UNITARY PERFECT NUMBERS
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(received December 1, 1965)

1. Introduction. Let o*(N) denote the sum of the
unitary divisors of N, thatis,

¢*(N) = = d.
d|N
(d, N/d) =1

It is easily seaen that cr*(N)Q is multiplicative. In fact o*(1) =1
1

o""r;(N) = (1 +p1 ) ... (1 +prr) if N> 1 has the prime decom-
a o
position N = Py .- prr . Let us define a positive integer

to be unitary perfect whenever o*%(N) = 2N . The first four
such numbers are 6, 60, 90 and 87, 360. In a recent abstract
[1] published by one of us, the last of these numbers was over-
looked. No other unitary perfect numbers are known to the
authors,

It would appear from some of the results to follow that the
next unitary perfect number, if it exists, must indeed be quite
large. It might seem reasonable to conjecture that there is no
unitary perfect number larger than 87, 360. When the problem
of the determination of all unitary perfect numbers was mentioned
to P. Erdos, he expressed the opinion that it might be a difficult
one, comparable to the problem of odd perfect numbers. We
present here a partial solution.

2. Notation. In all that follows, unless otherwise

specified, n represents an odd integer larger than 1, and N
an even integer given by N = 2™ n with m a positive integer,

1
Partially supported by NSF Grant GP 1222 while at the
University of Missouri.

Canad. Math. Bull. vol 9, no. 2, 1966.

147

https://doi.org/10.4153/CMB-1966-018-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-018-4

L‘(1 2 &r .
.o th
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p1 < P, < ...<p andthe p oddprimes, and the o positive
r 1 1

We further assume that n=p

integers. We also write n = n1 n, n, with the n, relatively
i

prime in pairs, every prime divisor of n1 is congruent to
4 modulo 4, every prime divisor of n, is congruent to

3 modulo 4 and occurs with an even exponent, and the prime
divisors of n, are each congruent to 3 modulo 4 but occur

with odd exponent. For any fixed n, let a, b, and c denote

the number of distinct primes in n, n, and n, respectively.

For given non-negative integers a, b, and ¢ not all zero, the

class of all odd numbers n = n1 n2 n3 associated with

a, b, and c will be denoted by K(a, b, c).

It is trivial to observe thatif n=n n_n_ and

2 3
n' = n'1 n'2 n'3 are both members of K(a, b, c), then
(2.1) o*(n)/n > o*(n')/n!
whenever n'1 > n1 , n'2 > n2 , and n'3 > n3 .
Define
(2.2) B(a, b, ¢) = max {o*(x)/x},

x ¢ K(a, b, ¢), x not square-freeif b = c = 0.

The reason for x not square-free if b = ¢ = 0 will be apparent
after Lemma 2 of section 3. Finally notice

(2. 3) B(a, b, ¢) > B(a', b', c') if a>a', b>b', and c>c'.

3. Some Lemmas and Theorems. We proceed to prove
several results for unitary perfect numbers. For a prime p,

. t t t+1
we write p “x to mean, as usual, that p ]x and p ,{x

THEOREM 1. There are no odd unitary perfect numbers.
@ o @

Proof. If n-= P, p2 -- P is odd and unitary perfect,

o

o4 [03
then 2” (1 +p11)(1 +p22)... (1 +prr). Hence r = 1
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o @
and 1 -f~p11 = Zpi1 , which is not possible.

LEMMA 1. ¥ N=2"n is unitary perfect, then:

m
. i = = ... = 1;
(3.1) pr ‘ (27 +1) if @ arz @

(3.2) a+b+2c<m +1 and equality holds when ¢ = 0;

(3.3) B(a, b, c)> 2™ t1 / (Zm + 1) for at least one set of

values of a, b, and c satisfying (3.2).

Proof. The proof of (3.1) is trivial. To show (3.2), for
any prime p = 1 (mod 4) and all positive integers k, we have

k
2l 4 +p ). This also holds when p = 3 (mod 4) provided
k is even. Butif p = 3 (mod 4) and k is odd, we have

k t k i
4| (1+p) and indeed 2 | (4 +p ) if and only if 2" | (1 +p).
Applying these remarks to the relation

m+1 m Qi Qr
(3.4) 2 n=(1+2 ) (4 'f-p1 ) ... (1 -}-pr )»

which holds if N = Zmn is unitary perfect, provides us with (3. 3).
From (3. 4) we have
22 2™ 1) = ¥ (n) /n

from which (3. 3) follows by applying the definition of B(a, b, c).
Remark. Result (3.2) can be sharpened as follows:

(3.6) a+b+ZiCi=m+1,
i

where C, is the number of prime divisors p of n of the form
1

p = 3 (mod 4) where exponents in the prime factorization are

odd, and i is given by 2! | (1 +p).

LEMMA 2. X N-= Zmn is unitary perfect, and 3 | N,
then:

(3.7) m is an even integer;
(3.8) if pa " n, then pa/= 1 (mod 6);

(3.9) there is a prime p such that p|n, p = 5(mod 6), and
p occurs with an even exponent in n;
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(3.10) n has an even number of distinct primes.

Proof. The first two, (3.7) and (3.8), are quite trivial.

To obtain (3.9), notice that with m even, 1 + 2™ =5 (mod 6).
Hence there is a prime p|n such that p = 5(mod 6). From

(3.8) it follows that p must occur to an even exponent. From
(3.4), (3.7), and (3.8)

+.
2™ s 2 2 2™ (od 3)

and therefore r must be even which proves (3.10) .

Notice that (3.9) justifies the remark after (2.2). The
authors have not been able to find any unitary perfect numbers
not divisible by 3 nor have they been able to prove that there
are none.

a a

1 . P ¥ be unitary

THEOREM 2. Let N=2T P, --
T

perfect.

(1) If r =1, then N =6.

(2) If m=1, then N =6 or 90.
(3) If m =2, then N =60.
(4) If r=2, then N =60 or 90.
(5) It is not possible for m =3, 4, 5, or 7.
(6) It is not possible for r =3 or 5.
(7) If m=6, then N =87, 360.
(8) If r =4, then N =87, 360.
Proof. The basic tools are Lemmas 1 and 2. Let us
illustrate the procedure for a few selected cases.
Suppose that r = 1, then by Lemma 2 the one odd prime
m+1 o m o
must be 3. Thus 2 3 =(1+2 7)1+ 3) and therefore

m+1

a
1+3%=2 and 1 +2™ =3 which quickly forces m = o = 1.

Next, if m =1 then 3 must once more divide N. Hence
not both b and ¢ canbe zero. We have two cases:
(1) 2a=b =0 and ¢c=1 or (2) a=b=1 and c = 0. In the
first case r =1 and so N =6. In case (2),

ax3*xpP =33% +1) (p° +1) with ¢ even. Thus 3|(p" +1)
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which implies that p = 2 (mod 3) and B is odd. Since it is
known that p = 1 (mod 4), it follows that p = 5 (mod 12). If

pﬁ > 17, then we apply (2.1) to obtain

4=3(3"+1) (p‘3 -1-1)/3"’;)‘3 < 3% 10X 18/9 X 17

which is a false statement. Therefore p‘3 =5 and
o4
4X 3 X5 = 3(3a+ 1) 6 which forces o= 2.

The situation for m = 6 is somewhat more complicated.

6
Since 2 +1 =5X 13, itis apparentthat a >2. We have the
following cases:

(1) ¢=0 and a+b=7; (2) c=1 and a +b< 5;
(3) ¢c=2 and a +b< 3.

7,6
By direct computation B(a, 7-a, 0)< 2 /(2 +1) for
2< a< 7. Thus there are no unitary perfect numbers with
a+b=7 and ¢ =0. Incase (2), B(a, b, 1) is also less than

7 6
2 /(2 + 1) which excludes case (2) from consideration. The
computations are simplified because

B(2,3,1) > B(2,2,1) > B(2,1,1) > B(2,0, 1)
and
B(3,2,1) > B(3,1,1) > B(3,0,1) by (2. 3).

In case (3), B(2,1,2)< 27/(26 +1).

Suppose that N is a unitary perfect number which occurs
in K(3,0,2). Set
N=2 P, P, P; P, Py Since 5 1is an odd integer,
P, = 3. Also 5 and 13 occur in N. The prime 7 cannot

3
occur in N because 2 [7 +4 and 3 +2 +3>7 which violates

(3.6). Assume @ > 1; then @ > 3, and using (2.1)

7
2 <5X13X28X6X 14X 18 X 12/27 X 5X 13 X 17 X 11,
which is false. Therefore @ = 1. Now P, = 5 and the

assumption that @, > 4 leads to a similar contradiction as does
%
the assumption that P, > 1&'. Hence o

7
2N =2 X3X5X11X13Xp55=5X13X4X6X12X14X(p55+1).
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But 3 ” 2N and 32 Il ¢*(N). Thus there are no unitary perfect
numbers in K(3,0,2). We are now left with a consideration

6 M 2 "3 %
of K(2,0,2). Suppose that N =2 P, P, Py P, is a

unitary perfect number in K(2,0,2). Assume 3 ,{N; then with
the aid of Lemma 2 and (2.1)

7
2 < 5X13x26X14X8X20/25X13X7 X 19
which is false. Therefore P, = 3, P, = 5, and either p, or

p4 is 13. Now a1 > 1 leads to a contradiction as does QZ > 1.
o
If p33 > 13, then

7
2 < 5X13X4X6X14X20/3X5x13X19
“ “3
which is not correct. Therefore P, =7 or 14, but P, =11

not possible by (3.6). Thus
7
2 x3x5x7x13P=5x13 (1 +3)(1 +5)(1 +7)(4 +13°)

and
2x7x13P oy 43P

which implies that B = 4. Therefore 26 X 3X5X7X 13 is the
only member of K(2,0,2) which can be unitary perfect. It is
unitary perfect.

THEOREM 3. Let m be a fixed positive integer. There
is at most a finite number of unitary perfect numbers N such
that 2 || N.

Proof. Suppose that there are infinitely many such
unitary perfect numbers. There is an infinite subset of such
unitary perfect numbers of the form Zm C Di with C a constant,
(C, Di) =14, and Di is composed of a fixed number of distinct
primes, Furthermore each prime power of Di is increasing.
Thus lim G*(Di)/Di =4. If C=1, then
lim cr*(Di)/Di = lim 2”““/2m +1 and 2oy 1, which
is not possible. If C> 1 then ZHHJ1 C=(1+ Zm) cr*(C) and

2™ | ¢7(C). For any Di’ 2 ‘U"‘(Di), and so
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m+1

mt2 . %
2 | cr*(CDi) . But 2 I| o (CD,) . Inany case there is at

most a finite number of such unitary perfect numbers.

THEOREM 4. There is at most a finite number of
unitary perfect numbers with a fixed number of primes.

Proof. Assume there are infinitely many such unitary
perfect numbers. There is an infinite subset of the numbers of
the form CDi with C an odd constant, (C, D) =1, and the

i

prime powers of D, increasing. As before lim G*(Di)/ D =1.
i i

Thenif C=1, 2 = lim cr*(Di)/ Di =1, a contradiction. If

C> 0, 2C = lim ¢*(C) G*(Di)/Di = ¢*(C) and C is an odd

unitary perfect number, violating Theorem 1.
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