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Let L denote a finite dimensional, simple Lie algebra over an 
algebraically closed field F of characteristic zero. It is well known 
that every weight space of an irreducible representation (p , V) 
admitting a highest weight function is finite dimensional. In a previous 
paper [2j], we have established the existence of a wide class of 
irreducible representations which admit a one-dimensional weight 
space but no highest weight function. In this paper we show that the 
weight spaces of all such representations are finite dimensional. 
More precisely, we prove: 

THEOREM 1. _If (p, V) is an irreducible representation of L 

which admits a finite dimensional weight space, then every weight 

space of (p, V) is finite dimensional. 

Let U denote the universal enveloping algebra of L; then each 
representation (irreducible representation) (p, V) of L can be 
uniquely extended to a representation (resp. irreducible representation) 
of U which we shall again denote by (p, V). A map x from the 
centre Z of U to the field of scalars F is called a character f 1] of 
(p, V) if 

p (z) v = x (z) v (V z € Z) (V v € V). 

Using Theorem 1 we prove: 

THEOREM 2. Jf_ (p, V) is an irreducible representation of U 
which admits a finite dimensional weight space, then (p , V) admits 
a character. 

1 * Weight spaces. Let {Y, H^, X | a € A, p e T } denote 
P + P 

the Car tan basis of L where A and T denote the simple and positive 
roots of L with respect to a fixed Cartan subalgebra U of L. Then 
by the Poincaré - Birkhoff - Witt Theorem, U admits a basis $ 
consisting of all elements of the form: 
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( 1 ) pe r+ p * 6 A <* p , r + p 

w h e r e the exponents m(p) , k(<?) and n((3) a r e non -nega t ive i n t e g e r s 
and the p r o d u c t s n each p r e s e r v e a fixed o r d e r over t he i r r e s p e c t i v e 
index s e t s . Le t U denote the l i nea r s u b s p a c e of U gene ra t ed by the 

s e t of a l l e l e m e n t s of Q for which 

S r + (m(p) - n(p)) (3 = £ • 

Clea r ly the under ly ing space of U is equal to the d i r e c t s u m of a l l 
s u b s p a c e s U w h e r e £ 

of the s i m p l e roo t s of L. 

s u b s p a c e s U w h e r e £ r a n g e s over a l l l i nea r i n t e g r a l combina t ions 

F o r any e l e m e n t X e j \ , the dua l s p a c e of the C a r t a n s u b a l g e b r a , 
we define 

y = {v € V | p(H) v = X(H)v ( V H e X ) } 
X 

The l inea r funct ional X is cal led a weight function and V i s cal led 
X 

the c o r r e s p o n d i n g weight space of (p , V) if and only if V f { 0 } . 
X 

The following l e m m a connec t s the weight s p a c e s V of (p, V) and 
X 

the s u b s p a c e s U of U. 

LEMMA 1. If (p, V) i s an i r r e d u c i b l e r e p r e s e n t a t i o n of U, 
V i s a weight space of (p, V), and v i s a n o n - z e r o e l e m e n t of V 

X fi t l K o X 
then for any weight space V jof (p , V) we have 

y 

p ( U ) v = V . 
y - X o y 

Proof . Using the p r o p e r t i e s of the C a r t a n b a s i s of L for each 
H € ){ and each u € U we have [H, u] = £(H)u. F r o m this 

o b s e r v a t i o n i t fol lows that p (U )v C. V . On the o the r hand s ince 
b ° ^ + S 

(p , V) i s i r r e d u c i b l e we have 

V = S p ( U J v C S V , = V. 

T h e r e f o r e , for each P, p (U t )v = V 
b KV g o X+^ 

Now let ( E , E^, . . . , E } be a fixed o r d e r on the C a r t a n b a s i s 
1 2 rrr 

of L . Then we m a y a s s o c i a t e with each Y e [}j an o r d e r e d m - t u p l e 
( Y . . . , . . . , Y. ,) w h e r e Y... = the exponent of E. in Y. We define 

(1) (m) ( I ) l 
a p a r t i a l o r d e r on ($ se t t ing X < Y if and only if X / - x < Y,.x for 

- ( i ) - ( i ) 

400 

https://doi.org/10.4153/CMB-1968-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1968-045-2


i = 1,2, . . . , m . M o r e o v e r we se t X < Y if and only if X £ Y and 
X f Y. F o r each l inea r i n t e g r a l combina t ion £ of s imp le r o o t s of L 
we define an £ - m i n i m a l e l e m e n t to be an e l e m e n t Y € U 0 $ such 

that for each e l e m e n t Y» € U 0 jg with 1 $ Y1 < Y we have Y» = Y. 

LEMMA 2. T h e r e ex i s t s only a finite number of £ - m i n i m a l 
e l e m e n t s for each l inea r i n t e g r a l combina t ion £ of s imp le roo t s of L . 

P roof . (This proof was communica ted to m e by I. Bouwer and 
r e p r e s e n t s a c o n s i d e r a b l e s imp l i ca t i on of m y o r ig ina l proof. ) 

It c l e a r l y suffices to show that t h e r e ex i s t s a cons tan t K such 
that for each ^ - m i n i m a l e l e m e n t Y, Y,.v < K for i = 1 , 2, . . . , m . 

( i ) -

Selec t any £ - m i n i m a l e l e m e n t X and define 

K = m a x {X,. , I i = l , 2 , . . . , m} . 
1 ( i ) 

It follows f r o m the defini t ion of £ - m i n i m a l i t y that each £ - m i n i m a l 
e l e m e n t Y has at l e a s t one component l e s s than or equal to K . 

1 
Induct ively a s s u m e that we have a l r e a d y defined an in teger K such 

r 
that each ^ - m i n i m a l e l e m e n t Y has at l e a s t r components l e s s than 
or equa l to K . We now define K . a s fo l lows: 

r r-fl 

Le t I = {(n., . . . , n ) n. i n t ege r with 1 < n < n^ < . . . < n < m ) 
L ' l r ' i & — 1 2 r — J 

and J = { (m, , r n , . . . , m ) I m. i n t ege r with 0 < m. < K for L 1 2 r ' i l — r 

i = 1, 2, . . . , m } . F o r each p a i r (n, m_) e l x J define 

P ( n , m ) = {Y |Y i s £ - m i n i m a l a n d Y = m . for i = 1,2, . . . , r } . 

If P(ii, m.) = <|) i gnore i t . If, however , P(n, rn) £ cj> choose X € P(n , m) 

and define K(n, m) = m a x {X. | i = 1, 2, . . . , m} . Since the se t 

I ( r ) x J ( r ) is finite we define K , A = m a x [{K(n, m) I (n, m ) € I ( r ) x J ( r ) } 
r+1 J 

U {Kr} ]• 

We now c l a im that for each ^ - m i n i m a l e l emen t Y t h e r e a r e at 
l e a s t r + 1 components of Y which a r e l e s s than or equal to K • 

A s s u m e to the c o n t r a r y that Y is £ - m i n i m a l and has exac t ly r 
components say (n , n . . . . , n ) such that Y/_ \ < K , J . By 

1 2 r \n\r — r+1 
defini t ion of K we m a y a s s u m e that Y* \ < K < K , . for 

r y l ^ ) ~ r ~ r+1 
i = 1, 2, . . . , r . Then by defini t ion of K ^ + 1 t h e r e ex i s t s an £ - m i n i m a l 
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element Yf such that Y1/ v = Y/ \ for n. € {n , . . . , n } and 

Y'/.v <K . for all other components. This contradiction proves our 
(i) - r+1 r * 

claim. 

By continuing this construction to the m step we obtain the 

required bound on the components of ^-minimal elements. 

A straightforward proof using induction on the number of factors 
shows that IL II C II , «. . In particular U U C U i .e . U 

£, £ — Ê.+ ê-, o o— o o 
b l 92 1 2 

is a subalgebra of U which is called the cycle subalgebra of U. With 
this in mind we have the following immediate corollary of Lemma 2. 

COROLLARY. Each subspace U. of U is a finitely generated 

U -module. In fact the g-minimal elements form a generating set of 

IL qua U -module. 

Using the above lemmas we can now prove the first theorem. 

THEOREM l .J f (p,V) is an irreducible representation of L 
admitting a finite dimensional weight space, then every weight space 
of (p,V) is finite dimensional. 

Proof. Let V denote a finite dimensional weight space of 
X 

(p,V). Then by k r a m a l , if v is anon-zero element of V we 
o X 

have p(U )v = V . Since V is finite dimensional there exists 
o o X X 

elements e,, e^, . . . , e € U such that {p (e.)v I i = 1,2 n} 
1 2 n o l o 

forms a basis for V . 
X 

If V denotes a 'second weight space of (p , V) then by Lemma 1 

we have 

V = p(U J v . 
y r y-X o 

Let {u , u , . . . , u } denote the set of (y-X)-minimal elements. 

Then applying Lemmas 1 and 2 it is clear that p(U )v and hence 
y-X o 

V is generated by 
Y 

{p(u. e.)v | i = 1, 2, . . . , k; j = 1, 2, . . . , n} 

as a vector space over F. Therefore V is a finite dimensional 

y 
vector space over F. 
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2. Characters . As an application of the results of § 1 we have 

THEOREM 2. Every irreducible representation (p,V) oi_ L ; 
which admits a finite dimensional weight space admits a character . 

Proof. Let (p,V) denote an irreducible representation of L 
then each weight space V of (p,V) induces an irreducible 

X 
representation (p , V ) of U where pN(c)v =p(c)v (V c c U ) X \ o X o 
(Vv e V ). Applying Theorem 1 every weight space of (p, V) is 

X 

finite dimensional. Thus we may apply Schur's Lemma to observe 
that for each element x of the centre of U , p (x) is a scalar 

o X 
multiple of the identity map on the weight space V . 

X 
If Z denotes the centre of U, then it is clear that Z is a 

subset of the centre of U . Thus for each weight function X of (p, V) 
we define a map \ : Z -> F by the condition that 

X 

Px(*> = XX(Z) l v . 
X 

Since (p,V) is an irreducible representation, V is equal to 
the direct sum of its weight spaces. To complete the proof we need 
only show that for any two weight functions X and y of (p, V) we 
have x (z) = X (z) ^ o r a ^ z e Z. 

X y 

Select two non-zero vectors v e V and w € V . 
X y 

Since (p, V) is irreducible, there exists an element u € U such that 
p (u)v = w. Then for any z € Z we have 

X ( z ) w = p(z)w = p(z) p(u) v = p(u) p(z) v 

= Xx(z) p(u)v = xx(z)w. 
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