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ON THE NUMBER OF BINOMIAL COEFFICIENTS WHICH ARE 
DIVISIBLE BY THEIR ROW NUMBER: II 

BY 

NEVILLE ROBBINS 

ABSTRACT. If « is a natural number, let A(n) denote the number of 
integers, k, such that 0 < k < n and n divides (*). Let <f>(«) denote Euler's 
totient function. Necessary and sufficient conditions are given so that 
A(n) = <f>(«) when n is square-free. 

Introduction. Let n be a non-negative integer. In Pascal's triangle, we find ( ? ) in 
the kth position of row n, with 0 < k < n. We therefore say that n is the row number 
of (^) . Following [3], Definition 1, if n is positive, let A(n) denote the number of 
integers, k, such that 0 < k < n and n \(j?). Let/? denote a prime. $(n) denotes Euler's 
totient function. 

In [3], we showed that (i) A(n) > §(n) for all n\ (ii) A(n) = §(n) if n = pe, 
e> 1, or n is twice a Mersenne prime. In this note, we find necessary and sufficient 
conditions that A(n) = §(n) when n is square-free. We then consider in some detail 
the cases where n is a product of 2 or 3 distinct primes. In the former case, a number 
of solutions of A(n) = ())(«) are presented in Table 1 below; in the latter case, one 
solution is obtained, thus disproving a conjecture of P. Erdos [2]. 

Let u)(n) be the number of distinct prime factors of n, while d(n) is the number of 
divisors of n. 

DEFINITION 2. On(m) = k if nk\m but nk+] )f m, where k > 0. 

DEFINITION 3. tp(n) = ljr
i=0aiifn = 2 j_ 0 a-tp\ where 0 < a{ < p for each i. 

REMARK. Definitions 2 and 3 above correct errors which appeared in Definitions 2 
and 3 of [3]. 

PRELIMINARIES. 

(1) [a] + [b] < [a + b] < [a] + [ft] + 1 

(2) 0„(aft) = OP(Û) + Op(i) 
00 

(3) Op(n\) = 2 [ n / / ] 
J f c = l 

(4) 0 , ( ( ^ ) ) = [{rp(*) + tp(n -k)- tp(n)}/(p - 1)] 
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TABLE 1 

[December 

p 

2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
5 
5 
5 
7 
7 
7 
7 
7 
7 
11 
11 
11 
11 
11 
11 
13 
13 
13 

J 

2 
3 
5 
7 
13 
1 
2 
3 
7 
8 
1 
4 
6 
1 
1 
2 
2 
4 
5 
1 
1 
2 
2 
3 
3 
1 
2 
2 

A 

2 
2 
2 
2 
2 
4 
2 
2 
2 
6 
2 
6 
2 
2 
4 
10 
2 
8 
4 
10 
8 
2 
6 

<7 

3 
7 
31 
127 

8191 
5 
17 
53 

4373 
13121 

19 
1249 

31249 
13 
41 
97 
293 
4801 
33613 

43 
109 
241 
967 
5323 
13309 
103 
337 
1013 

P 

13 
17 
17 
17 
17 
17 
17 
17 
17 
19 
19 
19 
19 
19 
19 
23 
23 
23 
23 
23 
29 
29 
29 
29 
29 
29 
29 
29 

J 

2 
1 
1 
1 
2 
2 
2 
2 
3 
1 
1 
1 
1 
2 
3 
1 
1 
1 
2 
2 
1 
1 
1 
1 
1 
2 
2 
2 

a 

12 
4 
6 
16 
2 
6 
8 
12 
16 
2 
6 
8 
12 
8 
12 
6 
10 
16 
8 
18 
6 
12 
16 
18 
28 
12 
18 
24 

<7 

2027 
67 
101 
271 
577 
1733 
2311 
3467 
78607 

37 
113 
151 
227 
2887 
82307 
137 
229 
367 

4231 
9521 
173 
347 
463 
521 
811 

10091 
15137 
20183 

<5) °p((aph) = °p{{bPaJ)) ifPÏ ah> J^k,md0<a< bp^ 

(6) A(n) > (}>(«) for all n 

(7) a>(2 ' - \)>d(j)- 1 if j± 6 

REMARKS. (1) through (4) are elementary; (5) is [3], Theorem 3; (6) is [3], Corollary 
1. (7) follows from Theorem V in [1]. 

The main results. 

LEMMA 

and (k 
MA 1. (i) A(n) = 4>0) if and only if (ii) n \(ï)for all k such that 0 < k < n 
, n ) > l . ' 

GO' 

PROOF. Follows from (6) and from the fact that (ii) is equivalent to: A(n) < §(n). 

LEMMA 2. Let p < t. Then (i) p \ (^)for all m such that 0 < m < t if and only if 

apj — 1, where 0 < a < p and 0 < j . 
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PROOF, (ii) implies (i): hypothesis implies t = (a - \)pJ + 2"ï=0 (p - \)pl. Let 
m = 2"|=0 bip', with ( ) < £ / < / ? - 1 for all /. Now m < t implies bj< a - 1. Therefore 
t - m = (a - 1 - bj)pj + E-li (/? - 1 - bi)p\ so that tp(t - m) = tp(t) - tp{m). 
Therefore (4) implies p J ( ^ ) -

(i) implies (ii): Let t = E^=0 ctp
l =£ apJ - 1. Let r be the least integer such that 

0 < r < j - 1 and cr<p - 1. (By hypothesis, r exists.) Let m = (cr 4- 1 )/?,.. Therefore 

f - m = 2 dp* + (cr+I - l)/?r+1 + (p - l)p r + £ c/jP', 

(i)-
/ = r+2 /=0 

so that tp(t — m) + ^(m) - ^(f) = p - 1, and therefore (4) implies /? 

LEMMA 3.1fp is prime, p jf mt, and s is arbitrary, then p OiflY 

PROOF. First suppose p )f s. Applying (2), it suffices to show that Op({pst)\) > 
Op((sm)\) + Op{{pst - sm)\). By virtue of (1) and (3), we need merely find one 
k > 1 such that 

[pst/pk] > [sm/pk] + [{pst - sm)/pkl 

The required value of k is 1. If p \ s, the same conclusion holds by appeal to (5). 

DEFINITION 4. If n = HYi=xph where r > 2 and the pt are primes such that pf < pk 

whenever j < k, let nt = n/pifor each i. 

r-\ 
LEMMA 4.1fn and nt are as in Definition 4 above, then p\ > 1 + nr unless n = 

6. 

PROOF. If r — 2, then hypothesis implies p2 > p\ + 1. But n2 — p\, so p2 > 
n2 + 1. If r > 3, then sincept < pr for all / < r, we havepr~2 > n/pr-xpr. Let pr = 
d + pr-\- Thereforepr~ > (d + pr-\)n/pr-\pr = dn/pr-xpr + n//?r > 1 + nr. 

THEOREM 1. Let n and n{ be as in Definition 4 above. ThenA(n) = $(n) if and only 
if (i) iti = aipJ; — 1, 0 < <3, < pt, 0 < /-/or a// / < r, cmd (ii) pr > nr or nr = 
arp

j; ~ 1, 0 < ar < pr, 0 < jr < r - 1. 

PROOF. By Lemma 1, (I) A(n) = $(n) if and only if for all /, (II) n j ( " ) for all 
m, such that 0 < m, < n,. If k =£ /, then Lemma 3 implies/?* (^ ), so that (II) simplifies 
to: pi I (D7n.) for all m, such that 0 < mt < ni. Using (5), (II) becomes: pt \ ("' ) for 
all mt such that 0 < m, < «/. If / < r, then by Lemma 2, (II) holds precisely when 
^ = aipJii - 1, with 0 < at < p{ and 0 < j h If / = r, then (II) holds if and only if 
pr > nr (which is trivially true if r = 2) or by Lemma 2, nr = arp

lr
r - 1, with 0 < 

<zr < p r and 0<jr. In the latter case, we may assume r > 3. Therefore Lemma 4 implies 
/^ - 1 > \ + nr. But «r > /?7; - 1, sop^ -1 > pJr

r, and therefore yV < r - 1. 

COROLLARY 1. If p,q are primes with p < q, then A{pq) — <\>(pq) if and only if 
q = apj - 1, with 0 < a < p, 0 < j . 

PROOF. Follows from Theorem 1 with p - p\ = n2, q = p2, r = 2. 
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Table 1 below lists all pairs of primes p, q such that p < q, p < 30, q < 105, q -
apj - 1, 0 < a < p , 0 <j. 

THEOREM 2. IfA(pqr) = §(pqr) where p, q, r are primes with p < q < r, then (i) 
qr = apj - 1, 0 < a < p, 0 < j \ (ii) pr = bqk - 1, 0 < b < q, 0 < k\ 
(iii) pq < r. 

PROOF. By Theorem 1, it suffices to show that (**) pq — cr — 1 is impossible. If 
(**) holds, then r = (pq + l ) / c > q implies (***) c < p. (ii) implies p(pq + 1) = 
c&g* — c, so that/? + c — uq. (**) implies/? + c is odd, so u is odd. If u > 3, then 
3/7 < 3q < p + c, so that c > 2/7, contradicting (***). Therefore « = 1, so p + c = 
q, and we have/7(/7 + c) = cr — 1, which implies c(r — p) = p2 + 1. If c — 1, then 
p = 2, so q = 3 and r = 7, which contradicts (i). If p = 2, then c(r — 2) = 5 implies 
c = l , r = 7, # = 3, again contradicting (i). If c > 1, then p is odd, so c and r — p 
are even. But then p2 + 1 = 0 (mod 4), an impossibility. 

Now consider (*) A(pqr) = §(pqr) where /?, </, r are primes with p < q < r. 

CASE 1. Let p — 2. Then Theorem 2 implies: (i) qr = 2j — 1; (ii) 2r = Z?g* — 1, 
0 < b < q, 0 < k\ (iii) 2</ < r. 

Now (i) implies o)(27 — 1) = 2. Since 26 — 1 = 32*7 =h qr, we know j 41 6. 
Therefore (7) implies d(j) < 3, which implies) = tm, where t is prime and m = 1 or 
2. If m — 1, then there is no j < 100 such that (i) and (ii) are compatible. 

If m = 2, we have qr - 2/2 - 1 = (2r - 1) ((2'2 - l ) / (2 ' - 1)). Since q < r, we 
have ? = 2' - 1, r = (2'2 - l ) / (2 ' - 1) = ((? + 1)' - 1)/? = 2 U ( J ) ^ " 1 = t + 
2/=2 ( / ) ^ ' - 1 ' w n i c n implies </|(r — f)» hence q\(2r — 2t). But (ii) implies 
q\(2r + 1), so that q\(2t + 1). Now 2' - 1 > It + 1 for r > 3, and (22 - 1) )f (2*2 
+ 1), so we must have t = 3, ^ = 7, r = 73. (ii) holds with fe = 3, /: = 2, and 
(iii) holds since 14 < 73. Therefore 1022 = 2*7*73 is a solution of (*). 

Now suppose p > 3. By Theorem 2, we have: 
(i) qr = 2apJ - 1, 1 < a < |(/7 - 1), 0 < j 
(ii) pr = 2*^* - 1, 1 < & < ^ - 1), 0 < fc 
(iii) pq < r 

Eliminating r between (i) and (ii), one obtains: 
(iv)flp''+l +\{q-p) = bqk+l. 

LEMMA 5. In (ii), if 2b = c2, then k is odd. 

PROOF. If k = 2m, then hypothesis and (ii) imply pr = c2q2m - 1 = (cqm — 1) 
(cqm + 1), so thatp = cqm — 1, r = cqm 4- 1. But then r = p + 2, an impossibility, 
since r > p + 4. 

CASE 2. Lerp — 3. Therefore a = 1 in (i) am/ we have: 
(i) çr = 2(30 " 1 , 0 < 7 
(ii) 3r = 2bqk - 1, 1 < b < î(^ ~ 0 , 0 < k 
(iii) 3q < r 
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(iv) 3j+] + \{q - 3) = bqk+l. 

LEMMA 6. Ifp = 3 in (*), rfa?n 3 ; + 1 = 5(4 + 3) (mod 4). 

PROOF. Follows from hypothesis and (iv). 

THEOREM 3. Ifp = 3 in (*), rAe/i 4 £ {11,13,37,41,59,61,67,73,83, etc.} 

PROOF. Follows from Lemma 6. 

LEMMA 7. Ifp = 3 m (*), then b = {(q - 1) (mod 2). 

PROOF. Follows from (iv). 

LEMMA 8. Let p = 3 in (*). If q = \ (mod 3), f/^« 6 = 2 (mod 3); if q = - 1 

(mod 3), ffo?n 6 = (-1)"+1 (mod 3). 

PROOF. Follows from (ii). 

LEMMA 9. Let p = 3 in (*). If q = I (mod 12), f/œ/i fe = 2 (mod 6); if q = 7 

(mod 12), ffte/i Z? = 5 (mod 6). 

PROOF. Follows from Lemmas 7 and 8. 

CASE 2.1. Let p = 3, q = 5 in (*). (ii) implies 1 < b < 2; Lemma 7 implies b is 
even, so b = 2. Now Lemma 5 implies k is odd, but then Lemma 8 implies b = 1 
(mod 3), an impossibility. 

CASE 2.2. Let p = 3, q = 1 in (*). (ii) implies 1 < & < 3. Lemma 9 implies b = 
5 (mod 6) so f/iûtf b ^ 5, an impossibility. 

CASE 2.3. LeJ/? = 3, g = 17 in (*). (ii) implies 1 < b < 8; Lemmas 7 and 8 imply 
b E {2,4, 8}. (i) implies 2(3;) = 1 (mod 17) so that j = 2 (mod 16), am/ 2 | j . (iv) 
imp/lew 3y + 1 + 7 = &(17*+1) «> ffeif 3''-* = & (mod 7). Sine* 6 G {2,4, 8}, we have 
2 \ (j — k), so 2 \ k. Now Lemma 8 implies b = 2 (mod 3), 50 f/iaf b = 2 or 8, 
contradicting Lemma 5. 

CASE 2.4. Lef/? = 3, g = 19 in (*). (ii) implies 1 < fr < 9; Lemma 9 implies b = 
5 (mod 6), «> & - 5. (iv) implies 3j+l + 8 = 5(19*+1), 50 that 3j~k = 5 (mod 8), an 
impossibility. 

Concluding Remarks. We have disposed of the cases 3 = p <q< I9by generating 
congruence incompatibilities. This method seems to fail for the case p = 3, q = 23, 
but also works for the cases 5 ^ p < q ^ 19. Therefore any solution of (*) such that 
p is odd must have q ^ 23. 
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