NOTE ON WEIGHT SPACES OF IRREDUCIB LE
LINEAR REPRESENTATIONS

F.W. Lemire

(received March 26, 1968)

Let L denote a finite dimensional, simple Lie algebra over an
algebraically closed field F of characteristic zero. It is well known
that every weight space of an irreducible representation (p, V)
admitting a highest weight function is finite dimensional. In a previous
paper [2], we have established the existence of a wide class of
irreducible representations which admit a one-dimensional weight
space but no highest weight function. In this paper we show that the
weight spaces of all such representations are finite dimensional.

More precisely, we prove:

THEOREM 1. If (p, V) is an irreducible representation of L
which admits a finite dimensional weight space, then every weight
space of (p, V) is finite dimensional.

Let U denote the universal enveloping algebra of L; then each
representation (irreducible representation) (p, V) of L can be
uniquely extended to a representation (resp. irreducible representation)
of U which we shall again denote by f{p, V). A map x from the
centre Z of U to the field of scalars F is called a character[1] of
(p, V) if

p(z)v = x(z)v (Vze Z)Y(VveV)
Using Theorem 1 we prove:
THEOREM 2. If (p, V) is an irreducible representation of U

which admits a finite dimensional weight space, then (p, V) admits
a character.

+
1. Weight spaces. Let {YB, H,, XB | @e A, BeI' '} denote

the Cartan basis of L where A and 1"+ denote the simple and positive
roots of L with respect to a fixed Cartan subalgebra H of L. Then
by the Poincaré - Birkhoff - Witt Theorem, U admits a basis 8
consisting of all elements of the form:
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where the exponents m(p), k(e) and n(B) are non-negative integers
and the products T each preserve a fixed order over their respective
jndex sets. Let U, denote the linear subspace of U generated by the

set of all elements of ;Q for which

5 Ipt (m(B) - (BN B = £

Clearly the underlying space of U is equal to the direct sum of all
subspaces U§ where § ranges over all linear integral combinations

of the simple roots of L.

%
For any element \e X , the dual space of the Cartan subalgebra,
we define

Vo= {ve V]pHv = MHvV (VHeX)}

The linear functional )} is called a weight function and V)\ is called
the corresponding weight space of (p, V) if and only if V)\ ${0}.
The following lemnma connects the weight spaces V)\ of (p, V) and

the subspaces Ug of U.

LEMMA 1. If (p, V) is an irreducible representation of U,
V)\ is a weight space of (p, V), and v is a non-zero element of V

N

then for any weight space V of (p, V) we have
Y

Proof. Using the properties of the Cartan basis of L for each
He { and each uce U§ we have [H,u] = £(H)u. From this

observation it follows that p(Ug )v0 C Vx+g‘ On the other hand since
{(p, V) is irreducible we have
V = Zp(U)v CZV . = V.
Pl g) o— N
3 3

Theref , , = .

erefore, for each ¢ p(Ug)vo V)\+€

Now let {Ei’ EZ’ ce e Em} be a fixed order on the Cartan basis

of L. Then we may associate with each Y ¢ ;Q an ordered m-tuple

(Y(i)’ RN Y(m)) where Y(i) = the exponent of Ei in Y. We define

a partial order on B setting X < Y if and only if X <Y for

(1) (i)
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i=1,2,...,m. Moreover we set X< Y if and onlyif X< Y and
X $ Y. For each linear integral combination £ of simple roots of L
we define an £-minimal element to be an element Y ¢ U, N B such

that for each element Y'e Ugn J; with 1 $ Y'< Y we have Y'

=Y.

LEMMA 2. There exists only a finite number of £-minimal

elements for each linear integral combination £ of simple roots of L.

Proof. (This proof was communicated to me by I. Bouwer and

represents a considerable simplication of my original proof.)

It clearly suffices to show that there exists a constant K such

that for each {-minimal element Y, Y, <K for i=1, 2,

(1)
Select any §-minimal element X and define

K, = max {X

\ [i=1,2,...,m}.

(i)

., m.

It follows from the definition of §-minimality that each §-minimal
element Y has at least one component less than or equal to Ki'

Inductively assume that we have already defined an integer Kr

such

that each £-minimal element Y has at least r components less than

or equal to Kr. We now define Kr-f'l as follows:

<
n_<m}

(r) . .
= ey . <...
Let I {(n1, nl_)ln1 integer with 1 < n, <n,
(r) : .
= cee <
and J {(mi,mz, ,rnr) | m, integer with 0 rniS_Kr for
i=1,2,...,m}. For eachpair (n,m)e I(r) x J(r) define

P(n,m) = {Y|Y is ¢-minimal and Y(n)
i

=m, for i= 1,2,.
1

T}

If P(n,m) = ¢ ignore it. If, however, P(n, m) %cb choose X ¢ P(n, m)

and define K(n, m) = max {X(i) | i=1,2,...,m}. Since the set

1) 5 7{7) i finite we define K
r+1

U (K1

(r)

= max [{K(n, m) I (n,m)el

N

We now claim that for each £-minimal element Y there are at

least r + 4 components of Y which are less than or equal to Kr

Assume to the contrary that Y is £-minimal and has exactly r

components say (ni, n . nr) such that Y(ni) ﬁKr By

2’ +1°

definition of Kr we may assume that Y(ni) < Kr < Kr+1 for

+1

i=1,2,...,r. Then by definition of Kr+1 there exists an £-minimal
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element Y' such that Y'(ni) = Y(ni) for n, e {ni, cees nr} and
Y'(i) S'KrH for all other components. This contradiction proves our
claim.

N . . th .
By continuing this construction to the m step we obtain the
required bound on the components of £-minimal elements.

A straightforward proof using induction on the number of factors
shows that U§ U&, C U{; e In particular UoUo C Uo --- i.e. Uo
1 °2 1 "2
is a subalgebra of U which is called the cycle subalgebra of U. With
this in mind we have the following immediate corollary of Lemma 2.

COROLLARY. Each subspace Ug of U is a finitely generated

Uo-module. In fact the £-minimal elements form a generating set of

Ug qua Uo-module.

Using the above lemmas we can now prove the first theorem.

THEOREM 4. If (p,V) is an irreducible representation of L
admitting a finite dimensional weight space, then every weight space
of (p,V) is finite dimensional.

Proof. Let V)\ denote a finite dimensional weight space of
(p, V). Then by kemmai, if v, is a non-zero element of V)\ we
have p(Uo)vo = V)\. Since V)\ is finite dimensional there exists

elements ei, ...,ene U0 such that {p(ei)vo | i=1,2,...,n}

e,
forms a basis for V)\.

If V denotes a second weight space of (p, V) then by Lemma 1
we have

VvV = p(U v
N p(\{)

-\ 0'

Let {ui, u . uk} denote the set of (y-\)-minimal elements.

2’
Then applying Lemmas 1 and 2 it is clear that p(UY )\)Vo and hence

VY is generated by
‘=1125"',‘k; j = H ) e e oy
{ptu; e v, | i j=1,2 n}
as a vector space over F. Therefore VY is a finite dimensional

vector space over F.
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2. Characters. As an application of the results of §41 we have

THEOREM 2. Every irreducible representation (p,V) of L;
which admits a finite dimensional weight space admits a character.

Proof. Let {p,V) denote an irreducible representation of L
then each weight space V)\ of (p,V) induces an irreducible

representation (p)\,V)\) of Uo where p)‘(c)v =plc)v(V ce UO)
(Vv e V)\). Applying Theorem 1 every weight space of (p, V) is

finite dimensional. Thus we may apply Schur's Lemma to observe
that for each element x of the centre of UO, p)\ (x) is a scalar

multiple of the identity map on the weight space V)\.

If Z denotes the centre of U, then itis clear that Z is a
subset of the centre of Uo' Thus for each weight function N of (p, V)
we define a map Xy : Z -+ F by the condition that

= 1
py(2) = x,(2) v,

Since (p,V) is an irreducible representation, V is equal to
the direct sum of its weight spaces. To complete the proof we need
only show that for any two weight functions \ andy of (p, V) we
have x)\(z) :XY(Z) for all z ¢ Z.

Select two non-zero vectors v ¢ V)\ and we Vy.

Since (p,V) is irreducible, there exists an element ue U such that
p(u)v = w. Then for any z e Z we have

XY(Z)W =p(z)w =p(z) p(u) v =p(u) p(z) v

N X)\(Z) plu)v = x)\(Z)w.
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