of course, the
velocity estimation of the transmitted shock wave will also lead to a difference in the
Pcav position between the theoretical analysis and numerical simulations. Nonetheless,
the theoretical results obtained in the present study still have a high accuracy in predicting
the focus of reflected waves and the region with high cavitation possibility inside the water
column.

5. Conclusion

In this paper, we examined the early stage of the interaction of the curved shock wave
with a cylindrical water column emphasising the analysis of waves that are converging.
The study was conducted using the ray analysis method complemented by numerical
simulations.

The spatio-temporal evolution and interaction of the complicated waves inside the water
column have been detailed when the cylindrical converged, cylindrical diverged and planar
shock waves are considered. The transmitted shock wave is generated inside the water
column immediately after the impact of the shock wave. When the contact angle θ is
larger than the critical value θcr, the transmitted shock wave will detach from the incident
shock wave, forming the precursor shock wave. The value of θcr is determined by the
incident shock wave intensity, the sound-speed ratio of the two phases and the shapes of
the incident shock. Meanwhile, although there are countless rays on the same compression
wavelet, only one ray, whose emission angle αθ satisfies (3.6), will affect the envelope of
compression wavelets. After the detachment, the precursor shock wave propagates and
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Figure 20. (a) The minimum pressure pmin during the focusing of Re-RWIC for three incident shock wave
shapes varies with shock wave intensity. (b) The focus point position for theoretical prediction (Pcav) and
numerical simulation (pminp) for three incident shock wave shapes varies with shock wave intensity.

transiently reflects from the column surface, generating a series of rarefaction waves.
The focus of the reflected rarefaction wave can induce negative-pressure regions, where
a higher probability of cavitation exists if the wave strength is high enough. In addition,
a highly transient pressure oscillation is observed near the focus region of the second
reflected wave, whose two branches have opposite properties. Based on the ray analysis,
the positions of the focusing points of the first reflected rarefaction wave and the second
reflected wave are derived, as determined by the dimensionless sound speed κ , the initial
shock wave intensity M0 and the dimensionless function fs characterising the effect of
shock wave shapes.

The present study also investigates the effects of the initial shock wave intensity and
the shapes of the incident shock wave. It is found that, due to having a larger critical
detachment angle θcr that will bring a larger ray density to the compression wavelet
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Figure 21. The comparison of dimensionless parameters of the cylindrical shock wave varying with different
shock radii between the CCW theory and numerical simulation.

Grid-I

p (MPa)
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–3.1 –1.7 –0.3 1.1 2.5

(a) (b) (c)

Figure 22. The numerical schlieren (top) and pressure (bottom) contours of the three different grid
resolutions at t = 3.6 μs, ω = 4.0 and M0 = 2.4.

envelope, the converged shock wave envelope induces a stronger negative pressure and
a stronger pressure oscillation inside the water column, while the diverged shock wave,
having a smaller detachment critical angle, weakens these phenomena. However, due to
a rapid pressure recovery after the reflected rarefaction wave, the diverged shock wave
can induce a significant secondary negative-pressure effect when the second reflected
wave focuses inside the water column, compared with the other two shapes of the
incident shock wave. In addition, the converged shock wave can shorten the distances
from the focus points to the column centre, enhancing the probability of cavitation inside
the water column. It is undoubtedly the case that the diverged shock wave increases
these distances and weakens the cavitation probability. Based on the above analysis, the
wave structure evolution mechanism and essential influencing factors can contribute to
practical applications, such as fuel droplet atomisation under the interaction of a cellular
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Figure 23. Pressure distribution along the symmetrical axis of the water column under three different grid
resolutions at t = 3.6 μs, ω = 4.0 and M0 = 2.4.

detonation wave. Future work will further investigate the cavitation behaviours induced by
the rarefaction waves during the curved shock wave and the droplet interactions.
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Appendix A

In this appendix, to verify the reliability of the CCW theory, the comparison of
dimensionless parameters of the cylindrical shock wave, varying with different shock radii,
between the CCW theory and numerical simulation is presented in figure 21. Here, Vms and
ps represent the velocity magnitude and pressure at the wavefront of the cylindrical shock
wave. Subscript 0 indicates that the cylindrical shock wave radius equals R0. It is found
that the CCW theory can better predict the convergence of the cylindrical shock wave,
although the deviation of the cylindrical shock intensity obtained by the CCW theory
and the numerical simulation is observed. Actually, to avoid this deviation (Zhang 2017),
we can make the shock intensity at the R = R0 equal to our desired value by constantly
adjusting the initial cylindrical shock intensity at Rint (Rint is much bigger than R0 in the
case of the converged shock wave, and Rint is much smaller than R0 in the case of the
diverged shock wave).

Appendix B

In this appendix, the grid independence verification is performed, taking the case of the
cylindrical shock wave interacting with a water column. Here, the incident shock wave
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t∗ = 0.30 t∗ = 0.92 t∗ = 1.08

t∗ = 1.25 t∗ = 1.41 t∗ = 1.74

t∗ = 2.24 t∗ = 2.34 t∗ = 2.82

Figure 24. Comparison of the confined wave structure spatio-temporal dynamics theoretically predicted
(bottom side) with numerical schlieren contour (top side) for the interaction between the cylindrical converged
shock and the water column in the case of ω = 4.0 and M0 = 2.4.

intensity M0 is taken as 2.4, and the dimensionless incident shock wave radius ω is taken
as 4.0. The grid sensitivity is analysed by choosing three different grid resolutions: 5.8
(Grid-I), 13.0 (Grid-II) and 23.0 million cells (Grid-III). The grid cells per the water
column diameter correspond to 800, 1200 and 1600, respectively.

The pressure contours and numerical schlieren contours for three different grid
resolutions at the same instant are shown in figure 22. A similar distribution is noticed for
pressure contours and numerical schlieren contours of the three different grid levels. As
the grid resolution is enhanced, the captured flow field structures, including the shock wave
structures and two-phase interfaces, become sharper. The extracted pressure profiles along
the symmetrical axis of the water column under three different grid resolutions are shown
in figure 23, where the abscissa axis is normalised by RD. The three pressure curves with
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different grid resolutions are basically overlapping, and the pressure discontinuity caused
by the reflected rarefaction wave is sharpened with the increase of grid resolution. Slight
deviations from the pressure distribution are observed behind the reflected rarefaction
wave in Grid-I due to the low grid resolution, while the pressure distributions overlap
well for the other two higher grid resolutions. Grid-II is finally chosen in the present study
to balance the resolution of the flow field and the computational efficiency.

Appendix C

The comparison of wave structure evolution characteristics between the numerical
simulation (top side) and the theoretical result (bottom side) for the interaction between the
cylindrical converged shock and the water column in the case of ω = 4.0 and M0 = 2.4
is presented in this appendix in figure 24. It is easily found that the theoretical analysis
method can perfectly reveal the spatio-temporal evolution of wave structures inside the
shocked water column, although small offsets are captured when the shocked water column
appears to have a slight deformation.
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