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Abstract

This paper deals with applications of Voronin’s universality theorem for the Riemann
zeta-function ζ . Among other results we prove that every plane smooth curve appears up
to a small error in the curve generated by the values ζ (σ + it) for real t where σ ∈ (1/2, 1)
is fixed. In this sense, the values of the zeta-function on any such vertical line provides an
atlas for plane curves. In the same framework, we study the curvature of curves generated
from ζ (σ + it) when σ > 1/2 and we show that there is a connection with the zeros of
ζ ′(σ + it). Moreover, we clarify under which conditions the real and the imaginary part of
the zeta-function are jointly universal.

2020 Mathematics Subject Classification: 11M06 (Primary)

1. Introduction

About fifty years ago, Sergey Voronin [29]1 proved his celebrated universality theorem
for the Riemann zeta-function ζ (s), s = σ + it being a complex variable. This astonishing
result states that, roughly speaking, certain shifts of the zeta-function approximate every
zero-free analytic function, defined on a sufficiently small disk (see also [18]). In this paper
we discuss a few new consequences of this remarkable property with respect to the curves
given by the values of ζ (σ + it) as σ is fixed and t ranges through the set of real numbers
or some subinterval. These curves look like spirals when t is from a bounded range, and
we will use that word from time to time in what follows. The implications of universality
that we consider here are by no means complicated in nature though they seem to have been
overlooked so far.

For our purpose we recall the universality theorem [29] in a stronger form: suppose that
K is a compact subset of the strip 1/2 < Re s < 1 with connected complement, and let g(s)

†Supported by the Austrian Science Fund (FWF) project number M 3246-N.

1 Note that the paper in question was submitted in 1974 and only published in 1975.
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326 A. SOURMELIDIS AND J. STEUDING

Fig 1. Left: ζ (1/2 + it) for 0 ≤ t ≤ 40; right: ζ ′′/ζ ′(1/2 + it) for the same range of t. The neg-
ative real part of ζ ′′/ζ ′(1/2 + it) for t ≥ t0 = 2.75 . . . corresponds to the clockwise direction of
the spiral on the left.

be a non-vanishing continuous function on K which is analytic in the interior of K. Then,
for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T] : max

s∈K
|ζ (s + iτ ) − g(s)| < ε

}
> 0

(see [26]). The main differences to Voronin’s original statement in [29] are the positive lower
density of the set of shifts τ (which is already implicit in Voronin’s proof) and the rather
general set K where Voronin considered only disks; this is first apparent in Steve Gonek’s
thesis [10] and later in Bhaskar Bagchi’s thesis [2]. The topological restriction for K follows
from Mergelyan’s approximation theorem and its limitations (see [21, 26, p. 107]). We will
also make use of the following observation due to Johan Andersson [1]: If K has empty
interior, then the target function g in the universality theorem is allowed to have zeros.

Assuming the Riemann Hypothesis, Gonek and Hugh Lowell Montgomery [11] showed
that the parametrised curve t 	→ ζ (1/2 + it) turns in the clockwise direction for all suffi-
ciently large t or, in other words, the spiral has negative curvature (see Figure 1 for an
illustration).2 A simple application of the universality theorem shows that the behaviour to
the right of the critical line can be rather different.

For this purpose, we consider any parametrised curve

C = C(σ , I) : I 
 t 	→ ζ (σ + it),

where I = [a, b] is an interval, σ ∈ (1/2, 1) is fixed. Then K= {σ + it : t ∈ I} is a compact
set in 1/2 < Re s < 1 with connected complement and empty interior. Hence, applying the
universality theorem with g(s) = ζ (s), implies the reappearance of the curve C within ζ (σ +
iR) up to an invisible error of size ε on a set of positive lower density.

However, we may also consider the inverse curve

C∗ = C∗(σ , I) : I 
 t 	→ ζ (σ + i(a + b − t)).

2 In this context it is interesting to notice that Daniel Shanks [23] conjectured that t 	→ ζ (1/2 + it)
approaches the origin (at the nontrivial zeros) mostly from the third quadrant; this was proved by Akio
Fujii [7]. The conditional curvature result of Gonek and Montgomery matches this scenario, in particular in
combination with Harold Edwards’ observation that the values ζ (1/2 + it) lie most of the time in the right
half-plane [6], which was verified (in some sense) by Justas Kalpokas and the second author [17].
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Fig 2. Left: ζ (3/4 + it) for 110 ≤ t ≤ 120; middle: the same for the range 111.2 ≤ t ≤ 111.7;
right: ζ ′′/ζ ′(3/4 + it) for the same range of 111.2 ≤ t ≤ 111.7, where a positive real part indicates
a positive curvature.

This curve consists of the same points as C, only its direction is inverted. Thus, applying the
universality theorem with g(σ + it) = ζ (σ + i(a + b − t)) now yields the appearance of C∗
within ζ (σ + iR) up to an invisible error of size ε for a set of positive lower density.

We observe that the curvature of C∗ is the negative of the curvature of C. So the curvature
of the parametrised curves t 	→ ζ (σ + it) for σ ∈ (1/2, 1) takes both signs infinitely often as
t → ∞, and both signs appear for a set of positive lower density. This is completely different
to the situation on the critical line (if the Riemann Hypothesis is true).

Note that the curvature changes its sign when t tends to −∞ or ζ (σ + it) is replaced by its
conjugate ζ (σ − it). But this change of orientation is of different nature as the reappearance
of C∗ in ζ (σ + iR) (up to a small error). The phenomenon in the background is, probably,
an almost periodicity property of ζ (σ + it) for σ > 1/2 in combination with universality.
Computer experiments occasionally show an instance of a positive curvature in these spirals
(see Figure 2).

2. Statement of the main results

In the sequel we assume every curve to be smooth, by which we mean that the plane and
space curves under investigation have a parametrisation with at least second and third order
continuous derivatives, respectively. We also assume that they are regular which means that
their first derivative is non vanishing. We begin with a remarkable generalisation of the result
from the introduction.

THEOREM 1. Let σ ∈ (1/2, 1) and ε > 0 be fixed. Then the following statements are true:

(i) every plane curve is up to an error of size O(ε) and affine translation contained in the
graph of the curve R 
 t 	→ ζ (σ + it) ∈C;

(ii) every space curve is encoded in the curve R 
 t 	→ ζ (σ + it) ∈C up to an error of size
O(ε).
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Fig 3. The spiral ζ (3/4 + it) for 0 ≤ t ≤ 35 containing an approximation of a circle (in gray).

Here, of course, we consider a plane curve in the euclidean plane via R
2 �C also as a

curve in the complex plane.
By the first statement of the theorem, the values of the zeta-function on any vertical line in

the right open half of the critical strip provide an atlas for plane curves (similar as a normal
number contains any finite pattern of digits).3 A short note with this result and a sketch of
its proof has appeared in [25].

The second statement relies on a simultaneous approximation of the curvature and the
torsion of a space curve. The proof (in Section 3) is indeed an instance of a joint universal-
ity phenomenon for the real and the imaginary part of the zeta-function. Interestingly, the
question whether the real and the imaginary part of the zeta-function can simultaneously
approximate admissible target functions depends mainly on the set of definition of the target
functions and can be answered positively and negatively:

THEOREM 2. The real and imaginary part of the zeta-function are jointly universal with
respect to approximation of continuous real-valued functions defined on a compact set K⊆
{s ∈C:1/2 < Res < 1} with connected complement if, and only if,K has empty interior. More
precisely, assume that K has empty interior and f , g : K→R are continuous. Then, for every
sufficiently large T and every ε > 0, there exists τ ∈ [T , 2T] such that{

maxs∈K |Re ζ (s + iτ ) − f (s)| < ε,
maxs∈K |Im ζ (s + iτ ) − g(s)| < ε;

moreover, the set of such τ has positive lower density. On the other hand, even if we assume
any order of differentiability for f and g, the above statement can not be true if K contains
an open disk.

3 A paper by Elias Wegert and Gunter Semmler [32] contains another interesting though different
application of universality to plane curves.
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The positive statement of the above theorem shows that also curiosities as the Peano
curve or other space-filling curves can be approximated as long as they have a continuous
representation (see [22]).

Motivated by the aforementioned result of Gonek and Montgomery about the clockwise
direction of the spiral associated with the critical line we also consider the curves resulting
from the values of the zeta-function on vertical line segments to the left of the critical line
and to the right of the critical strip, respectively. It seems that the behaviour in the right open
half of the critical strip is exceptional:

THEOREM 3. We consider the parametrised curve t 	→ ζ (σ + it) for fixed σ and any
sufficiently large t ≥ t0(σ ) > 0.

(i) There is a constant A ∈ [3, 4] such that the curvature is negative for σ ≥ A.

(ii) The curvature is negative for σ ≤ 0 and under Riemann hypothesis also for σ ≤ 1/2.

(iii) There exists θ > 0 such that the curvature has infinitely many sign changes for σ ∈
(1/2, 1 + θ).

We will see below that the curvature of the curve t 	→ ζ (σ + it) has the same sign as

Re
ζ ′′

ζ ′ (σ + it).

Hence, to prove Theorem 3 it suffices to examine which sign does Re ζ ′′/ζ ′(σ + it) take
along vertical lines for various values of σ �= 1/2. Although the last statement of Theorem
3 says that the curvature can be positive an infinitude of times for any σ ∈ (1/2, 1 + θ), we
will show that on average it is always negative. Indeed, we have the following

THEOREM 4. For every σ > 1/2, the limit

lim
T→∞

1

T

∫ T

0
Re

ζ ′′

ζ ′ (σ + it)dt

exists and it represents an increasing and eventually constant function of σ with maximum
value − log 2.

As a matter of fact, we will prove that the aforementioned limit at a point σ is the deriva-
tive of the so-called Jensen function of ζ ′, showing therefore a connection with the relative
frequency of zeros of ζ ′ in the right of the vertical line 1/2 + iR.

Lastly, we consider a result of Ramūnas Garunkštis and the second author [9] who
showed, under assumption of the Riemann Hypothesis, that ζ (σ + iR) is not dense in C

for any fixed σ < 1/2. Michel Lapidus [19] proved that also the converse is true; see also the
recent book of Hafedh Herichi and Lapidus [14]. We can strengthen these results slightly as
follows:

THEOREM 5. The Riemann Hypothesis is true if, and only if, ζ (σ + iR) is nowhere dense
in C for any fixed σ < 1/2.

Harald Bohr and Richard Courant [3] proved that ζ (σ + iR) is dense in C for fixed
σ ∈ (1/2, 1]. Of course, this result also follows from universality theorem (by choosing a
constant target function). For the critical line, however, it is unknown whether ζ (1/2 + iR)
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dense in the complex plane or not. Universality does not apply to the critical line because of
too many zeta zeros.

In the following four sections we give the proofs of these results. All our reasonings apply
to more general zeta- and L-functions. What is necessary is a suitable universality theorem.
Concerning the behaviour of the curvature and its sign changes to the right of the critical
line, we conclude in Section 4 with the determination of the so-called Jensen function of ζ ′
(plus an appendix).

3. Proof of Theorem 1

It is a well-known fact that a smooth plane curve is determined by its curvature. In fact, the
fundamental theorem of the local theory of curves states that: given differentiable functions
t, κ defined on an interval I satisfying κ(t) > 0 for t ∈ I , there exists a regular parametrised
curve γ : I →R

3 such that t is the arclength (i.e. the euclidean norm of γ ′(t) equals 1 for
every t ∈ I), κ(t) is the curvature, and t(t) is the torsion of γ . Moreover, any other curve
γ̃ , satisfying the same conditions, differes from γ by a rigid motion (meaning that there
exists an orthogonal linear map 	 and a vector v such that γ̃ = 	 ◦ γ + v); see, for example,
[5]. For plane curves there is no torsion, hence this result implies that a plane curve γ is
indeed determined by its curvature; in this case, the curvature is not restricted to be positive.
The proof relies on solving a system of certain differential equations, the so-called Frenet’s
equations, and this plays also a certain role in the form of the integral equations (1) and (4)
below.

We return to the first statement of Theorem 1. Let κ be the curvature of a plane curve C.
Define

ϑ(u): =
∫ u

0
κ(t)dt. (1)

Then, a model of the curve C with curvature κ and arclength t in the complex plane is given
by the parametrisation

t 	→ g(t): =
∫ t

0
exp

(
iϑ(u)

)
du,

where t ranges through some interval I . By the universality theorem, for every ε > 0, there
exists τ > 0 such that

max
t∈I

|ζ (σ + it + iτ ) − g(t)| < ε. (2)

In view of the positive lower density for the real shifts τ > 0 that lead to the desired approx-
imation of the target function it follows that any plane curve appears infinitely often, up to a
tiny error, in any curve ζ (σ + iR) with any fixed σ ∈ (1/2, 1) (even with positive lower den-
sity). In this sense, the zeta-function provides a single plane curve that contains all plane
curves with an error too small to be seen with the naked eye!4

4 The Planck length is about 1.6 · 10−36 meters and, according to quantum mechanics, one cannot see
anything smaller than this tiny quantity.
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Next we consider space curves. If c : I →R
3 is a parametrised curve with respect to its

arclength t of curvature κ(t) > 0 and torsion t(t), then the normal vector n(t) and binormal
vector b(t) are given by

n(t) = c′′(t)
κ(t)

and b(t) = c′(t) × n(t), (3)

respectively (where × is the vector product). In this case the curve, defined by

c̃(t) = −
∫ t

0

n′(u) + t(u)b(u)

κ(u)
du, (4)

is congruent to c up to some vector in R
3, because c̃′(t) = c′(t). Applying the universal-

ity theorem to the target function t 	→ κ(t) + it(t) yields the desired approximation, where
the quantities κ and t have in view of (3) and (4) to be replaced by Re ζ (σ + it + iτ ) and
Im ζ (σ + it + iτ ).

4. Proof of Theorem 2

We begin with the case of continuous real-valued functions f ,g defined on a compact
set with connected complement K⊆ {s ∈C:1/2 < σ < 1} that has empty interior. For every
sufficiently large T and every ε > 0, by a direct application of the universality theorem, there
exists τ ∈ [T , 2T] such that

max
s∈K

|ζ (s + iτ ) − (f (s) + ig(s))| < ε.

Separating real and imaginary part, we thus have{
maxs∈K |Re ζ (s + iτ ) − f (s)| < ε,
maxs∈K |Im ζ (s + iτ ) − g(s)| < ε.

(5)

Obviously, the set of such τ has positive lower density. This proves the first assertion of
Theorem 2.

Next we consider the case where K has a non-empty interior or, equivalently, that it
contains an open disk D. Assume that the real and imaginary part of the zeta-function do
approximate two functions f , g : K→R in the sense of (5). Then we can find a sequence of
real numbers τn > 0 with {

sups∈D |Re ζ (s + iτn) − f (s)| < n−1,
sups∈D |Im ζ (s + iτn) − g(s)| < n−1.

The above implies that the sequence of analytic functions {ζ (s + iτn)}n≥1 converges uni-
formly in D to the function F(s): = f (s) + ig(s). Hence, F(s) is analytic in D and, therefore,
the partial derivatives of f and g as functions of two variables (σ , t) exist and satisfy the
Cauchy–Riemann equations in D. But this can be false in general if we choose a pair of
functions f ,g for which the Cauchy–Riemann equations fail.

5. Proof of Theorem 3

Recall the aformenentioned result of Gonek and Montgomery [11] who showed that
the parametrised curve t 	→ ζ (1/2 + it) turns in the clockwise direction for all sufficiently
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large t. This follows from an older result due to Cem Yildirim [33] implying a negative
curvature:

κ(t) =
Re ζ

′′
ζ
′ (1/2 + it)

|ζ ′(1/2 + it)| < 0 for t ≥ 2.76.

Both results are conditional subject to the truth of the Riemann Hypothesis.
More generally, it can be seen, similarly as in [11], that the curvature of the parametrised

curve t 	→ ζ (σ + it) is given by

κ(t) =
Re ζ

′′
ζ
′ (σ + it)

|ζ ′(σ + it)| ,

whenever ζ ′(σ + it) �= 0. Thus, the sign of the curvature matches the one of Re ζ
′′

ζ
′ (σ + it).

From straightforward computations of the Dirichlet series expansion of ζ (k)(s), k = 1, 2,
it follows that there is a constant A ∈ [3, 4] with∣∣∣∣1 − ( − 1)kζ (k)(s)2s

( log 2)k

∣∣∣∣ ≤
√

2

2
, σ ≥ A, t ∈R, k = 1, 2. (6)

Since

Re
ζ ′′

ζ ′ (s) = − log 2 Re

ζ
′′(s)2s

( log 2)2

−ζ
′(s)2s

log 2

,

we conclude from (6) that the curvature is negative for all σ ≥ A and the corresponding
spirals turn in clockwise direction.

In the half-plane σ ≤ 0 we can argue as Yildirim [33] did for 0 ≤ σ ≤ 1/2. We start with
the partial fraction representation

ζ ′′

ζ ′ (s) = ζ ′′

ζ ′ (0) − 2 − 2

s − 1
+

∑
n≥1

(
1

s + an
− 1

an

)
+

∑
ρ1

(
1

s − ρ1
+ 1

ρ1

)
, s ∈C, (7)

where −an for n ≥ 1 and ρ1: = β1 + iγ1 denote the real and non-real zeros of ζ ′(s), respec-
tively. It is well known (see for example [20, Theorem 9]) that −an is the only zero of ζ ′(s)
in ( − 2n − 2, −2n) and that there are no other zeros in the half-plane σ ≤ 0.

Taking the real parts on both sides of (7), we obtain

Re
ζ ′′

ζ ′ (s) = ζ ′′

ζ ′ (0) − 2 + 2(1 − σ )

|s − 1|2 +
∑
ρ1

Re

(
1

s − ρ1
+ 1

ρ1

)
+

∑
n≥1

(
σ + an

|s + an|2 − 1

an

)
,

where the terms with ρ1 and ρ1 are grouped together (observe that ζ ′(ρ1) = 0). Since β1 > 0
unconditionally, we have for any sufficiently large t > 0 that

Re
ζ ′′

ζ ′ (s) = ζ ′′

ζ ′ (0) − 2 +
∑
ρ1

1

ρ1
+

∑
ρ1

σ − β1

(σ − β1)2 + (t − γ1)2
−

∑
n≥1

anσ + |s|2
an|s + an|2

≤ ζ ′′

ζ ′ (0) − 2 +
∑
ρ1

1

ρ1
−

∑
n≥1

σ

|s + an|2 −
∑
n≤|s|

|s|2
an|s + an|2 .
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The first four terms on the right-hand side of the above relation are Oσ (1), while the last sum
is of size approximately − log t/2. Hence, the curve of ζ (σ + it) turns in clockwise direc-
tion for any sufficiently large t > 0. If we assume the Riemann hypothesis, then β1 ≥ 1/2,
as Andreas Speiser had proved [24], and we also obtain Yildirim’s result in the left-half of
the critical strip.

We have already seen in Theorem 1 that the curvature of ζ (σ + it) alternates its sign
infinitely many times as t → ∞ for fixed 1/2 < σ < 1 by an application of Voronin’s the-
orem. This can be extended to the vertical line σ = 1 by employing another variant of the
universality theorem which is implicitly proved by Garunkštis et al. [8, Theorem 4]: Let
σ0 ∈ (1/2, 1), r > 0, g:K→C continuous, g(s0) �= 0 and analytic for |s − s0| < r. Then,
for any ε ∈ (0, |g(s0)|), there exist effectively computable positive numbers T0 and δ such
that

max|s−s0|≤δr
|ζ (s + iτ ) − g(s)| < ε (8)

for any τ ∈ [T , 2T] and T ≥ T0. The proof does not depend on what σ0 may be, which
works as a parameter therein, but rather what properties does the curve ζ (σ0 + it) have. In
particular, the basic ingredient in the proof of (8) is a weaker version of Voronin’s theorem,
proved by Voronin [30] himself: if σ0 ∈ (1/2, 1), (a1, a2, . . . , aN) is a vector of complex
numbers and ε > 0, then there exists an effectively computable positive number T0 such
that

max
k≤N

|ζ (k)(s0 + iτ ) − ak| < ε,

for any τ ∈ [T , 2T] and T ≥ T0. However, if we are willing to drop effectivity and just accept
the existence of infinitely many τ > 0 satisfying the above inequalities, then σ0 = 1 is also
admissible as Voronin [28] had shown. Hence, it can be quickly confirmed that (8) holds
also for σ0 = 1 and a divergent sequence of τ > 0.

Assume now that g(s) = es and ε > 0 is sufficiently small. Then, it follows by (8) that
there is some δ+ ∈ (0, 1) and a divergent sequence of τ+ > 0 with

ζ (s + iτ+) = es + O(ε), |s − 1| ≤ δ+,

where the big O term is an analytic function in the interior of the disk. Therefore,

ζ ′(s + iτ+) = es + O(ε) = ζ ′′(s + iτ+), |s − 1| ≤ δ+,

which implies that

Re
ζ ′′

ζ ′ (s + iτ+) > 0, |s − 1| ≤ δ+.

Thus, the curvature of ζ (σ + it) is positive in disks of center 1 + iτ+ and radius δ+ for a
divergent sequence of real numbers τ+ > 0. A similar argument with g(s) = e−s shows that
the curvature of ζ (σ + it) is negative in disks of center 1 + iτ− and some radius δ− for a
divergent sequence of real numbers τ− > 0. Hence, by taking θ = min{δ+, δ−}, we conclude
that there are infinitely many sign changes of the curvature on the vertical line 1 + iR as well
as in its immediate right neighbourhood.
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6. Proof of Theorem 4

We begin by setting the necessary theoretical background. Assume that f (s) is analytic,
not identically zero and almost periodic in the sense of Bohr in a vertical strip [α, β]. Then,
Børge Jessen [15] has proved that the limit

φf (σ ): = lim
(δ−γ )→∞

1

δ − γ

∫ δ

γ

log |f (σ + it)|dt

exists uniformly in [α, β] and represents a continuous and convex function, which is known
as the Jensen function of f . As a convex function, φf (σ ) is almost everywhere differentiable
in the interval [α, β] and one can confirm that if α′ ∈ (α, β) is such a point, then

φf
′(α′) = lim

(δ−γ )→∞
1

δ − γ

∫ δ

γ

Re
f ′

f
(α′ + it)dt. (9)

This result was implicitly shown by Jessen [15], Philip Hartman [13], resp. Jessen and Hans
Tornehave [16]; we give a proof in the appendix.

In the context of Dirichlet series, Jessen and Tornehave [16, Theorem 31] proved the
following:

THEOREM 1 (A). For an ordinary Dirichlet series f (s) = ∑
n≥n0

ann−s, an0 �= 0, with the
uniform convergence abscissa α, the Jensen function φf (σ ) possesses in every half-plane
σ > α1 > α only a finite number of linearity intervals and a finite number of points of non-
differentiability. If σ0 denotes the supremum of the real parts of zeros of f(s) (which is always
finite), then

φf (σ ) = −σ log n0 + log |an0 |, σ > σ0. (10)

For an arbitrary strip (σ1, σ2) where α < σ1 < σ2 < +∞, the relative frequency of zeros

Hf (σ1, σ2): = lim
(δ−γ )→∞

� {ρ:f (ρ) = 0, σ1 < Reρ < σ2, γ < Imρ < δ}
δ − γ

exists and it is determined by

2πHf (σ1, σ2) = φf
′(σ2 − 0) − φf

′(σ1 + 0).

This line of research has been pursued by Vibeke Borchsenius and Jessen [4, Theorem 1],
in the case where f (s) can be analytically continued beyond its abscissa of uniform conver-
gence. In particular, if φf (σ ) and Hf (σ1, σ2) are defined as above with the only difference
that γ is a sufficiently large but fixed number and only δ → ∞, they proved the following:

THEOREM (B). Let −∞ ≤ α < α0 < β0 < β ≤ +∞ and γ ∈R, and let f1(s), f2(s), . . . be
a sequence of functions almost periodic in [α, β] converging uniformly in [α0, β0] towards
a function f(s). Suppose, that none of the functions is identically zero. Suppose further, that
f(s) may be continued analytically in the half-strip α < σ < β, t > γ , and that there is p > 0
such that

lim
n→∞ lim sup

δ→∞
1

δ − γ

∫ δ

γ

∫ β1

α1

|f (σ + it) − fn(σ + it)|pdσdt = 0,
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for any reduced strip α < α1 < σ < β1 < β. Then the Jensen function φf (σ ) exists in [α, β]
and it is a continuous and convex function. If it is differentiable at σ1 and σ2 for some
α < σ1 < σ2 < β, then the relative frequency of zeros Hf (σ1, σ2) exists and it is determined
by

2πHf (σ1, σ2) = φf
′(σ2) − φf

′(σ1).

We note that (9) (with fixed γ and δ → ∞) holds as well in points of the extended interval
[α, β] where φf (σ ) is differentiable.

Next we apply the aforementioned results in the case of f = ζ ′. Firstly, the derivative of
the zeta-function can be represented as an absolutely convergent Dirichlet series in the half-
plane σ > 1 and it is zero-free in the half-plane σ > E for some E ∈ [2, 3] (see [27, Theorem
11·5 (C)]). Hence, in view of (9) and (10) we deduce that

lim
T→∞

1

T

∫ T

0
Re

ζ ′′

ζ ′ (σ + it)dt = φ
ζ
′ ′(σ ) = − log 2, σ > E. (11)

For a positive integer n, let ζ ′
n(s): = ∑

k≤n ( − log k)k−s. Then, from the approximate
functional equation for the Riemann zeta-function [27, Theorem 4·11], i.e.

ζ (s) =
∑
k≤t

1

ks
+ O(t−σ ), t ≥ γ > 0, 0 < σ0 ≤ σ ≤ 3,

it follows that

lim
n→∞ lim sup

δ→∞
1

δ − γ

∫ δ

γ

∫ β1

α1

|ζ ′(σ + it) − ζ ′
n(σ + it)|2dσdt = 0,

for any reduced strip 1/2 < α1 < σ < β1 < 3. Since the functions ζ ′
n(s) for n ≥ 1 are almost

periodic in any strip, φ
ζ
′(σ ) exists in (1/2, 3) and, in addition, it is a continuous and convex

function. As a matter of fact, it is also infinitely many times differentiable in this interval.
To see this, we observe that

1

T

∫ T

0
log |ζ ′(σ + it)|dt = 1

T

∫ T

0
log |ζ (σ + it)|dt + 1

T

∫ T

0
log

∣∣∣∣ζ ′

ζ
(σ + it)

∣∣∣∣ dt.

The limit of the first term on the right-hand side is φζ (σ ) and is equal to 0 for σ > 1/2 (see
[4, Theorem 14, pages 162-163]). The limit of the second term on the right-hand side has
been computed by Charng Rang Guo [12, Theorem 1·1·3] and it is equal to

G(σ ): = 1

2

∫
R

∫
R

χ̂(x, y;σ ) log (x2 + y2)dxdy,

where ĝ denotes the Fourier transform of a function g and

χ(x, y;σ ): =
∏

p

∫ 1

0
exp (2π iRe((x + iy)a(t, σ ))) dt, a(t, σ ): = log p

∑
m≥1

exp (2π imt)

pmσ
.

Moreover, he showed that [12, Theorem 1·1·1] G(σ ) is infinitely many times differentiable
in (1/2, 3] with

G(k)(σ ) = 1

2

∫
R

∫
R

∂̂k

∂σ k
χ(x, y;σ ) log (x2 + y2)dxdy, k ≥ 1.
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In other words, Guo found the Jensen function of ζ ′(s) and from his work and our previous
discussion follows immediately that

lim
T→∞

1

T

∫ T

0
Re

ζ ′′

ζ ′ (σ + it)dt = G′(σ ), σ > 1/2.

Moreover, G′(σ ) is increasing because G(σ ) is a convex function. In combination with (11),
we obtain the theorem.

7. Proof of Theorem 5

For fixed σ < 1/2 and |t| ≥ 2, Garunkštis and Steuding [9] showed that

|ζ (σ + it)| > c|t|1/2−σ+ε , (12)

where ε > 0 is arbitrary and c > 0 is an absolute constant depending only on ε and σ . This
lower bound relies on the conditional estimate ζ (σ + it) � |t|−ε for fixed σ > 1/2 (see [27,
Section 14·2]) in combination with the functional equation. Since the right-hand side of (12)
tends with |t| to infinity, the curve t 	→ ζ (σ + it) spirals outside the disk of radius r centered
at the origin for all sufficiently large values of |t|. More precisely, if |t| ≥ r2/(1−2σ ), then, for
r ≥ r0, the values ζ (σ + it) lie in the complement of the disk. Therefore, it only remains to
show that the image of the values ζ (σ + it) for t from a finite interval, [0,T] say, cannot be
locally dense.

Assume that the values ζ (σ + it) are somewhere dense for t ∈ [0, T]. Then there exists a
small disk D such that the curve t → ζ (σ + it) visits for t ∈ [0, T] every tiny disk d of radius
(3N)−1 centered at the elements of 1

NZ[i] ∩ D, where N is a large integer. Since the tiny disks
d have distance � N−1 one from another and there are � N2 many of them in D, the curve
t → ζ (σ + it) has length � N2 · N−1 = N which tends with N to infinity. This contradiction
implies that the curve is nowhere dense.

8. Appendix

If

φf (σ ;γ , δ): = 1

δ − γ

∫ δ

γ

log |f (σ + it)|dt,

then it follows from Jessen and Tornhave [16, page 187] that

φf
′(σ − 0) ≤ lim

(δ−γ )→∞
φf

′(σ − 0;γ , δ)

≤
{

lim(δ−γ )→∞ φf
′(σ − 0;γ , δ)

lim(δ−γ )→∞ φf
′(σ + 0;γ , δ)

}
(13)

≤ lim
(δ−γ )→∞ φf

′(σ + 0;γ , δ) ≤ φf
′(σ + 0).

Therefore, if φf (σ ) is differentiable at a point σ = α′, then all of the above four limits are
equal. In particular, we have

φf
′(α′ − 0;γ , δ) = φf

′(α′ + 0;γ , δ) + o(1) = φf
′(α′) + o(1) (14)

as δ − γ → ∞.
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Now let γ < δ be a pair of real numbers. If f (s) has no zeros in the vertical segment
[α′ + iγ , α′ + iδ], then it is analytic in a neighbourhood of this segment and, consequently,
φf (σ ;γ , δ) is differentiable at σ = α′ with

φf
′(α′;γ , δ) = d

dσ

[
1

δ − γ

∫ δ

γ

log |f (α′ + it)|dt

]
σ=α

′

= 1

δ − γ

∫ δ

γ

∂ log |f (σ + it)|
∂σ

∣∣∣∣
σ=α

′ dt = 1

δ − γ

∫ δ

γ

Re
f ′(α′ + it)

f (α′ + it)
dt.

Next we assume that f (s) has only one zero in the vertical segment [α′ + iγ , α′ + iδ] of order
m, α′ + it0 say. Then there is some ε > 0 such that

f (s) = (s − α′ − it0)mg(s), |s − α′ − it0| ≤ ε,

where g(s) is analytic and zero-free in the disk |s − α′ − it0| < 2ε. Therefore,

d

dσ

[∫ t0+ε

t0−ε

log |f (σ + it)|dt

]
σ=α

′±0

= d

dσ

[∫ t0+ε

t0−ε

m log |σ − α′ + i(t − t0)| + log |g(σ + it)|dt

]
σ=α

′±0

= lim
σ→α

′±

∫ t0+ε

t0−ε

m(σ − α′)dt

(σ − α′)2 + (t − t0)2
+

∫ t0+ε

t0−ε

Re
g′(α′ + it)

g(α′ + it)
dt

= ±mπ +
∫ t0+ε

t0−ε

Re
f ′(α′ + it)

f (α′ + it)
dt.

It thus follows that

φf
′(α′ ± 0;γ , δ) = 1

δ − γ

∫ δ

γ

Re
f ′(α′ + it)

f (α′ + it)
dt ± mπ

δ − γ
.

If f had more than one different zeros in [α′ + iγ , α′ + iδ], then m would represent the sum of
all such zeros counted with multiplicity. In view of (14) we deduce first that mπ = o(δ − γ ),
δ − γ → ∞, and then we obtain the desired relation (9).

The same reasoning applies in the strip of analytic continuation, where relation (13) still
holds assuming the conditions of Theorem (B) (see Borchsenius and Jessen [4, page 122]).
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