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Dietary assessment methods including FFQ and food diaries are associated with many
measurement errors including energy under-reporting and incorrect estimation of portion
sizes. Such errors can lead to inconsistent results especially when investigating the relation-
ship between food intake and disease causation. To improve the classification of a person’s
dietary intake and therefore clarify proposed links between diet and disease, reliable and
accurate dietary assessment methods are essential. Dietary biomarkers have emerged as a
complementary approach to the traditional methods, and in recent years, metabolomics
has developed as a key technology for the identification of new dietary biomarkers. The
objective of this review is to give an overview of the approaches used for the identification
of biomarkers and potential use of the biomarkers. Over the years, a number of strategies
have emerged for the discovery of dietary biomarkers including acute and medium term
interventions and cross-sectional/cohort study approaches. Examples of the different
approaches will be presented. Concomitant with the focus on single biomarkers of specific
foods, there is an interest in the development of biomarker signatures for the identification
of dietary patterns. In the present review, we present an overview of the techniques used in
food intake biomarker discover, including the experimental approaches used and challenges
faced in the field. While significant progress has been achieved in the field of dietary biomar-
kers in recent years, a number of challenges remain. Addressing these challenges will be key
to ensure success in implementing use of dietary biomarkers.

Metabolomics: Biomarkers: Food intake: Dietary patterns

In recent years, there has been growing interest in the
potential of biomarkers in nutrition research. One of
the areas with great expectations is the field of dietary
biomarkers or food intake biomarkers. The interest in
these biomarkers stems from the need for objective mea-
sures of dietary intake. The traditional methods such as
FFQ, 24 h recalls and food diaries are all associated
with a number of well-defined limitations including
under-reporting, recall errors and difficulty in assessment
of portion sizes'"®. Currently dietary biomarkers
include 24 h urinary sodium, nitrogen and sucrose/fruc-
tose for estimation of salt, protein and sugar intake* "

In recent years, the concept of biomarkers reflecting
specific food intake has emerged. To date a number of
putative biomarkers exist for the intake of a range of
foods including, but not limited to, red meat, coffee,
nuts, wine, vegetables, legumes, citrus fruit, tea and
sugar-sweetened beverages’ ', While some confusion
exists in the literature over classification of biomarkers
into recovery or concentration biomarkers, we prefer to
use the newly defined flexible classification scheme for
biomarkers related to food intake!'?. Food intake bio-
markers are single metabolites, or a combination of meta-
bolites, reflecting the consumption of either a specific food
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or food group, displaying a clear time— and dose-
response after intake'?. With this in mind, we present
here an overview of the techniques used in food intake
biomarker discovery, the experimental approaches used
for biomarker discovery and challenges faced in the field.

Metabolomics: role in biomarker discovery

Metabolomics is the study of endogenous or exogenous
metabolites in an organism. Metabolites are found in tis-
sues and bio-fluids and are influenced by a number of
factors including genetics'¥, the microbiome!"® and
environmental exposures such as food, exercise and pol-
lutants'>'®. Metabolomics has emerged as a key tool in
biomarker studies and in particular for biomarkers
related to food intake. The sensitivity of modern in-
strumentation used in metabolomics can detect metabol-
ite concentrations as low as 0-1 ng/ml in plasma‘”.
Metabolites by their nature have a prodigious range of
structures which can inhibit identification as they can
be transitory intermediates or end products of biological
processes. Identification of the vast array of possible
metabolites is currently the limiting factor in biomarker
discovery. To aid the identification of metabolites, a
number of databases have emerged. The human metabol-
ite database (HMDB — http:/www.hmdb.ca/)"® includes
114 100 empirical and in silico compounds and is readily
searchable. Other databases include MyCompoundID,
a library of 8 021 endogenous human metabolites with
10583901 predicted products of these metabolites ghttp://
www.mycompoundid.org/mycompoundid_IsoMS/;* the
METLIN database (http:/metlin.scripps.edu);*” and
MassBank of North America (MoNA; http:/mona.
fiehnlab.ucdavis.edu/).

Measurement of the metabolites

Metabolites in biofluid samples represent a wide range of
molecules with diverse chemical nature and dynamic
range. As a result, a number of platforms have emerged
as key players in terms of measuring metabolites for
biomarker discovery. A complete detailed review of all
the techniques is beyond the scope of this review but an
overview is given below and readers are referred to the fol-
lowing review for technical details on each approach®”. In
the initial years of emergence of metabolomics, the litera-
ture was dominated by NMR-based applications. NMR
spectroscopy is a technique which has com?aratively low
sensitivity compared with other techniques®”. However,
it is useful as it is non-destructive, reproducible, quantita-
tive and furnishes structural information. Little sample
preparation is required, and results are consistent between
different laboratories®?.

The MS-based approaches are extremely sensitive and
are often coupled with a chromatography step to help
with separation of the metabolites. GC-MS is a technique
particularly suited to compounds of low polarity such as
fatty acids, amino acids and sterols. Preparation of sam-
ples is somewhat complicated as samples must undergo
chemical derivatisation prior to analysis to ensure that
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they are volatile. Compounds are separated on a column
by their chemical properties causing them to elute at
specific times (retention time). The eluted compounds
are ionised and their mass-to-charge ratio (m/z) is deter-
mined®?. This technique is ?articularly suited to lipids
and all non-polar compounds®”.

Liquid chromatography MS is suitable for analysis of
a broad range of metabolites. Its advantages over
GC-MS include simple sample preFaration and ability
to analyse highly polar compounds®®®. Metabolites are
separated on a column and the eluted compounds are
ionised, and their m/z and retention time is detected
as output. For analysis of large batches (greater than
100 samples), one must include the necessary controls
to account for instrument instability over time and
batch-to-batch variation®". Capillary electrophoresis
separates compounds by their mobility in an electric
field, based on their charge, viscosity and size. It is well
suited to highly charged polar metabolites such as organ-
ics acids, nucleotides, peptides and their conjugates. It is
coupled to MS instruments using electrospray ionisa-
tion®”. For high-throughput techniques where it is desir-
able to have low run time per sample direct infusion MS
is often employed. In this approach, metabolites are ana-
lysed by nano-electrospray ion source after infusion dir-
ectly into the ion source without prior separation. A
high-resolution, high-accuracy instrument such as a
Q-Exactive Orbitrap can identify individual metabolites
based on their m/z ratios®®.

As afore-mentioned, a key bottleneck in employing
any of these techniques is the identification of the com-
pounds. Tandem MS or MS/MS is a powerful technique
which enables identification of compounds. Using
this approach, initial ionised analytes are fragmented to
produce smaller product ions from a parent ion. The
ions can undergo several rounds of fragmentation,
depending on the instrument. The first round (MS) is
known as MS1 and the subsequent fragmentation is
MS2, MS3,...MS". As modern instruments have high
mass accuracy, m/z of the fragments are used to build
up a profile of a compound enabling identification
which can then be confirmed with original stan-
dards®=?. Finally, it is worth noting that all these tech-
niques can be run in either a targeted or un-targeted
mode. In the targeted mode, a predefined list of metabo-
lites are measured, whereas in an un-targeted mode, as
many features as possible are measured. Depending on
the research question, one can decide to operate in either
mode or use a combination of both.

Food intake biomarkers

There are multiple study designs in which metabolomics
can be applied to identify food intake biomarkers.
Previous research study designs have employed one of
two approaches either conducting an intervention study
or using samples from a cross-sectional or epidemiology
study to identify metabolites associated with food
intake®'*?. Human intervention study designs involve
requesting participants to consume specific food(s) over
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a defined period of time and biofluids, such as blood and
urine, are collected at specific time-points depending on
research interests. Once biofluids are collected, a range
of metabolomic techniques as described earlier can be
used to identify metabolites associated with the food
intake. The time period involved in intervention studies
varies depending on the research aims and can range
from acute (single-day food challenge), to short- (days)
or medium- (weeks) term interventions. Within the
umbrella term of intervention studies, there are multiple
designs and considerations. When implementing a cross-
over design, participants are asked to follow specific diet-
ary instructions, i.e. consuming a specific amount of a
food of interest for a set time and changing to a diet
with different amounts of, or completely lacking, the
food of interest, thereby acting as their own control.
Cross et al. employed this approach when examining
24 h urine samples for biomarkers of meat consumption.
Participants were asked to consume four different diets
for 14 d each containing a low- (60 g/d), medium- (120
g/d), high-portion of red meat (420 g/d) or a protein
equivalent vegetarian diet®?. Targeted metabolic ana-
lyses were performed for four known meat-specific urin-
ary metabolites, creatine, taurine, 1-methylhistidine and
3-methylhistidine. All four metabolites increased in con-
centration with increased meat consumption but only 1-
and 3-methylhistidine concentrations were statistically
different for each meat dose. In these cross-over studies,
it is often necessary to consider a washout period: in this
period certain dietary restrictions are in place, for
example, avoiding specific foods/food groups for a time
prior to consuming a high ‘food of interest’ diet. In a
study related to cruciferous vegetables (CV) participants
avoided CV and alliums for 12 days either side of a high
CV diet intervention, containing broccoli and Brussel
sprouts®?. Clear urinary metabolic differentiation was
seen between high and low CV diets, as signified in
NMR spectra by four singlet peaks which were exclusive
to high CV consumption and remained elevated above
baseline at 48 h post consumption. The peaks were iden-
tified as S-methyl cysteine sulphoxide, a sulphur-
containing amino acid ubiquitous in CV, and its
metabolites.

Parallel group intervention studies have also been suc-
cessful in food intake biomarker discovery. Hanhineva
et al. randomised participants to follow one of three
diets over a 12-week period including a healthy diet
(wholegrain enriched diet, fatty fish and bilberries), a
wholegrain-enriched diet or a control diet (avoiding
whole grain cereals and bilberries, consuming low-fibre
products, limiting fatty fish intake to one portion per
week)®®. Plasma metabolomics revealed that 3-carboxy-
4-methyl-5-propyl-2-furanpropionic acid was associated
with fatty fish intake and alkylresorcinol metabolites
were associated with wholegrain intake.

Using samples from epidemiology studies, one examines
correlations between self-reported food intake and biomar-
kers measured in urine or blood samples. Guertin et al.
applied an ultra-high-pressure liquid chromatography
and GC-MS metabolomics approach when examining
serum samples from a subset of the prostate, lung,
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colorectal and ovarian cancer screening trial to identify
biomarkers related to the intake of thirty-six food
groups®. The data revealed that thirty-nine biomarkers
were significantly associated with intake of food groups
such as citrus, green vegetables, red meat, fish, shellfish,
butter, peanuts, rice, coffee, beer, liquor, total alcohol
and multivitamins. Other approaches have compared con-
sumer and non-consumers of certain foods to identify bio-
markers increased in the consumers. Using this approach,
Rothwell et al. identified discriminating biomarkers in the
urinary metabolome of twenty high coffee consumers and
nineteen non-consumers in a subset of the SU.VLMAX2
cohort®™. Many other examples using this approach
have emerged in recent years and readers are referred to
Guasch-Ferré et al., for an overview of such studies®®.

Once identified it is critical that the biomarkers are
assessed for validity as biomarkers of food intake.
Recently a validation procedure was put forward as
part of the FoodBall consortium which included plausi-
bility, dose-response, time-response, robustness, reliabil-
ity, stability, analytical performance and inter-laboratory
reproducibility as the eight criteria for assessment of val-
idation®”. While assessment of all these criteria may not
be possible in a single study, it is important that they are
considered and that at least the plausibility and dose—
response are assessed. Using the afore-mentioned study
designs, a number of putative biomarkers have emerged
in the literature; a full review of such markers is beyond
the scope of this review and readers are referred to work
by the FoodBall consortium which has performed a ser-
ies of systematic reviews for commonly consumed foods.
The foods covered to date in the systematic reviews
include (1) apples, pears and stone fruit, (2) legumes,
3) dairg/ and egg products and (4) non-alcoholic bev-
erages®®*V. Other reviews which cover the commonly
consumed foods in Europe are underway. From the pres-
ently published reviews, it is obvious that a number of
putative markers exist; however, there are no fully vali-
dated markers of these foods. This highlights the urgency
in developing strategies to ensure that we have fully vali-
dated biomarkers.

Use of food intake biomarkers in quantifying intake

The ultimate goal of a food intake biomarker is to quantify
intake of the specific food. Despite the proliferation in the
number of putative biomarkers of food intake, there is
paucity of data demonstrating the quantitative ability of
food intake biomarkers. Notwithstanding this, there are
two examples in the literature that demonstrate the
potential.

Examining the potential of the well-established marker
of citrus intake, our previous work demonstrated that
proline betaine could be used to determine citrus intake.
Using a controlled dietary intervention approach, parti-
cipants consumed standardised breakfasts for 3 consecu-
tive days over 3 weeks where orange juice intake was
decreased over the 3-week period®?. Using the urinary
proline betaine concentrations, calibration curves were
established. Using these calibration curves, the citrus
intake was determined in an independent cross-sectional
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Determination
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Associations
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Fig. 1. (Colour online) An overview of the applications of dietary
biomarkers. Biomarkers can give information on (1) food intake,
(2) dietary patterns and (3) relationships with health outcomes.

study of 560 individuals. There was excellent agreement
between the self-reported intake (estimated from a 4 d
semi-weighed food diary) and the estimated intake
from the biomarker with a low mean bias of 43 g
between the methods. This study clearly demonstrates
the potential of well-validated food intake biomarkers.
In a separate study, Garcia-Perez et al. examined the
ability of tartaric acid to determine grape intake*®. A
dose-response relationship was established between
grape intake and urinary tartaric acid levels. The agree-
ment between estimated intake and actual intake was
good and a correlation coefficient of R*>=0-9 was
reported. Overall, these two examples provide strong evi-
dence of the potential of food intake biomarkers and
demonstrate the importance of assessing dose-response
relationships on identified biomarkers. However, it is
also worth noting that not all biomarkers will be fully
quantitative but will still yield useful information for
examining relationships with health outcomes (Fig. 1).

Biomarkers of dietary patterns

In nutrition research, there has been an increased interest
in examining the diet as a whole instead of examining
intake of single foods or nutrients. With this in mind,
the concept of dietary patterns has emerged and the
potential of using biomarkers to classify individuals
into different dietary patterns is of interest. For the pre-
sent review, we focus on the studies that have used a
metabolomics-based approach to classify individuals
into dietary patterns.

Andersen et al. used an untargeted metabolic pheno-
typing approach to distinguish between two dietary pat-
terns with the purpose of developing a compliance
measure for adherence to the new Nordic diet or an aver-
age Danish diet“? (see Table 1). Using the urinary
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metabolic profile, a multivariate model was established
that could distinguish the two dietary patterns with a
low misclassification error rate (19 %) clearly indicating
that this approach could be used for the examination
of compliance to a certain dietary pattern. A follow-up
paper also demonstrated that a classification model
could be built using plasma metabolites to assess compli-
ance to the new Nordic diet and average Danish diet
diets'V. Esko et al. used a controlled feeding study to
examine three different dietary patterns. These dietary
patterns differed in macronutrient composition: low fat
(60 % carbohydrate, 20 % fat, 20 % protein), low gly-
caemic index (40 % carbohydrate, 40 % fat, 20 % protein)
and very-low carbohydrate (10 % carbohydrate, 60 % fat,
30 % protein)*>. A classification model was built that
could distinguish the three dietary patterns using plasma
metabolites. These results support the concept that a
metabolite-based model could be used in checking for
adherence to specific diets and for the examination of
relationship between dietary patterns and health out-
comes in large epidemiological studies. Garcia-Perez
et al. used a controlled intervention to develop a urinary
metabolomics model that could classify individuals into
dietary patterns®”. The four diets were based on the
WHO healthy eating guidelines for the prevention of
non-communicable diseases. Work from our laboratory
used a cross-sectional study to develop a model based
on urinary metabolomic data which could classify sub-
jects into either a healthy or an unhealthy dietary pat-
tern'®. The classification into the dietary patterns was
supported by significant differences in blood parameters
such as higher folate and 25(OH)-vitamin D in the
healthy dietary pattern. The work presented by these
examples demonstrates the potential of metabolomics-
based approaches to identify dietary patterns and study
the relationships with health outcomes. However, further
work is needed to refine and develop these concepts fur-
ther so that metabolomics-based biomarkers can be used
for rapid and objective classification of individuals into
dietary patterns.

While the afore-mentioned papers have developed
the concept of examination of dietary patterns using
metabolite biomarkers, there is also a large interest in
examining the relationship between the metabolomic
profile and known predefined dietary patterns such as
the Mediterranean diet. The potential of such approaches
is that it will allow the examination of the impact of diet-
ary patterns on metabolic processes and pathways“”.
Collectively, the studies presented earlier provide com-
pelling evidence for the potential of metabolite biomar-
kers as a method for objectively assigning individuals
into dietary patterns and for studying the effects of the
certain dietary patterns on metabolic pathways.

Future challenges and outlook

While significant progress has been made in the past 5
years in the area of dietary biomarkers, there remain a
number of challenges that need to be addressed. The val-
idation of putative biomarkers is often overlooked and
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Table 1. Overview of studies using biomarkers for determining dietary patterns

Dietary

Dietary pattern Study type; participants (n) assessment tool Biofluid Analytic technique  Results Reference

New Nordic diet (NND) or  Six-month parallel Weighed dietary 24 h urine samples UPLC-qTOF-MS Identified metabolite markers of individual foods such ~ ©4
average Danish diet intervention study (181) records as citrus, cocoa-containing products and fish as well
(ADD) as more general dietary traits such as high fruit and

vegetable intake or high intake of heat-treated foods.
Misclassification rate for two dietary patterns in a
validation set with 139 samples was 19% based on
67 selected features in urine.

NND or 26-week parallel N/A had control of  Fasting plasma UPLC-qTOF-MS Demonstrated that supervised machine learning with (")

ADD intervention study (146) food provided samples at 0, 12 feature selection can separate NND and ADD

and 26 weeks samples (average test set performance AUC = 0-88).
NND plasma metabolome characterised by
diet-related metabolites, such as pipecolic acid
betaine (whole grain), trimethylamine oxide, and
prolyl hydroxyproline (both fish intake), theobromine
(chocolate). Metabolites of amino acid (i.e.
indolelactic acid and hydroxy-3-methylbutyrate) and
fat metabolism (butyryl carnitine) characterised ADD
whereas NND was associated with higher
concentrations of polyunsaturated
phosphatidylcholines

Low fat (60 % CHO, 20 % Three test diets, each fora N/A observed Fasting plasma LC-MS/MS Identified 152 metabolites whose concentrations @5)
fat, 20 % protein), 4-week period cross-over  consumption samples at differed for >1 diet compared with the others,
low GI (40 % CHO, 40 %  design (21) baseline and end including DAG and TAGS, BCAA, and markers
fat, 20 % protein), of each 4-week reflecting metabolic status. A classifier model was
or very-low CHO (10 % period constructed to identify each diet.

CHO, 60 % fat, 30 %
protein)

Four dietary interventions ~ RCT crossover 4 x 72 h N/A observed 24 h pooled H-NMR Developed urinary metabolite models for each dietand ~ “©
in concordance with the study stays (19) Cohort consumption urine samples identified the associated metabolic profiles. Validated
WHO healthy eating studies: INTERMAP UK the models using data and samples from the cohort
guidelines (225) Healthy eating studies. Significant stepwise differences in

Danish (66) metabolite concentrations were seen between diets

with the lowest and highest metabolic risks.
Application of metabolite models to the validation
datasets confirmed the association between urinary
metabolic and dietary profiles in the cohort studies:
INTERMAP UK (P <0-0001) and Danish (P < 0-0001).

ayeyur A1B)3IP JO SISIRWONG
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Table 1. (Cont.)

Dietary pattern Study type; participants (n)

Results

Reference

Healthy eating index (HEI)
2010,
Alternate Mediterranean
diet score (aMED),
WHO healthy diet
indicator (HDI),
and Baltic Sea diet (BSD)

Alpha- tocopherol,
B-carotene cancer
prevention study cohort
(1336)

National Adult Nutrition
Survey (NANS) (567)

Healthy cluster
unhealthy cluster

Dietary Biofluid Analytic technique
assessment tool
12-month Fasting serum LC-MS,
validated FFQ samples UHPLC-MS/MS
and GC-MS
Four-day 50 ml first void "H-NMR
semi-weighed urine sample
food diaries fasting spot urine

samples

The HEI-2010, aMED, HDI and BSD were associated
with 23, 46, 23 and 33 metabolites, respectively (17,
21, 11 and 10 metabolites, respectively, were
chemically identified; r-range: —0-30 to 0-20;
P=6x10""°to 8 x 107°). Food-based diet indexes
(HEI-2010, aMED and BSD) were associated with
metabolites correlated with most components used
to score adherence (e.g. fruit, vegetables,
wholegrains, fish and unsaturated fat). HDI correlated
with metabolites related to polyunsaturated fat and
fibre components, but not other macro- or
micronutrients (e.g. percentages of protein and
cholesterol). The lysolipid and food and plant
xenobiotic pathways were most strongly associated
with diet quality.

Two-step cluster analysis applied to the urinary data to
identify clusters. The subsequent model was used to
classify an independent cohort into dietary patterns.
Classification was supported by significant
differences in nutrient status (P < 0-05). Validation in
an independent group revealed that 94 % of subjects
were correctly classified.

(47

(48)

UPLC-qTOF-MS, ultra-high-performance liquid chromatography quadrupole time of flight MS; AUC, area under the curve; CHO, carbohydrate; Gl, glycaemic index; DAG, diacylglycerols; BCAA, branched chain
amino acids; RCT, randomised control trial; 'TH-NMR, proton NMR.
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confusion thus arises as to the validity of biomarkers. It
is essential in moving forward that all food intake
biomarkers are validated and a suggested validation
scheme now exists. In many metabolomics studies, the
identification of metabolites to a high degree of certainty
is challenging and many of the current databases lack
metabolites that are related to food intake. International
collaborative efforts are needed to try to optimise the
identification process. To ensure that the food intake bio-
markers are functional in different ethnic groups, it will
be essential to develop quantitative methods for bio-
marker measurement to ensure reliable cross-cohort
comparison. Examples of other challenges include the
potential use of multiple biomarkers for single foods:
optimal methods for their use to estimate intake will
need to be developed. Furthermore, many biomarkers
will be indicators of short-term intake and defining strat-
egies to obtain measures of long-term intake still remains
a challenge. While multiple challenges exist for the field,
it is also worth noting that considerable advances have
been made in recent years, and with global consolidated
efforts, it remains a possibility that objective biomarkers
will improve our methods for assessing dietary intake.
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