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TWO CONSEQUENCES OF BRUNEL'S THEOREM 

JAMES H. OLSEN 

ABSTRACT. In this note we observe two consequences of Brunei's recent 
theorem. If T\,..., Tn are majorized by positive power-bounded operators 
Si,..., Sn of Lp, 1 < p < oo, for which the ergodic theorem holds, then 
a multiple sequence ergodic theorem holds for T\,. ..,Tn. Further, the indi­
vidual convergence for each Tk can be taken along uniform sequences. 

1. Introduction. In what follows, we assume p fixed, 1 < p < oo. Let (X, ̂ P, /x) 
be a probability space, { 7*}n

k=l linear operators of LP(X, IP, /x) = Lp. If Tk takes non-
negative functions to non-negative functions, we say that Tk is positive. If there is a linear 
operator Sk such that | Tif\ < Sk\f\ for all/ in Lp, we say that Sk majorizes 7\. If there is a 
constant B such that || Tkn\\p < B for all n, n— 1,2,..., we say that Tk is power-bounded 
with power bound B. 

We put 
1 m\ — 1 m„ — 1 

A(m 1 , . . . ,n i n ; r 1 , . . . , r B ; / )= ^ ... ^ T{
k\..., Tn

k»f 
mi...mnkl=0 kn=0 

and 
M(Tu...,Tn;f)= sup |A(mi . . .m„ ; r i , . . . , r „ ; / ) | . 

mi...mn 

If there exists a constant C such that || Af(7i,..., Tn;f)\\p < C\\f\\p for al l / G Lp, we say 
that {Tk}n

k=l admits a dominated estimate with constant C. The celebrated theorem of 
Brunei [3] states that if T\ is a positive linear operator of Lp, T\ admits a dominated esti­
mate if and only if T\ is Cesaro-bounded, (i.e., supn \\A(n, T\,-)\\p< oo). Since a power-
bounded operator is clearly Ceasaro-bounded, Brunei's theorem implies that positive, or 
positively dominated, power-bounded operators of Lp admit a dominated estimate, and, 
therefore, 

lim A(m, T\,f) exists a.s. for 
m—•oo 

all / in Lp. 

2. A multiple sequence theorem. Let { 7^} n
k=l be operators of Lp, each of which 

is majorized by a power-bounded operator Sk of Lp. Then each Sk admits a dominated 
estimate with constant Mk (and the average A(ra; S*;/) converge a.s. as m —> oo for all 
/ G Lp). Then each Tk admits a dominated estimate with constant Mk, so the average 
A(ra; 7^;/) converge a.s. as m —> oo for a l l / G Lp. We will now show that {Tk}n

k=l 

admits a dominated estimate and that the average A(rai,. ..,mn;T\9...,Tk',f) converse 
a.s. for a l l / G L^ as mi , . . . , m^ tend to oo independently of each other. 
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THEOREM 1. Let {Tk)n
k=x be linear operators ofLp, for which each 7^ is majorized 

by a power-bounded operator Sk of Lp. Further, suppose each St admits a dominated 
estimate with constant Mk (and hence lira A(m; St',f) exists a.s. for all f G Lp). Then 

m—>oo 

{ Tk} l=\ admits a dominated estimate with constant M\ • . . . • Mn. 

PROOF. Follows by induction on the number of operators and noting that 

\A(m\,...,mn\ T\,... Tn\f)\ < A(m\,...,m„; S i , . . . , Sn; | / | ). 

THEOREM 2. Let { 7&} J*=1 be as in Theorem 1. Then 

lim A(mu...,mn',Ti,...,Tn',f) 
mi,...,m„—>oo 

exists a.s. for allf G Lp. Here, m\,..., mn tend to infinity, independently of each other. 

PROOF. We proceed again by induction, noting that the theorem is true for n — 1 by 
Brunei's result. 

Assuming the therorem is true for any set {Tk}n
kZ\ °f s u c n operators/ G Lp, let 

/ = h + g — Tng, where Tnh — h and g G Lp. The set of such/'s is dense in Lp by the 
Mean Ergodic Theorem, since Tn is power-bounded. Then 

A(mi,... , mn\ Tu . . . , Tn;f) =A(mi,. . . ,mn\T\,... ,Tn\(h +g - Tngj) 

=A(mi, . . . ,mn ;7i , . . . ,Tn\h) 

+ — A(mi,... , mn-\ \Tu...,Tn-\;g) 
nl 

A(mx ,...,mn;Tu...,Tn-\\ T%"g). 

Now, the first two terms on the right of the last equality converge a.e. as m\,..., mn —> oo 
independently of each other (the second to zero), so we consider only the last. 

—A(mU-..,mn\Tu...,Tn;7?g(x)) 
mn

 v ' 

< - lAf(Si, . . . ,Sw_i(S^-|g|W)) a.s.,so 

/ —- \A(mu... ,m„_i; Tu ..., Tn-\\ T?ng(x))\P du 
J mnP ' v n 

-/^(M(5 l ' '--'^- i ;^ ( | g | ))PW 

< 
mn 

mn 

1 -Ml.....Mn-l[(S?(\g\)Ydu 
rV J 

<^-MX'...'Mn^Bn [\g\pdu 
mnP J 

where || S™\\ < Bn for all m. 
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Therefore 

£ l—M(Su...9Sn-l;SF(\g\j)) du 
nk=\J V™« /J 

is finite, so 

lim —M(Su...,Sn-l\SC*(\g\j) = 0 a.s. , 

and 

lim —A (mi,.. . ,m„_i; Tu • • •, ^«-f, C s ) 
m\,...,mn-+OQ\mn

 J\ 

< lim —M(51,...,5„_1(S™"|^|)) = 0 a.s. 

SO 

lim —A(mi, . . . ,mn_i;r i , . . . , r„_i ;7^ ' ,g) = 0 a.s. 
m\,...,mn—+oo mn ' 

The theorem now follows by the usual application of the Banach Principle (see [9] for 
example). 

The proof is an adaptation of proof in [9] and [5]. The theorem also follows from 6.1 
of [6]. The author is indebted to Prof. Sucheston for pointing this out. The above proof 
offers a different approach. 

3. Convergence along uniform sequences. One question that arises for linear op­
erators is: for which sequences of integers { n^\ the average 

I n-\ 
- E THkf 
n *=0 

converge a.s. when/ is in the domain and range of T. Recall that/? is fixed, 1 < p < 00. 
The by now classical uniform sequences of Brunel-Keane [4] have been widely studied 
and these averages are known to converge a.s. when T is a positive contraction of Lp and 
{ Hk} is a uniform sequence (see [1], [7]). We paraphrase some of the results of [1]. 

THEOREM 3. Let T be majorized by a power-bounded operator S from Lp to Lp. 
Suppose further that for every complex member A, | A | = 1, 

1 n-\ 
lim - V A V / 

" - 0 0 n k=0 

1 n - l 

lim - V Snkf 

exist a.s. for allf E Lp and uniform sequence { nk\. 

l i m - E A ^ / and 
n—xx) n k=0 

exists a.s. for all f E Lp. Then 

1 n~x 

lim - V Tkf and 
n-00 n k=0 

PROOF. This is essentially Corollary 6.2 of [1]. 
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THEOREM 4. Let T be an operator ofLp that is majorized by a power-bounded op­
erator S of Lp. The lim - £?=n 771*/ exists a.s. for all f G Lp and uniform sequences 

{nk}. 

PROOF. For all complex numbers A, | A | = 1, the operator Uf = A Tf is power-
bounded from Lp to Lp (and hence to L\ ) and is also majorized by S. S admits a dominated 
estimate, and so does U. Thus, 

1 n - l 

lim - V Ukf 
n-oo n k=Q 

exists a.s. for all / in Lp. The same is true replacing Thy 5, allowing us to apply Theorem 
3. 

A multiparameter version of the above theorem also holds via the aforementioned 
result of Frangos-Sucheston. We omit the details, and refer the reader to [9], Theorem 2 
and its corollary. 

4. Acknowledgement. The author wises to express his gratitude to Professors A. 
Brunei and D. Comez for helpful conversations. 
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