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A non-parametric Gaussian process regression model is developed in the three-
dimensional equilibrium reconstruction code V3FIT. A Gaussian process is a normal
distribution of functions that is uniquely defined by specifying a mean function and
covariance kernel function. Gaussian process regression assumes that an unknown
profile belongs to a particular Gaussian process and uses Bayesian analysis to select
the function the give the best fit to measured data. The implementation in V3FIT
uses a hybrid representation where Gaussian processes are used to infer some of
the equilibrium profiles and standard parametric techniques are used to infer the
remaining profiles. The implementation of the Gaussian process is tested using both
synthetic data and experimental data from multiple machines.
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1. Introduction
Equilibrium reconstruction is the process of inferring properties of the magnetohy-

drodynamic (MHD) equilibrium from experimental measurements. The specification
of an equilibrium is the first step for many subsequent analyses, such as transport
calculations or stability determination. An accurate experimental equilibrium is needed
to compare the theoretical models used in these subsequent analyses with experimental
results. Reconstruction is an essential tool in toroidal magnetic confinement fusion
research.

During equilibrium reconstruction one must infer multiple radial profiles, that only
depend on the flux-surface label, along with the appropriate boundary conditions.
Two or more radial profiles are needed to specify an MHD equilibrium. For example,
axisymmetric stationary equilibria are solutions of the Grad–Shafranov equation (Grad
& Rubin 1958; Shafranov 1966), and they depend on the pressure profile, p(ψ), and
the toroidal magnetic field function, F(ψ). Non-axisymmetric equilibria are often
determined from their pressure profile and their toroidal current density profile
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(Hirshman & Whitson 1983). During the reconstruction process it is often necessary
to introduce auxiliary profiles that relate MHD equilibrium quantities to measured
diagnostic signals. A temperature (or density profile with an equation of state) is
needed to relate temperatures measured from a Thomson diagnostic to the MHD
equilibrium. Soft x-ray measurements, which can be used to infer the shape of fluxes,
require an emissivity profile (Ma et al. 2018).

Many equilibrium reconstruction codes, such as EFIT (Lao & Ferron 1990)
and V3FIT (Hanson et al. 2009), define the radial profiles using a parametric
representation. The radial profiles are assumed to have a specified functional form
characterized by multiple free parameters p. The best fit equilibrium is defined by
the set of parameters that minimize the error between the observed diagnostic signals,
SO, and modelled diagnostic signals SM(p). Often least-squares minimization is used,
and the error between the observed signals and the modelled signals is defined as

χ 2
≡

∑
i

1
2

(
SO

i − SM
i (p)

σni

)2

. (1.1)

Here σni is the experimental error associated with the ith signal.
This paper discusses a non-parametric approach to reconstructing the radial profiles.

Non-parametric approaches infer the profile shape directly from the measurements
without specifying a particular functional form for the profile. The approach taken here
uses Gaussian process regression (GPR) to infer the amplitude of the profile at a finite
number of radial locations. The fundamental assumption of GPR is that the radial
profile belongs to a Gaussian process (GP), which generalizes multivariate Gaussian
distributions to a continuous domain (Rasmussen & Williams 2006). Bayesian analysis
is then used to select the profile in the Gaussian process that gives the best fit.

Gaussian process regression has several advantages over standard parametric
regression. The achievable accuracy of a parametric representation of experimental
data is limited by the choice of a parameterization. In contrast, certain Gaussian
processes contain a complete basis, and their accuracy is limited by measured data
(Rasmussen & Williams 2006). The quality of fit of a GP will continually improve
with additional measurements. Parametric models have to be specially designed to
capture complex features like a pedestal or islands. The design of these complex
parametric models can introduce systematic errors into the reconstruction process.
With sufficient data a Gaussian process can naturally capture these complex features.

Many of the weaknesses of a parametric representation can be addressed by
increasing the complexity of the model and thereby increasing the number of free
parameters. However, increasing the number of parameters increases the computational
cost of minimizing the error. Increasing the number of free parameters also increases
the risk of overfitting. Gaussian process regression minimizes issues associated with
overfitting by penalizing overly complex models. This feature of Bayesian inference
is commonly known as Occam’s razor.

Gaussian process regression has been used in several applications for fusion
research. J. Svensson developed a framework for Gaussian process tomography
(Svensson & Contributors 2010). This framework has been used to perform soft
x-ray (SXR) tomographic analysis of W7-AS and TJ-II stellarator plasmas (Li et al.
2013). GPR has also been used to infer edge density profiles on the joint European
torus (JET) (Kwak et al. 2017), and for uncertainty analysis in transport calculations
(Chilenski et al. 2015).
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Development of a Gaussian process model in V3FIT 3

This paper is organized as follows. Section 2 provides an introduction to Gaussian
process regression. The implementation of the Gaussian process model in V3FIT is
discussed in § 3. Several example reconstructions that use both synthetic data and real
experimental data are shown in § 4. Finally, a discussion of the results is presented
in § 5.

2. Gaussian process regression
Gaussian processes generalize multivariate Gaussian probability distributions to an

infinite domain. A GP is a collection of infinitely many random variables such that any
finite collection of these random variables is normally distributed. A random function
can be represented as an element of a Gaussian process, where the amplitude of
the function at every point in the domain is treated as a normal random variable.
The amplitudes of the function at any finite collection of points will have a joint
multivariate Gaussian distribution.

Univariate normal distributions are uniquely defined by a mean value, µ, and a
variance σ 2. Multivariate normal distributions are defined by a mean vector, µ, and a
covariance matrix Σ . Similarly, Gaussian processes are uniquely defined by a mean
function, µ(x), and a covariance kernel K(x, x′).

The covariance kernel determines the properties of the Gaussian process. For
example random Gaussian noise is generated using the delta function kernel,

K G(x, x′)= σ 2
f δ(x− x′). (2.1)

The hyper-parameter σf is the standard deviation off the mean function. It characterizes
how far the amplitude of the function can vary from the mean function, µ(x), at
each point x. The delta function kernel imposes no correlation in the amplitudes of
the function evaluated at two distinct points x1 and x2. The variance of the function
from its mean value at x1 is unrelated to the variance of the function at x2. In the
case where the mean function is zero, µ(x)= 0, the delta function kernel implies that
there is no correlation in the amplitude of the function across the domain.

The squared exponential kernel is another kernel that is frequently used in GPR,

K SE(x, x′)= σ 2
f exp

(
−
(x− x′)2

2σ 2
l

)
. (2.2)

This kernel is characterized by two hyper-parameters σf and σl. Here σf is once again
the standard deviation off the mean function. The hyper-parameter σl is a correlation
length. It characterizes how strongly amplitude deviations of the function from the
mean function are correlated across the domain. If |x1 − x2| � σl then the variations
from the mean function at these two points are strongly correlated. If the variation at
x1 is positive then the variation at x2 will be positive by a similar amount. Conversely
if |x1− x2|�σl, then variations from the mean function at these two distant points are
not correlated. In the case where the mean function is zero, µ(x)= 0, the correlation
length describes how rapidly the amplitude of the function varies across the domain.
Thus this correlation length introduces a degree of smoothness into the Gaussian
process. The Gaussian process defined by the squared exponential kernel has a basis
that spans the space of smooth function (Rasmussen & Williams 2006).

Gaussian process regression can be understood using Bayesian statistics. Here we
provide a qualitative sketch of the derivation. A detailed derivation can be found in
the works of Rasmussen & Williams (2006) and Svensson & Contributors (2010).
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The derivation begins with Bayes’ theorem,

p( f (x)|SO, I)=
p(SO
| f (x), I)p( f (x)|I)

p(SO
|I)

. (2.3)

The posterior distribution p( f (x)|SO, I) is the probability that the experimental
profile is the function f (x) given the experimental measurements SO and other prior
knowledge I. The likelihood p(SO

| f (x), I) is the probability of measuring the
signals SO for a given profile f (x). The prior distribution p( f (x)|I) characterizes the
knowledge about the experimental profile before measuring the experimental signals.
The evidence p(SO

|I) is a normalizing factor. Often the goal is to calculate the
posterior distribution, but in practice the likelihood is much easier to calculate. Bayes’
theorem provides a convenient way to calculate the posterior from the likelihood.

Gaussian process regression starts by assuming that the experimental profile is an
element in a Gaussian process. This assumption is equivalent to saying that the prior
distribution is a Gaussian process,

p( f (x)|I)≡ GP(µ(x),K(x, x′)). (2.4)

Here, GP represents a Gaussian process. The experimental measurements are assumed
to have normally distributed noise with zero mean, characterized by the covariance Σn.
The likelihood is:

p(SO
| f (x), I)=

exp
(
−

1
2
(SO
− Lf (x))TΣ−1

n (SO
− Lf (x))

)
√
(2π)N|Σn|

, (2.5)

where Σn is the noise correlation matrix, Li is the mathematical operator that models
the ith noise-free signal: SM

= Lf (x), with L = (L1, L2, . . . , LN)T and N is the
number of signals. In this paper a signal is called a (non)linear signal if the operator
modelling that signal is a (non)linear operator. The posterior distribution is calculated
from the prior and the likelihood using Bayes’ theorem. The posterior distribution is
then sampled at a finite number of points x∗.

If the signals are linear, then the posterior distribution sampled at the points x∗ is
a multivariate normal distribution with a mean vector µ∗ and covariance matrix Σ∗
(Svensson & Contributors 2010)

µ∗ = K ∗L(K LL +Σn)
−1SO, (2.6)

Σ∗ = K ∗∗ − K ∗L(K LL +Σn)
−1K L∗, (2.7)

where it is assumed that the prior Gaussian process has a zero mean, µ(x) = 0.
The covariance matrices, K pq, are calculated from the Gaussian process kernel,
and they characterize the covariance between the profile amplitude at different
sample locations and the modelled signal values. The subscripts indicate whether the
respective argument in the kernel is evaluated at the points x∗ or operated on by the
operators L. The first (second) subscript corresponds to the first (second) argument
in the kernel. The (ith, jth) elements of the K pq matrices are

K ij
∗∗
=K(xi

∗
, xj
∗
) (2.8)

K ij
LL = LiL′jK(x, x′) (2.9)

K ij
L∗ = LiK(x, xj

∗
)= K ji

∗L. (2.10)

The last equality uses the fact that K ∗L = K T
L∗.
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For example consider the case where the value of a function f (x) is measured at
two points l1 and l2. The operator representing these measurements is a delta function

Lif (x)=
∫
δ(x− li)f (x) dx= f (li) for i= 1, 2. (2.11)

Similarly the goal is to sample the function at three points: s1, s2, s3. In this case the
three K matrices are

K ∗∗ =

K(s1, s1) K(s1, s2) K(s1, s3)

K(s2, s1) K(s2, s2) K(s2, s3)
K(s3, s1) K(s3, s2) K(s3, s3)

 (2.12)

K LL =

(
K(l1, l1) K(l1, l2)
K(l2, l1) K(l2, l2)

)
(2.13)

K L∗ =

(
K(l1, s1) K(l1, s2) K(l1, s3)
K(l2, s1) K(l2, s2) K(l2, s3)

)
. (2.14)

The matrix K ∗∗ characterizes the correlation between the amplitudes of the function
evaluated at each of the points in x∗. The matrix K LL characterizes the correlation
between each of the noise-free modelled signals. The matrix K L∗ characterizes the
correlation between the amplitude of the function evaluated at each point in x∗ and
each noise-free model signal.

The posterior distribution is a multivariate Gaussian distribution, and it is completely
specified by solving (2.6) and (2.7) for µ∗ and Σ∗. These equations are linear, and
they involve the inverse of the matrix (K LL+Σn). This matrix is a symmetric positive
definite matrix, and it can be factored using a Cholesky decomposition.

The kernels used to define a GP often have one or more hyper-parameters. An
optional step in GPR is to then find the optimal set of hyper-parameters. This is
done by using Bayes’ theorem to define a hyper-posterior distribution for the hyper-
parameters σhp,

p(σhp|SO)∝ p(SO
|σhp)p(σhp), (2.15)

and then finding the set of hyper-parameters that maximize this hyper-posterior. A
common choice is to use a uniform hyper-prior p(σhp). In this case the hyper-posterior
distribution is,

p(σhp|SO)∝ p(SO
|σhp). (2.16)

Here, the hyper-posterior is proportional to the Bayesian evidence in (2.3).
The evidence is calculated by marginalizing the posterior distribution for the data

over all possible functions,

p(SO
|σhp)=

∫
dfp(SO

| f , σhp)p( f |σhp). (2.17)

The result of the integration yields the expression for log of the evidence

ln p(SO
|σhp)=−

1
2 [N ln 2π+ ln |K LL +Σn| + (SO)T(K LL +Σn)

−1SO
]. (2.18)

Maximizing the evidence is equivalent to minimizing the bracketed quantity in the
equation for the log of the evidence. The bracketed quantity is composed of three
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terms. The first term is a positive normalizing constant that accounts for the number
of signals, N, in the Gaussian process. The second term characterizes the complexity
of the model, and it can be either positive or negative. The third term characterizes the
quality of the fit, and it is positive definite. The competition between the second and
third terms prevents overfitting by penalizing overly complex models. Increasing the
complexity of the model will generally improve the quality of fit, i.e. the third term
will be smaller. However, increasing the complexity also increases the second term.
Thus an increase in complexity is only advantageous if the resulting improvement in
the fit outweighs the cost of the complexity.

3. Implementation of GPR model in V3FIT

V3FIT is a three-dimensional equilibrium reconstruction code (Hanson et al. 2009).
The code is designed to be fast, with the goal of being able to run reconstructions
in between experimental discharges. The code is also designed to be modular and
extensible. This enables rapid development of new functionality needed to meet
the requirements of different experiments. VMEC (Hirshman & Whitson 1983)
is the primary equilibrium solver used by V3FIT; however, the code modularity
allows V3FIT to use other equilibrium solvers with minor code modifications.
Recent modifications to V3FIT allow it to use the SIESTA three-dimensional (3-D)
equilibrium code (Cianciosa et al. 2018).

V3FIT finds the parameters p that minimize the cost function

g2(p)≡
∑

i

ωi

(
SO

i − SM
i (p)

σni

)2

. (3.1)

The cost function g2, which is closely related to the χ 2 error, measures the difference
between the experimentally determined signals, SO, and the modelled signals, SM, for
an equilibrium defined by the parameters p. Note that the form for g2 is consistent
with an assumption that the signal noise is uncorrelated – the signal covariance matrix
is diagonal. The σni are the square roots of the signal variances. Weighting factors,
ωi, allow one to emphasize or deemphasize selected signals. The cost function g2 is a
positive definite quantity, and V3FIT uses a modified quasi-newton algorithm to find
the equilibrium parameters that minimize g2.

The implementation of the GPR model in V3FIT is designed to work in conjunction
with the standard parametric representation. The guiding philosophy is to use GPR to
infer profiles where it is easy and efficient to do so. A parametric representation
is then used to represent the remaining profiles. For speed and efficiency the
implementation of the GPR model is currently limited to use with linear diagnostics.
These diagnostics can be modelled by a linear operator acting on the radial profile.
Some examples of profiles that can be modelled with our GPR model include the
emissivity inferred from soft x-ray data, the temperature inferred from Thomson or
ECE measurements, and a density profile inferred from interferometry. The use of
soft x-ray data to infer the temperature profile is an example of a nonlinear diagnostic
where our GPR model is not applicable. Here the soft x-ray emissivity is nonlinearly
related to the temperature.

Let us look in more detail at the observed soft x-ray signals and their relation to
the soft x-ray emissivity. The VMEC code labels flux surfaces with a minor-radius
variable s with 0 6 s 6 1. The soft x-ray emissivity ε depends on the position within
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the plasma, r. The αth soft x-ray signal is viewed along the chord rα(t)= rαi+ t(rαf −

rαi) between the initial position rαi and the final position rαf . The observed signal is
modelled as

SO
α ∝

∫
dtε(rα(t)). (3.2)

The soft x-ray emissivity is assumed to be constant on a flux surface, described by
the profile function ε(s). Any position in the plasma can be mapped to a particular
flux surface through the function s(r). Thus the observed signal can be written as a
linear function of the emissivity profile,

SO
α ∝

∫
dtε(s(rα(t))). (3.3)

The covariance matrix element characterizing the correlation between two x-ray
signals is

K αβ
LL ∝

∫ ∫
dt dt′K(s(rα(t)), s(rβ(t′))). (3.4)

The restriction to linear diagnostics allows for the direct calculation of the posterior
mean and covariance using (2.6) and (2.7). Here the posterior distribution is also a
Gaussian process, and thus it is completely defined by the mean and covariance. The
posterior mean profile is the best fit to the experimental data, and the covariance
matrix characterizes the uncertainty in the fit.

A new term is added to V3FIT’s cost function that allows V3FIT to optimize the
hyper-parameters,

g2
≡

N∑
i=1

ωi

(
SO

i − SM
i

σni

)2

+

T∑
j=1

ωN+jΘ
2
j . (3.5)

Here N is the number of experimental signals, T is the number of radial profiles
modelled by independent Gaussian processes and Θ2

j is related to the negative log
evidence for the jth Gaussian process,

Θ2
j =

1
2 [N ln 2π+ ln |K LL +Σn| + (SO)T(K LL +Σn)

−1SO
]j + cj. (3.6)

The nonlinear optimization routine in V3FIT assumes that the cost function is a
quadratic form. The constant cj is added to ensure that Θ2

j is positive for each
Gaussian process, and thus Θj is real.

The added term to the cost function treats each Gaussian process and its
hyper-parameters in a way that is similar to the experimentally measured signals.
This treatment allows for the simultaneous optimization of both the model parameters
and the Gaussian process hyper-parameters. The dependence of the cost function on
the hyper-parameters enters through the K LL matrix.

Figure 1 shows an outline of the V3FIT algorithm. First an initial guess is made
for each of the model parameters and Gaussian process hyper-parameters. The model
parameters are then used to solve for an initial magnetic equilibrium. Then GPR is
used to calculate GP modelled radial profiles. After that each of the model signals are
calculated for each diagnostic, and then g2 is calculated. V3FIT then checks to see if
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8 E. C. Howell and J. D. Hanson

FIGURE 1. Flow chart of the modified algorithm.

an optimal set of parameters and hyper-parameters have been found. If a converged
solution has been found then V3FIT exits. Otherwise V3FIT calculates a new set
of parameters and repeats the process. In order to update the parameters V3FIT
numerically calculates a parameter Jacobi matrix. During this calculation V3FIT has
to vary each of the parameters and hyper-parameters. The variations of the parameters
often require that the equilibrium be resolved and/or the GPR profiles be recalculated.

4. Testing

This section presents three example reconstructions to illustrate and test the
performance of the GPR model. The first test case is a synthetic equilibrium that
is based on the Compact Toroidal Hybrid experiment (the experiment is explained
below). The case uses a realistic set of diagnostics; however, a fictitious Thomson
scattering diagnostic. The Thomson scattering diagnostic is treated as a localized
measurement of the electron temperature profile. First, the synthetic equilibrium
is used to illustrate the behaviour of the Gaussian process reconstruction as the
hyper-parameters are varied. Here, the use of the localized measurements is instructive
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and helps illustrate the GPR behaviour. Second, a full reconstruction of synthetic data
is performed to test the performance of the GPR reconstruction model.

The second test case uses real data from Compact Toroidal Hybrid experiment.
This reconstruction does not use the fictitious Thomson system, but instead uses
the experiments two colour soft x-ray system. GPR is used to reconstruct two
emissivity profiles, one for each soft x-ray colour. In addition this case uses fixed
hyper-parameters to test the performance of model when reasonable but non-optimal
hyper-parameters are used.

The final test case uses real data from the Madison symmetric torus (described
below). Here GPR is used to reconstruct the temperature profile from an experimental
Thomson diagnostic. In this case the optimal set of hyper-parameters are calculated as
part of the reconstruction.

Combined, these examples serve as a comprehensive test the GPR model. The
model is tested on both synthetic data and experimental data. The model is tested on
multiple machines uses different diagnostics. Finally the model is tested with both
fixed hyper-parameters and when the hyper-parameters are calculated as part of the
reconstruction.

4.1. Synthetic data
The implementation of the Gaussian process model is tested using a synthetic
equilibrium based on the Compact Toroidal Hybrid experimental (CTH) (Hartwell
et al. 2017). CTH is a low-aspect-ratio five field period torsatron designed to study
current carrying stellarator equilibria. A flexible set of external magnetic coils allows
for the creation of a diverse set of vacuum magnetic equilibria with rotational
transforms ranging from ιvac/2π ≈ 0.02 to ιvac/2π ≈ 0.35. The maximum on-axis
toroidal magnetic field is B0 = 0.7 T. An ohmic transformer is used to drive up to
80 kA of toroidal plasma current.

The synthetic equilibrium uses a two-power parameterization for toroidal current
profile

I′(s)=
dI
ds
= I0(1− sαI )βI . (4.1)

Here s is the flux-surface label, where s= 0 labels the magnetic axis and s= 1 labels
the last closed flux surface; I(s) is the net toroidal current enclosed by the flux surface
s, the exponents αI and βI are positive real numbers that control the shape of the
current profile. For a fixed βI a larger value of αI leads to a broader profile. A smaller
value of αI leads to more peaked profile. The net toroidal current I(1) is calculated
by integrating I′(s) from s= 0 to s= 1.

The pressure profile p(s) and the electron temperature profile Te(s) are also specified
using two-power profiles

p(s)= p0(1− sαp)βp (4.2)
Te(s)= Te0(1− sαT )βT , (4.3)

where p0 (Te0) is the pressure (electron temperature) at the magnetic axis. The density
n is inferred from the pressure and electron temperature assuming that the electron and
ion temperatures are equal: p= 2nK BTe with the Boltzmann constant K B. The values
of the parameters that define the synthetic equilibrium are summarized in table 1. The
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FIGURE 2. The magnetic flux surfaces are plotted for the synthetic equilibrium at the full
period and half-period. The location of the magnetic axis is shown in red. The sampling
locations of the twenty Thomson scattering channels are indicated by the black dots.

Net toroidal current I(1) 62.32 kA
First current exponent αI 3.56
Second current exponent βI 6.0
Pressure on axis p0 488 Pa
First pressure exponent αP 1.25
Second pressure exponent βP 4.0
Temperature on axis Te0 250 eV
First temperature exponent αT 2.2
Second temperature exponent βT 4.3

TABLE 1. The profile parameters that are used to define the synthetic equilibrium.

magnetic flux surfaces of the synthetic equilibrium are shown at the full period and
half-period in figure 2.

The reconstructions use a realistic set of diagnostics that are based on CTH’s
diagnostics. CTH’s full set of magnetic diagnostics are used. CTH’s three-channel
interferometer is used to constrain the pressure profile via the inferred density. Two
fictitious 10-channel Thomson scattering diagnostics, one located at the full period
and the other located at the half-period, are used to infer the electron temperature.
This Thomson scattering system is used to illustrate the behaviour of the Gaussian
processes. The sampling locations of the Thomson scattering system are indicated by
the bullets (u) in figure 2.

Synthetic data are calculated for each diagnostic used in the reconstruction. First the
noise-free modelled signal is calculated for each synthetic diagnostic. Noisy signals
are then generated using these modelled signals assuming 5 % Gaussian noise. The
noisy signals are then used as input to a V3FIT reconstruction. The accuracy of the
reconstruction is tested by comparing the reconstructed parameter values with their
prescribed equilibrium values.
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(a) (b)

FIGURE 3. The electron temperature measured by the Thomson system is shown in
(a). The synthetic signals (blue) are the noisy signals generated from the synthetic
temperature profile. The error bars indicate 5 % uncertainty in the synthetic measured
signals. The model signals (black) are calculated from the reconstructed profile. The
reconstructed temperature profile is shown in figure (b). The shaded region represents the
2σ standard deviation. The synthetic electron temperature profile is shown in blue. The
green markers indicate the location of Thomson sampling points and the measured values
of the temperature. The reconstructed GP profile is plotted as a straight line connecting
the value of profile evaluated at the points x∗.

First, to illustrate the behaviour of GPR, we start by only reconstructing the electron
temperature profile. Here the equilibrium current and pressure profiles are specified to
have their true equilibrium values, and the electron temperature profile is reconstructed
using GPR. V3FIT’s minimization routines are used to converge on the optimal set of
hyper-parameters by minimizing the negative log evidence.

The reconstructed temperature at the optimized set of hyper-parameters is shown
in figure 3. Figure 3(a) shows the electron temperature at each of the Thomson
scattering sampling locations. The noisy synthetic signals, which are used in the
reconstruction, are shown in blue. The error bars indicate 5 % uncertainty in the
synthetic measured signals. The modelled signals, shown in black, are calculated
from the reconstructed temperature profile. Most of the modelled signals agree with
their corresponding synthetic measured signals within one or two standard deviations.

Figure 3(b) shows a comparison of the reconstructed temperature profile (black)
and the prescribed temperature profile (blue). The 2σ uncertainty region for the
reconstructed temperature profile is indicated by the shaded region. The noisy signals
used in the reconstruction, along with their corresponding errors bars, are indicated by
the green markers. The reconstructed profile agrees with the synthetic profile within
2σ across the entire domain.

The reconstructed temperature profile begins to diverge from the synthetic profile
for s > 0.6, and the reconstructed profile is negative for s & 0.75. This discrepancy
between the reconstructed temperature profile and the synthetic profile is understood
by observing that there are no measurements of the temperature for s & 0.6. In this
region the slope of the synthetic temperature profile drastically changes and the
temperature asymptotes to zero at s= 1. There are no measurements that capture this
transition, and the Gaussian process uses a smooth gradient scale length to extrapolate
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(a) (b)

(c) (d)

FIGURE 4. (a) The negative log evidence is shown as a function of the hyper-parameters
σl and σf . The true minimum is indicated by the (+) where the converged set of
hyper-parameters used by V3FIT is indicated by the (u). (b) The dependence of the GP
best fit as a function of the correlation length scale σl is illustrated. A small correlation
length scale σl = 0.05 is shown in black, and a longer correlation length scale σl =

2.0 is shown in blue. Both fits use the optimal value σf = 145.5. The shaded regions
indicate the 2σ uncertainty for each fit, and the green dots indicate the training data. The
dependence of the GP best fit as function of the hyper-parameter σf is illustrated in (c,d).
An unrealistically small σf = 4 is used in (c) and an unrealistically large σf = 400 is used
in (d). Both plots use the optimal correlation length scale σl = 0.478.

the temperature profile beyond the last measurement. The Thomson diagnostic in this
case has equally spaced viewing locations in physical space. This spacing leads to
clustering of the measured data at small s in flux coordinate space.

The reconstructed temperature profile shown in figure 3 is calculated using a
optimized set of hyper-parameters: σf = 167, σl = 0.495. Figure 4(a) shows contours
of the negative log evidence as a function of the hyper-parameters. The contours show
a well-defined minimum around σf = 146± 5, σl = 0.48± 0.05 indicated by (+). The
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V3FIT optimized values of the hyper-parameters are indicated by (u). The negative
log evidence has a shallow minimum and the difference between the two sets of
hyper-parameters is due to V3FIT’s convergence criteria. More stringent convergence
criteria could be used to more accurately converge on the minimum; however, in
practice this is not necessary. As illustrated in figure 3 a reasonable value for the
hyper-parameters usually results in a good fit.

As illustrated in figure 4(a) the negative log evidence rapidly increases at small σf
and small σl. The maximum contour level in the figure has been set to 300 for clarity,
but the negative log evidence far exceeds this limit at small σf and small σl. At small
σf the increase in the negative log evidence results from a bad fit. Here, the GP profile
is too tightly constrained to be zero. At small σl the Gaussian process is strongly
penalized for having too small of a correlation length scale. The small correlation
length scale causes overfitting, and at this point the GP is essentially fitting the noise
in the data. Conversely the negative log evidence gradually increases at large σf and
σl. The increase at large σf results from penalizing the GP for having too large of a
variance. At large σl the correlation length is too large, resulting in a bad fit to the
data.

Figure 4(b–d) further illustrates the dependence of reconstructed temperature profile
on the hyper-parameters. The reconstructed temperature profile is shown in figure 4(b)
for two values of the correlation length σl. Over-fitting is observed when a small
correlation length is used (black). Here the Gaussian process has the flexibility to fit to
the noise in the data (shown in green). The uncertainty in the fit, indicated by the grey
shaded region, is large between the measured data. When a large correlation length is
used (blue) the GP does not have the flexibility to conform to the profile. Here the
Gaussian process is effectively fitting a straight line to the data. Both fits in figure 4(b)
use the optimized value σf = 145.5.

The hyper-parameter σf quantifies the prior standard deviation from zero in the prior
Gaussian process. This is illustrated in figures 4(c) and 4(d), which show the GP fit
for two values of σf at the optimized correlation length σl = 0.48. Figure 4(c) uses
the value σf = 4.0 to illustrates the behaviour when σf is too small. Here the GP is
tightly constrained to be close to zero, and the resulting fit under-predicts the synthetic
temperature. Figure 4(d) uses σf = 400 to illustrate what happens when σf is too large.
Here, the GP still produces a good fit; however, the uncertainty in the fit is larger than
the uncertainty at the optimized value of σf . This behaviour is most easily observed
by comparing the shaded regions in figures 3(b) and 4(d) at s= 1. At the optimized
set of hyper-parameters the 2σ uncertainty region at s= 1 is bounded by Te= 100 eV
in contrast to the case of σf = 400 the uncertainty region is bounded by Te≈ 175 eV.

Figure 4(b–d) is designed to illustrate the physical significance of the hyper-
parameters. Extreme values of the hyper-parameters were chosen for illustrative
purposes, and a reasonable choice of the hyper-parameters will often yield a good
fit. As a general the optimal value of σf tends to be comparable to the maximum
amplitude of the profile. This is a consequence of Occam’s razor, which in this
context states that the deviation from the zero mean should be as small as possible
while large enough to account for all the measured data. The optimal value of σl
is a little harder to predict. We have found that σl ≈ 0.5 is usually a reasonable
guess for smooth profiles that vary across the entire domain. It is worth noting that
non-stationary kernels, where the correlation length can vary across the domain, have
been useful for capturing sharp transitions in the gradient scale length that happens
in many fusion plasma (Li et al. 2013; Chilenski et al. 2015).

Second, a full reconstruction of the synthetic equilibrium is considered. Here,
standard parametric techniques are used to reconstruct all the equilibrium parameters
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FIGURE 5. The reconstructed flux surfaces are shown for the experimental CTH
reconstruction at the full period and the half-period. The flux surfaces from the Gaussian
process reconstruction are shown in blue. The flux surfaces from the fully parametric
reconstruction are shown in red.

Parameter name Equilibrium value Initial guess Reconstructed value

I(1) 62.32 kA 50.0 kA 60.57± 3.78 kA
αI 3.56 2.0 2.79± 0.40
p0 488 Pa 200 Pa 417± 178 Pa
Φedge 59.3 mWb 65.0 mWb 60.3± 1.3 mWb
σf NA 200.0 156.8± 10.3
σl NA 0.50 0.519± 0.035

TABLE 2. The equilibrium parameter values and their reconstructed values are shown.
Here Φedge is the toroidal flux at the last closed flux surface.

except for the electron temperature profile. GPR regression is used to infer the
temperature profile. The cost function g2 is minimized to simultaneously calculate the
optimal set of parameters and GP hyper-parameters.

Table 2 shows the true value, the initial guess used to seed the reconstruction, and
the reconstructed value for each reconstructed equilibrium parameter.

The largest discrepancy between the reconstructed parameters and their equilibrium
values is in the current shaping factor αI . Here, the disagreement between the
reconstructed αI and the equilibrium value is two standard deviations. The difficulty
in reconstructing this parameter is due to the nonlinear dependence of the flux-surface
shape on the current shaping factor. Modest changes in αI have only a small impact
on the shape of the flux surfaces. This is apparent in figure 5, which is discussed
in the next section. The other reconstructed parameters agree with their equilibrium
values within one standard deviation, and overall the reconstructed equilibrium agrees
reasonably well with the synthetic equilibrium.
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Parameter name Symbol GP value Parametric value

Edge flux Φedge 52.91± 0.40 mWb 52.28± 5.38 mWb
Toroidal current Ip 38.93± 0.24 kA 38.84± 0.31 kA
Current shaping factor αI 2.09± 0.37 1.52± 0.16
Vertical offset Z0 5.70± 0.66 mm 7.23± 0.76 mm
Peak pressure p0 389± 242 pa 364± 3700 pa
Pressure shaping factor αp 1.82± 0.08 0.00+ 180

TABLE 3. The values of the reconstructed parameters are shown for the hybrid GP
reconstruction and the fully parameter construction. The fully parametric reconstruction
uses an additional 20 parameters to model the soft x-ray emissivity profiles in addition
to the parameters shown.

4.2. CTH experimental discharge
An experimental CTH discharge is used as a second benchmark of the Gaussian
process model. In this test case Gaussian processes are used to represent two soft
x-ray emissivity profiles. CTH has a three camera two-colour soft x-ray system
(Herfindal et al. 2014) and a different Gaussian process is used to infer each colour’s
emissivity profile. Each emissivity profile is approximated as a flux-surface quantity.
The soft x-ray system can be used to topographically infer the shape of internal flux
surfaces. The shape of these flux surfaces is determined by the internal current profile.
Thus, the soft x-ray measurements help to constrain the internal current profile in
equilibrium reconstructions (Ma et al. 2015, 2018).

Six parameters are inferred in this reconstruction: the edge toroidal flux Φedge,
the net toroidal current Ip, a toroidal current shaping factor αI , the pressure at the
magnetic axis p0, a pressure profile shaping factor αp and vertical offset from the
mid-plane of the magnetic axis z0. In this reconstruction a two-power profile is used
for the current profile (4.1) and the pressure profile (4.2). The second exponent in the
current profile, βi, and the second exponent in the pressure profile βp are both assumed
to be six. This case uses fixed values for the Gaussian process hyper-parameters.
The first colour’s kernel has a variance set to σf 1 = 2 and a correlation length scale
set to σl1 = 0.4. The second colour’s kernel has a variance set to σf 1 = 0.3 and
a correlation length scale set σl1 = 0.4. These are typical of the hyper-parameter
values found for the soft x-ray system when hyper-parameter optimization is used.
We refer to this reconstruction as a hybrid reconstruction since some radial profile
are represented using a parametric representation and others are represented using a
Gaussian process.

A fully parametric reconstruction is also performed to compare with the Gaussian
process model. The reconstruction uses two ten-segment linear splines to represent
each of the emissivity profiles. The knots of the splines are equally spaced in s, and
the amplitudes of the knots are treated as free parameters. In total this model has 26
free parameters.

Table 3 shows the reconstructed values of the six equilibrium parameters for the
hybrid Gaussian process reconstruction and the parametric reconstruction. The values
of equilibrium parameters for the two reconstruction agree within 2σ error. The soft
x-ray emissivity is needed to constrain the current shaping factor αI , and the fact
that the two parameters are close indicates that the method is successfully using the
GP process profiles to constrain the equilibrium profiles. The large uncertainty in the
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(a) (b)

FIGURE 6. The reconstructed soft x-ray emissivity profiles are shown for each of
the two colour filters. The black line is the emissivity profile reconstructed using the
Gaussian process model and the shaded region indicates the 2σ uncertainty region. The
profiles reconstructed using the fully parameter profile are shown in green. Here only the
amplitudes of the profile at the line spline knots are shown for clarity. The error bars also
indicate the 2σ uncertainty.

peak pressure and the pressure profile shaping factor is due to the fact that these
reconstructions do not use any direct measurements of the temperature, density or
pressure. While the uncertainty in these parameters is large, including these pressure
parameters in the reconstruction gives the χ 2-minimization routine extra degrees of
freedom which aids converge.

Figure 5 shows reconstructed magnetic flux surfaces produced by the two methods
at the full period and half-period. The observation that the flux surfaces nearly lie
on top of each other is another indication that the two reconstructions are in good
agreement. This also illustrates the weak dependence of the flux-surface shape on the
current shaping parameter αI .

The reconstructed soft x-ray emissivity profiles for the two colours are shown
in figure 6. The mean of the GP posterior distribution is shown black, and the 2σ
uncertainty region is indicated by the grey shaded region. The amplitudes of the linear
spline knots for the parametric reconstructions are indicated by the green bullets, and
the error bars also indicate the 2σ uncertainty. The reconstructed profiles inferred
are in good agreement; however, the uncertainty in parametric reconstructed profiles
is larger than the uncertainty in GP reconstructed profiles throughout most of the
domain. The second soft x-ray emissivity profile (figure 6b) has small amplitude in
the outer flux region s> 0.5, and the corresponding soft x-ray measurements have a
small signal to noise ratio. Thus the uncertainty in this region is large.

In general the reconstruction of the CTH equilibrium shows good agreement
between the two methods. In total the two reconstructions used a total of 135
diagnostics to constrain the equilibrium profiles. The hybrid GP reconstruction used
a total six parameters and the final equilibrium had a chi-squared value of χ 2

= 132.
This equates to an average chi-squared value of 〈χ 2

〉= 0.98 per signal. In contrast the
fully parametric reconstruction used a total of 26 free parameters. It had a chi-squared
value of χ 2

= 114 and an average value of 〈χ 2
〉 = 0.85 per signal.
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FIGURE 7. Reconstructed flux surface for the Gaussian process reconstruction (blue) and
the fully parametric reconstruction (red) at two toroidal angles.

4.3. MST single helicity axis state
A reconstruction of a single-helical-axis (SHAx) state in Madison Symmetric torus
(MST) (Dexter et al. 1991) is used as a second experimental test case. MST is
normally operated as a reversed field pinch with a minor radius of a = 0.52 m and
a major radius of R= 1.52 m. The toroidal magnetic field has a maximum value of
Bφ 6 0.5 T at the magnetic axis, the field decreases away from the magnetic axis, and
it reverses sign near the edge. During standard operation MST is characterized by
an axisymmetric equilibrium. At high plasma current, Ip ≈ 500 kA, the MST plasma
spontaneously transitions to a three-dimensional SHAx equilibrium (Bergerson et al.
2011). V3FIT has previously been used to reconstruct these SHAx states using the
standard parametric representation (Koliner et al. 2016). Here one of these previously
reported SHAx equilibria is used to benchmark the hybrid Gaussian process model
in V3FIT.

This MST reconstruction use approximately 200 diagnostics, which include both
a poloidal array and a toroidal array of magnetic diagnostics, a single-colour
multi-chord soft x-ray system, a multipoint Thomson scattering diagnostic and a
far-infrared interferometry/polarimetry diagnostic. The only difference between the two
reconstructions is that the parametric reconstruction uses a cubic spline to represent
the temperature profile, where the hybrid reconstruction uses a GP to reconstruct this
profile. Here, the optimal hyper-parameters are calculated as part of the minimization
of the error. Both reconstructions use cubic splines to represent the pressure profile
and the safety-factor profile. A two-power profile is used to represent the soft x-ray
emissivity profile. The density profile is inferred from the pressure profile and the
electron temperature profile. This is in contrast to the reconstructions presented in the
paper by Koliner et al. (2016), where the density profile was directly reconstructed
and the temperature profile was inferred from pressure and density profiles. This
reconstruction is designed to test the GPR implementation for a Thomson scattering
diagnostic using real experimental data; hence, the choice to explicitly model the
temperature profile instead of the density profile.

The hybrid GP reconstruction and fully parametric reconstructions provide similar
values for all their mutually shared parameters. This is illustrated in figure 7 which
shows the flux surfaces from the two reconstructions. The fact that the two sets of
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(a) (b)

FIGURE 8. (a) The experimental and model electron temperature signals for each
of the Thomson diagnostic channels. The experimentally measured signals with their
corresponding error bars are shown in blue. The model signal value for the hybrid
Gaussian process reconstruction is shown in black. The model signal value for the fully
parametric reconstruction is shown in green. (b) The GP reconstructed temperature profile
is shown in black. The grey shaded region represents the 2σ uncertainty in the GP fit.
The parametric reconstructed temperature profile is shown in green, the errors indicated
the 2σ uncertainty in the amplitude of the spline knots.

flux surfaces lie on top of each other indicates that the two MHD equilibria are in
close agreement. However, the Thomson system on MST does not topographically
constrain the flux-surface shape, and the temperature profile only weakly constrains
the equilibrium flux-surface shape via the pressure profile.

Figure 8 compares reconstructed temperature profiles for the two methods.
Figure 8(a) shows the modelled temperature at each of the Thomson viewing locations.
Both the GP temperature profile and the parametric temperature profile agree with
the measured data within 2σ of the experimentally measured temperature at each of
the Thomson viewing locations. Channel 14 produced a bad signal for this particular
shot, and it is not used in the reconstruction. Figure 8(b) compares the Gaussian
process temperature profile with the parametric cubic spline temperature profile. The
two profiles agree within 2σ uncertainty, and the two reconstructions give similar
estimates of the uncertainty in the reconstruction.

One advantage of the GP profile is apparent near the core s. 0.4. In this region the
parametric reconstruction exhibits oscillatory behaviour characteristic of overfitting,
where the Gaussian process is not oscillatory. These oscillations can negatively
impact core transport and stability analysis which are sensitive to derivatives of the
equilibrium profiles. The oscillations can be removed by reducing the number of
knots in the spline and/or adjusting their locations. This process requires trial and
error. In contrast the Gaussian process automatically eliminates this behaviour in this
particular example.

The parametric reconstruction has an average 〈χ 2
〉 = 1.36 per signal and uses

26 free parameters. The Gaussian process reconstruction has a comparable average
value of 〈χ 2

〉 = 0.47 (this excludes the log evidence term). The Gaussian process
reconstruction uses 20 free parameters and two free hyper-parameters.
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5. Discussion and conclusions
This paper introduced a new hybrid regression model that has been implemented in

the 3-D reconstruction code V3FIT. This hybrid regression model uses a combination
of parametric and non-parametric techniques to infer radial profiles from experimental
data during equilibrium reconstruction. Gaussian process regression is used to infer
radial profiles from diagnostic signals that are modelled using a linear operator
acting on the underlying profile. Standard parametric techniques are used to infer the
remaining profiles and equilibrium quantities. The linear assumption simplifies the
calculation of the Gaussian process posterior, and the resulting mean and covariance
matrices can then be calculated using standard linear algebra techniques.

One of the advantages of using Gaussian process regression is that the profile
shape is inferred directly from the experimental data. The equilibrium reconstruction
process strongly depends on the choices that the user makes. A bad parameterization
can introduce systematic errors that exclude certain types of behaviour, introduce
oscillations due to overfitting, etc. Gaussian process regression helps address the
above issues by reducing the number of inputs that a user has to make. For example,
instead of asking the user to specify a functional form for the profile, use of GP
only requires that the user specifies a much broader class of functions (defined by
specifying a covariance kernel) to which the profile belongs.

Another advantage of the Gaussian process formalism is that the calculation yields
both the posterior mean and the posterior covariance matrix for linear models. These
two quantities completely specify the posterior distribution of the reconstructed
profile. In post-processing one can use these quantities to randomly sample the
posterior profile. These randomly sampled profiles can then be used for sensitivity
analysis. For example M. Chilenski used temperature and density profiles sampled
from a Gaussian process to do error propagation analysis of turbulent transport fluxes
(Chilenski et al. 2015). A similar analysis can be applied to other fusion calculations.

Comparison between fully parametric reconstructions and the hybrid GP reconstruc-
tions show good agreement between the two methods. These comparisons use
experimental data from CTH and MST. In both cases the fully parametric reconstruc-
tions use linear or cubic splines to model the radial profiles. These profiles are then
inferred using GPR in the hybrid reconstruction.

The work presented in this paper represents the first steps to incorporating Gaussian
process regression into V3FIT. A simple, yet powerful, covariance kernel is used, and
the implementation is only valid for linear diagnostics. The modularity of the code
makes it straightforward to extend the functionality of the GP model. Minor code
modifications would be needed to implement alternative kernel functions.
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