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Abstract

Let f (X) ∈ Z[X] be a polynomial of degree d ≥ 2 without multiple roots and let F (N) be the set of
Farey fractions of order N. We use bounds for some new character sums and the square-sieve to obtain
upper bounds, pointwise and on average, on the number of fields Q(

√
f (r)) for r ∈ F (N), with a given

discriminant.

2020 Mathematics subject classification: primary 11L40; secondary 11N36, 11R11.
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1. Introduction

1.1. Motivation. Since the work of Shanks [14], there have been many investigations
of properties of quadratic fields Q(

√
a), for a ∈ A, where A is some sequence of

arithmetic interest, including values of exponential polynomials [1, 12, 13, 16, 17],
coordinates of integer points on algebraic curves [2–4, 6] and polynomial values
[5, 11]. Kulkarni and Levin [10] considered statistical properties of quadratic fields
Q(
√

f (r)) generated by polynomials f (X) ∈ Z[X] evaluated at rational points.
To define the quantities of interest, for an integer N, we denote by F (N) the set of

all Farey fractions of order N and their reciprocals, that is,

F (N) = {a/b : a, b ∈ {0, . . . , N}, b � 0, gcd(a, b) = 1}.
Given a nonconstant polynomial f (X) ∈ Z[X] of degree d without multiple roots, we
denote by R f (N) the set of discriminants of the quadratic fieldsQ(

√
f (r)) for r ∈ F (N).

Similarly, define the set Q f (N) of discriminants of the quadratic fields Q
√

f (n)) for
n ∈ {1, . . . , N}. For linear and quadratic polynomials f, Cutter et al. [5, Theorems 1A
and 1B] gave an asymptotic formula for #Q f (N). In the case of quadratic polynomials,
Luca and Shparlinski [11, Theorem 2] improved the saving in the error term of
[5, Theorem 1B] from log N to N−1/3. For polynomials f of higher degree d ≥ 3, an
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asymptotic formula for #Q f (N) is only known conditionally under the ABC-conjecture
(see [5, Theorem 1C]). Several additional results on the distribution of the fields
Q(
√

f (n)) for n ∈ {1, . . . , N} have been given in [12].
Kulkarni and Levin [10] initiated the study of the distribution of the fields Q(

√
f (r))

for r ∈ F (N). In particular, by a special case of [10, Theorem 1.2],

#R f (N) ≥ c( f )
N2

(log N)2 , (1.1)

with some constant c( f ) > 0 depending only on f. To show (1.1), Kulkarni and Levin
[10] used a slightly modified result of Stewart and Top [15, Theorem 2] on squarefree
parts of binary forms.

Here we use a different approach similar to that of [12] to obtain some results
about the statistics of individual values of discriminants of the fields Q(

√
f (r)) for

r ∈ F (N). More precisely, our approach is based on the square-sieve of Heath-Brown
[7] combined with various bounds on double character sums.

1.2. General conventions. We use the Landau symbols ‘O’ and ‘o’ as well as the
Vinogradov symbols ‘�’ and ‘�’ with their usual meanings. We recall that A = O(B),
A � B and B � A are all equivalent to the inequality |A| ≤ cB with some constant
c > 0, while A = o(B) means that A/B tends to zero. The implied constants in ‘O’, ‘�’
and ‘�’ may depend on the polynomial f (X).

For a real A ≥ 1, we write a ∼ A to indicate that A ≤ a ≤ 2A.

1.3. Our results. Given a squarefree integer s ≥ 1 and an arbitrary integer N ≥ 1,
we let

R f (s, N) = #{r ∈ F (N) : Q(
√

f (r)) = Q(
√

s)}.

For a similar quantity

Q f (s, N) = #{n ∈ {1, . . . , N} : Q(
√

f (n)) = Q(
√

s)},

the upper bound

Q f (s, N) � N1/2 log N

is given in [12, Theorem 1.1] and a similar argument can easily yield

R f (s, N) � N3/2 log N.

However, here we take advantage of having essentially a two-dimensional problem
and thus we can get savings from each variable (the numerator and denominator of
r ∈ F (N)). Hence, we obtain a stronger bound.

THEOREM 1.1. Let f (X) ∈ Z[X] be a fixed polynomial of degree d ≥ 2 having only
simple roots. Then uniformly over squarefree integers s ≥ 1 and for any integer N ≥ 2,

R f (s, N) � N4/3(log N)4/3.
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We also show that on average over s ∈ {1, . . . , S}, a better bound can be obtained
provided that S is in a certain specific region with respect to N. More precisely, let us
define

T f (S, N) =
S∑

s=1
s squarefree

R f (s, N).

Clearly, from Theorem 1.1 and also from the trivial bound,

T f (S, N) � min{N4/3S(log N)4/3, N2}. (1.2)

Similarly, we note that the argument of the proof of [12, Theorem 1.3] immediately
implies

T f (S, N) � N3/2+o(1)S3/4. (1.3)

We now obtain a bound which improves (1.2) and (1.3) for S ≤ N4/5.

THEOREM 1.2. Let f (X) ∈ Z[X] be a fixed polynomial of degree d ≥ 2 having only
simple roots. Then uniformly for S ≥ 1,

T f (S, N) ≤ N4/3+o(1)S5/6, as N → ∞.

In particular, we see from Theorem 1.2 that for all but o(N2) elements r ∈ F (N),
the field Q(

√
f (r)) is of discriminant at least N4/5+o(1).

2. Preparations

2.1. Preliminary discussion. In [10], as in [5, 11, 12], we observe that studying the
fields Q(

√
f (r)) for r ∈ F (N) is equivalent to studying the squarefree parts of f (r). To

be more precise, for a rational number ρ � 0, we define the squarefree part S(ρ) as the
smallest positive integer s = S(ρ) such that ρ can be written as

ρ = ±sa2/b2

with some integers a and b (it is also convenient to set S(0) = 1). In particular, S( f (r))
is the discriminant of Q(

√
f (r)) and thus

R f (s, N) = #{r ∈ F (N) : S( f (r)) = s}.
Next, since we are interested in upper bounds, it is convenient to discard the

condition gcd(a, b) = 1. In the definition of R f (s, N), we let r run through N2 (not
necessarily distinct) integer ratios a/b with 1 ≤ a, b ≤ N. Hence, we work with

R∗f (s, N) = #{(a, b) ∈ {1, . . . , N}2 : S( f (a/b)) = s}
and thus with

T∗f (s, N) =
S∑

s=1
s squarefree

R∗f (s, N).
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Finally, considering the discriminant of f, we note that if f (X) ∈ Z[X] has only
simple roots, then for a sufficiently large p (depending on f ), it also has only simple
roots modulo p. Everywhere below, we assume that our primes are large enough to
have this property.

2.2. Character sums modulo primes. Our proofs rest on some bounds for character
sums. For an odd integer m, we use

( k
m

)
, k, m ∈ Z; m ≥ 1, odd,

to denote, as usual, the Jacobi symbol of k modulo m. Furthermore, when we write
( f (a/b)

m

)
, a, b ∈ Z; m ≥ 1, odd,

the value f (a/b) is computed modulo m and, in particular, gcd(b/ gcd(a, b), m) = 1.
We also denote

em(z) = exp(2πiz/m).

LEMMA 2.1. Let f (X) ∈ Z[X] be a fixed polynomial of degree d ≥ 2 having only simple
roots. For all primes p and all integers λ and μ with

gcd(λ, μ, p) = 1, (2.1)

we have

p∑
a=1

p−1∑
b=1

( f (a/b)
p

)
ep(λa + μb) � p.

PROOF. Let W be the desired sum. Making the change of variable a �→ ab (which for
every fixed b runs through the full residue system modulo p together with a) and then
adding the value b = 0 to the sum, we obtain

W =
p∑

a=1

p−1∑
b=1

( f (a)
p

)
ep(λab + μb)

=

p∑
a=1

( f (a)
p

) p∑
b=1

ep((λa + μ)b) + O(p).

The sum over b vanishes unless λa + μ ≡ 0 (mod p), which by (2.1) is possible for only
one value of a modulo p. Hence, W = O(p). �

We also recall the classical Weil bound for pure character sums (see [9, Theorem
11.23]).
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LEMMA 2.2. Let f (X) ∈ Z[X] be a fixed polynomial of degree d ≥ 2, having only
simple roots. For all primes p,

p∑
a=1

( f (a)
p

)
� p1/2.

Lemma 2.2 immediately implies the following corollary.

COROLLARY 2.3. Let f (X) ∈ Z[X] be a fixed polynomial of degree d ≥ 2 having only
simple roots. For all primes p,

p∑
a=1

p−1∑
b=1

( f (a/b)
p

)
� p3/2.

2.3. Character sums modulo products of two primes. The following result is a
direct implication of the Chinese remainder theorem for character sums (see [9, (12.20)
and (12.21)]) combined with Lemma 2.1 and Corollary 2.3.

LEMMA 2.4. Let f (X) ∈ Z[X] be a fixed polynomial of degree d ≥ 2 having only
simple roots. Let m = �p for two distinct primes �, p ∼ z for some real z ≥ 1. We have

m∑
a=1

m∑
b=1

gcd(b,m)=1

( f (a/b)
m

)
em(λa + μb) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z3 if gcd(λ, μ, m) = m,
z5/2 if 1 < gcd(λ, μ, m) < m,
z2 if gcd(λ, μ, m) = 1.

Using the standard reduction between complete and incomplete sums (see [9,
Section 12.2]), we obtain the following result.

LEMMA 2.5. Let f (X) ∈ Z[X] be a fixed polynomial of degree d ≥ 2 having only
simple roots. Let m = �p for two distinct primes �, p ∼ z for some real z ≥ 1. For any
integers m ≥ N ≥ 1,

N∑
a=1

N∑
b=1

gcd(b,m)=1

( f (a/b)
m

)
� N2z−1 + z2(log z)2.

PROOF. We use the well-known bound (see, for example, [9, Bound (8.6)])

N∑
a=1

em(λz) � m
|λ| + 1

,

which holds for any integers λ with |λ| ≤ m/2 and N ≤ m. As in [9, Lemma 12.1],

N∑
a=1

N∑
b=1

gcd(b,m)=1

( f (a/b)
m

)
− N2

m2

m∑
a=1

m∑
b=1

gcd(b,m)=1

( f (a/b)
m

)
� E, (2.2)
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where

E =
m−1∑
λ,μ=0

(λ,μ)�(0,0)

1
(|λ| + 1)(|μ| + 1)

∣∣∣∣∣
m∑

a=1

m∑
b=1

gcd(b,m)=1

( f (a/b)
m

)
em(λa + μb)

∣∣∣∣∣.

Recalling Lemma 2.4, we see that the contribution E1 to E from the pairs (λ, μ) with
gcd(λ, μ, m) = 1 can be estimated as

E1 � z2
m−1∑
λ,μ=0

(λ,μ)�(0,0)

1
(|λ| + 1)(|μ| + 1)

� z2(log m)2 � z2(log z)2.

Next, by Lemma 2.4, we estimate the contribution E2 to E from the pairs (λ, μ) with
1 < gcd(λ, μ, m) < m as

E2 � z5/2
m−1∑
λ,μ=0

1<gcd(λ,μ,m)<m

1
(|λ| + 1)(|μ| + 1)

.

Since � and p are of the same size and due to the symmetry between λ and μ, it is
enough to estimate

Ẽ2 = z5/2
m−1∑
λ=0
p|λ

m−1∑
μ=1
p|μ

1
(|λ| + 1)(|μ| + 1)

= z5/2
m−1∑
λ=0
p|λ

1
|λ| + 1

m−1∑
μ=1
p|μ

1
|μ| + 1

.

Handling the sum over λ in a very crude way and discarding the condition p | λ,

Ẽ2 ≤ z5/2
m−1∑
λ=0

1
|λ| + 1

m−1∑
μ=1
p|μ

1
|μ| + 1

� z5/2(log m)
m∑
μ=1
p|μ

1
|μ| + 1

= z5/2(log m)
�∑
η=1

1
|ηp| + 1

� z3/2(log z)2.

Hence,

E2 � z3/2(log z)2,

which is dominated by the contribution from E1 and we obtain

E � z2(log z)2.

Substituting this bound in (2.2) and using Lemma 2.4 again (this time in the case
gcd(λ, μ, m) = m), we conclude the proof. �

2.4. Large sieve inequality for Jacobi symbols. We also make use of the following
bound of character sums ‘on average’ over odd squarefree moduli, which is due to
Heath-Brown [8, Theorem 1].
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LEMMA 2.6. For all real positive numbers U and Z such that UZ → ∞ and
complex-valued functions ψ(s),

∑
m≤Z

m odd squarefree

∣∣∣∣∣
∑
s≤U

s squarefree

ψ(s)
( s
m

)∣∣∣∣∣
2
≤ (UZ)o(1)(U + Z)

∑
1≤s≤U

|ψ(s)|2.

3. Proofs of the main results

3.1. Proof of Theorem 1.1. Let us fix some sufficiently large real z > 1 and let Lz
be the set of primes � ∼ z. By the prime number theorem,

z
log z

� #Lz �
z

log z
.

For a rational number r, we consider the sum

U(r, z) =
∑∗

�∈Lz

( r
�

)
,

where, as before, r is computed modulo � and Σ∗ means that the primes � dividing the
denominator of r are excluded.

If r = a/b is a perfect square in Q, that is,
√

r ∈ Q, then

U(r, z) = #Lz + O(log h),

where h = max{|a|, |b|} + 1 and the term O(log h) accounts for � | ab. For each r ∈ Q
with S( f (r)) = s, we see that s f (r) is a perfect square. Thus, for such r ∈ F (N),

U(s f (r), z) = #Lz + O(log N) ≥ 1
2#Lz,

provided that

z ≥ N1/2 ≥ (log N)3 (3.1)

and N is large enough. In particular,

(#Lz)2R∗f (s, N) ≤ 4
N∑

a,b=1

(U(s f (a/b), z))2. (3.2)

Squaring out, changing the order of summation, and separating the ‘diagonal term’
N#Lz corresponding to � = p, we see that

N∑
a,b=1

(U(s f (a/b), z))2 ≤ N2#Lz +
∑
�,p∈Lz
��p

N∑
a=1

N∑
b=1

gcd(b,�p)=1

(s f (n)
�p

)
. (3.3)
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Substituting (3.3) in (3.2) yields

R∗f (s, N) � (log z)2

z2

(
N2 z

log z
+
∑
�,p∈Lz
��p

N∑
a=1

N∑
b=1

gcd(b,�p)=1

(s f (n)
�p

))

� N2 log z
z

+
(log z)2

z2

∑
�,p∈Lz
��p

N∑
a=1

N∑
b=1

gcd(b,�p)=1

(s f (n)
�p

)
. (3.4)

Since �p ≥ z2 > N, we can apply Lemma 2.5 to the inner sum in (3.4), which yields

∑
�,p∈Lz
��p

N∑
a=1

N∑
b=1

gcd(b,�p)=1

(s f (n)
�p

)
� (#Lz)2(N2z−1 + z2(log z)2),

which, after substitution in (3.4), implies

R∗f (s, N) � N2z−1 log z + N2z−1 + z2(log z)2

� N2z−1 log z + z2(log z)2.

Choosing z = N2/3(log N)−1/3 (which obviously satisfies (3.1)), yields R∗f (s, N) �
N4/3(log N)4/3, which, in turn, implies the desired result.

3.2. Proof of Theorem 1.2. We follow the proof of Theorem 1.1. Using (3.2) for
each squarefree s ∈ {1, . . . , S}, we write

T∗f (S, N) � z−2(log z)2
S∑

s=1
s squarefree

N∑
a,b=1

(U(s f (a/b), z))2. (3.5)

Instead of (3.3), we have

S∑
s=1

s squarefree

N∑
a,b=1

(U(s f (a/b), z))2

≤ N2S#Lz +
∑
�,p∈Lz
��p

S∑
s=1

s squarefree

N∑
a=1

N∑
b=1

gcd(b,�p)=1

(s f (n)
�p

)

≤ N2S#Lz +
∑
�,p∈Lz
��p

S∑
s=1

s squarefree

( s
�p

) N∑
a=1

N∑
b=1

gcd(b,�p)=1

( f (n)
�p

)
.
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Applying Lemma 2.5, we obtain
S∑

s=1
s squarefree

N∑
a,b=1

(U(s f (a/b), z))2

� N2S#Lz + (N2z−1 + z2(log z)2)
∑
�,p∈Lz
��p

∣∣∣∣∣
S∑

s=1
s squarefree

( s
�p

)∣∣∣∣∣. (3.6)

We use the Cauchy inequality to derive from Lemma 2.6 that

∑
�,p∈Lz
��p

∣∣∣∣∣
S∑

s=1
s squarefree

( s
�p

)∣∣∣∣∣ �
(
(#Lz)2

∑
�,p∈Lz
��p

∣∣∣∣∣
S∑

s=1
s squarefree

( s
�p

)∣∣∣∣∣
2)1/2

� ((S + z2)S1+o(1)z2+o(1))1/2

� S1+o(1)z1+o(1) + S1/2+o(1)z2+o(1),

as z, S→ ∞. After substitution in (3.6), the last inequality yields
S∑

s=1
s squarefree

N∑
a,b=1

(U(s f (a/b), z))2

� N2S#Lz + (N2z−1 + z2(log z)2)(S1+o(1)z1+o(1) + S1/2+o(1)z2+o(1))

� N2S1+o(1)z1+o(1) + S1+o(1)z3+o(1) + S1/2+o(1)z4+o(1),

as z, S→ ∞ (note that all terms containing N get absorbed in N2S1+o(1)z1+o(1)).
Substituting the last inequality in (3.5) gives

T∗f (S, N) � N2S1+o(1)z−1+o(1) + S1+o(1)z1+o(1) + S1/2+o(1)z2+o(1),

as z, S→ ∞. We now take z = N2/3S1/6 to balance the first and the third terms (for
which (3.1) is obviously satisfied). This yields

T∗f (S, N) � N4/3+o(1)S5/6 + N2/3+o(1)S7/6 (3.7)

(since we can always assume that S = NO(1)).
We remark that by (1.2), the bound is trivial unless N4/3+o(1)S5/6 ≤ N2 or S ≤ N4/5.

However, under this condition, the last term in (3.7) can be dropped, which concludes
the proof.
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