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Asymptotic first boundary value problem
for elliptic operators
Javier Falcó and Paul M. Gauthier

Abstract. In 1955, Lehto showed that, for every measurable function ψ on the unit circle T, there is a
function f holomorphic in the unit disc, having ψ as radial limit a.e. on T. We consider an analogous
problem for solutions f of homogenous elliptic equations P f = 0 and, in particular, for holomorphic
functions on Riemann surfaces and harmonic functions on Riemannian manifolds.

1 Introduction

In 1955, Lehto [4] showed that given an arbitrary measurable function ψ on the
interval [0, 2π), there exists a function f holomorphic in the unit disc D ⊂ C such
that

lim
ρ→1

f (ρe iθ) = ψ(θ), for a.e . θ ∈ [0, 2π).

Lehto’s theorem shows that the radial boundary values of holomorphic functions in
the unit disc can be prescribed almost everywhere on the boundary of the disc. On the
other hand, any attempt to prescribe angular boundary values fails dramatically due to
the Luzin–Privalov uniqueness theorem [6]. This result asserts that if a meromorphic
function f in the unit disc D has angular limit 0 at each point of a subset of the
boundary having positive linear measure, then f = 0.

Having recalled this uniqueness result on angular limits, we recall the well-known
existence result on angular limits. Namely, functions in Nevanlinna class, and in
particular in Hardy spaces, have angular limits at almost all points of the unit circle.

For p ∈ C and r > 0, we denote by B(p, r) the open disc of center p and radius r.
We will denote the Lebesgue 2-measure by m. Our main result is the following.

Theorem 1.1 Given an arbitrary measurable function ψ on the interval [0, 2π), whose
restriction to some closed subset S ⊂ [0, 2π) is continuous, there exists a function f
holomorphic in D, and for every θ ∈ S and a.e. θ ∈ [0, 2π), there is a set Eθ ⊂ D, such
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572 J. Falcó and P. Gauthier

that

lim
r→0

m(B(e iθ , r) ∩ Eθ)
m(B(e iθ , r) ∩D)

= 1,

and

f (z) → ψ(θ) as z → e iθ , z ∈ Eθ .

Notice that points e iθ satisfying the first limit are necessarily accumulation points
of the corresponding sets Eθ .

More generally, we shall present such a result for solutions of elliptic equations on
manifolds. Our result applies, in particular, to harmonic functions on Riemannian
manifolds and to holomorphic functions on Riemann surfaces.

Let M be an oriented real analytic manifold with countable base. We shall denote by
∗ the ideal point of the one-point compactification M∗ of M . Fix a distance function
d on M and a positive Borel measure μ for which open sets have positive measure
and compact sets have finite measure. Then, μ is regular (see [7, Theorem 2.18]).
On M, the Lebesgue measure of a measurable set is not well defined, but because
M is smooth, Lebesgue measure zero is invariant under change of coordinates, so the
notion of absolute continuity of the measure μ (with respect to Lebesgue measure)
is well defined. We shall assume that our measure μ is absolutely continuous. Let U
be an open subset of M , p a boundary point of U, and F a closed subset of U . For
α ∈ [0, 1], we shall say that the set F ⊂ U has μ-density α at p relative to U , if

μU(F , p) ∶= lim
r→0

μ(B(p, r) ∩ F)
μ(B(p, r) ∩U)

= α.

Denote by ϑ the trivial vector bundle ϑ = M ×Rk . For a (Borel) measurable
subset S ⊂ M , denote by M(S , ϑ), the family of measurable sections of ϑ over S .
Thus, an element u ∈M(S , ϑ) can be identified with a k-tuple u = (u1 , . . . , uk) of
measurable functions u j ∶ S → R, j = 1, . . . , k. For an open set U ⊂ M , we denote by
C∞(U , ϑ) the family of smooth sections on U endowed with the topology of uniform
convergence on compact subsets of all derivatives. For u ∈ C∞(U , ϑ) and x ∈ U , we
denote ∣u(x)∣ =max{∣u1(x)∣, . . . , ∣uk(x)∣}. Let P ∶ ϑ → η be an elliptic operator on M
with analytic coefficients, where η is a real analytic vector bundle on M of the same
rank k.

If M = Rn and

(Pu)(x) = ∑
∣α∣≤m

aα(x)Dαu(x),

where the aα are analytic maps into the space of s × r matrices, then P is a linear
differential operator on R

r . It maps an r-tuple u = (u1 , . . . , ur) of functions on R
n to

an s-tuple Pu = v = (v1 , . . . , vs) of functions on R
n . The operator P is of order m, if

not all of the coefficients aα , ∣α∣ = m vanish. The symbol of P is the expression

σP(x , ξ) = ∑
∣α∣≤m

aα(x)ξα , (x , ξ) ∈ Rn × (Rn/{0}).
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Because the aα(x) are s × r matrices and the ξα are scalars,

σP ∶ Rn × (Rn/{0}) 
→ Hom(Rr ,Rs).

The operator P is elliptic, if for every x ∈ Rn and every ξ ∈ Rn/{0}, σP(x , ξ) is injective
as an element of Hom(Rr ,Rs), that is, if the matrix σP(x , ξ) always has rank r. If a0 ≡
0, then P annihilates constants. Such elliptic operators onR

n with analytic coefficients
and which annihilate constants are concrete examples of operators satisfying the
hypotheses of the following theorem.

Theorem 1.2 Let M , d , μ, ϑ , η, P be as above, and suppose that P annihilates con-
stants. Let U ⊂ M be an arbitrary open subset and φ ∈M(∂U , ϑ) an arbitrary Borel
measurable section on the boundary ∂U , whose restriction to some closed subset S ⊂ ∂U
is continuous. Then, for an arbitrary regular σ-finite Borel measure ν on ∂U , there
exists φ̃ ∈ C∞(U , ϑ) with Pφ̃ = 0, such that, for ν-almost every p ∈ ∂U, and for every
p ∈ S , φ̃(x) → φ(p), as x → p outside a set of μ-density 0 at p relative to U .

Consider the two extremal situations, where S is empty and S is the entire boundary
∂U , respectively. If S = ∅, then Theorem 1.2 solves an asymptotic measurable first
boundary value problem. If S = ∂U , then Theorem 1.2 solves an asymptotic contin-
uous first boundary value problem. The following two corollaries simply state that
Theorem 1.2 applies, in particular, for harmonic functions of several variables and to
holomorphic functions of a single complex variable.

Corollary 1.3 Let M be a Riemannian manifold, and let μ be the associated volume
measure on M . Let U ⊂ M be an arbitrary open subset and φ an arbitrary Borel
measurable function φ on the boundary ∂U , whose restriction to some closed subset
S ⊂ ∂U is continuous. Then, for an arbitrary regular σ-finite Borel measure ν on ∂U ,
there exists a harmonic function φ̃ on U , such that, for ν-almost every p ∈ ∂U and for
every p ∈ S , φ̃(x) → φ(p), as x → p outside a set of μ-density 0 at p relative to U .

Corollary 1.4 Let M be an open Riemann surface, π ∶ M → C a holomorphic immer-
sion, and μ the associated measure on M . Let U ⊂ M be an arbitrary open subset and
φ an arbitrary Borel measurable function φ on the boundary ∂U , whose restriction to
some closed subset S ⊂ ∂U is continuous. Then, for an arbitrary regular σ-finite Borel
measure ν on ∂U , there exists a holomorphic function φ̃ on U , such that, for ν-almost
every p ∈ ∂U and for every p ∈ S , φ̃(x) → φ(p), as x → p outside a set of μ-density 0
at p relative to U.

Proof Although the theorem is for real vector bundles and the ∂-operator on
a Riemann surface is generally considered as an operator between complex vector
bundles of rank 1, we may also consider it as an operator between real vector bundles
of rank 2 (see [5, Remark 3.10.10 and Theorem 3.10.11]). ∎

Remark Riemann surfaces are complex manifolds of dimension 1. Our proof does
not allow us to prove an analogue of Corollary 1.4 for holomorphic functions on
higher-dimensional complex manifolds, because the proof of Theorem 1.2 is based
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on the Malgrange–Lax theorem [5], which is for differential operators P ∶ ξ → η
between bundles of equal rank. On complex manifolds, the Cauchy–Riemann oper-
ator ∂ maps forms of type (p, q) to forms of type (p, q + 1). Thus, ∂ ∶ Ep,q → Ep,q+1 .
For ∂ ∶ Ep,0 → E0,1 , it is elliptic, and, in particular, it is elliptic for the case ∂ ∶ E0,0 →
E0,1 , mapping functions to forms of type (0, 1). On a complex manifold of dimension
n, this is a map between bundles of respective (complex) ranks 1 and n (see [5, Remark
3.10.10]). Thus, in order to have an operator between bundles of equal rank, we must
restrict our attention to complex manifolds of dimension 1, that is, Riemann surfaces.

When S = ∂U , Corollaries 1.3 and 1.4 were proved in [2] and [1], respectively. When
M = C, U = D, and S = ∅, Corollary 1.4 gives Theorem 1.1.

2 Runge–Carleman approximation

A closed subset E of M is said to satisfy the open K − Q-condition if, for every compact
K ⊂ M, there is a compact Q ⊂ M such that K ⊂ Q○ and E ∩ Q is contained in Q○.

An exhaustion (K j)∞j=1 of M is said to be regular if, for each n, the sets Kn
are compact, Kn ⊂ K○n+1 , M∗/Kn is connected, and M = ∪∞n=1K○n . We say that an
exhaustion (K j)∞j=1 of M is open compatible with a closed subset E of M if, for every
j = 1, 2, . . . , E ∩ K j is contained in K○j .

Lemma 2.1 Let E be a closed subset of M , satisfying the open K − Q-condition, then
there exists a regular exhaustion of M which is open compatible with E .

Proof Let (K j)∞j=1 be a regular exhaustion of M. We shall define recursively
an exhaustion (Qn)∞n=1 of M with certain properties. From the K − Q condition,
we choose a compact set Q1 , such that K1 ⊂ Q○1 and E ∩ Q1 ⊂ Q○1 . Now, we may
choose a compact set Q2 , such that K1 ∪ Q1 ⊂ Q○2 and E ∩ Q2 ⊂ Q○2 . Suppose we
have selected compact sets Q1 , . . . , Qn , such that K j ∪ Q j ⊂ Q○j+1 and E ∩ Q j+1 ⊂ Q○j+1 ,
for j = 1, . . . , n − 1. We may choose a compact set Qn+1 , such that Kn ∪ Qn ⊂ Q○n+1
and E ∩ Qn+1 ⊂ Q○n+1 . Thus, we have inductively constructed an exhaustion (Qn)∞n=1
such that, for each n, Kn ∪ Qn ⊂ Q○n+1 and E ∩ Qn ⊂ Q○n . We denote by Q c

n ,∗ the
connected component of M∗/Qn that contains the point ∗ and put Ln = M/Q c

n ,∗.
Then, (Ln)∞n=1 is a regular exhaustion of M (see [5, p. 224]). Furthermore, for each
n, E ∩ ∂Qn = ∅, so E ∩ Ln ⊂ L○n . Thus, the exhaustion (Ln)∞n=1 is open compatible
with E. ∎

A closed set E ⊂ M is said to be a set of Runge–Carleman approximation for an
operator P, if for every open neighborhood U of E , every section f ∈ C∞(U , ϑ), with
P f = 0, and every positive continuous function ε on E , there is a global section u ∈
C∞(M , ϑ), with Pu = 0, such that ∣u − f ∣ < ε on E .

Theorem 2.2 Let P be an elliptic operator on M with analytic coefficients. Let E be a
closed subset of M satisfying the open K − Q condition, with M∗/E connected. Then, E
is a set of Runge–Carleman approximation for the operator P.
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Proof By Lemma 2.1, let (Ln)∞n=1 be a regular exhaustion of M which is open
compatible with E and set L0 = ∅. Fix an open neighborhood U of E , and a section
f ∈ C∞(U , ϑ), with P f = 0. Consider ε a continuous and positive function on E ,
which we may assume is continuous and positive on all of M, and set

εn =min{ε(x) ∶ x ∈ Ln} > 0, n = 1, 2, . . . .

Now, we construct recursively a sequence (un)∞n=0 of sections un ∈ C∞(M , ϑ) such
that ∣un − un−1∣ < εn/2n on Ln−1 and ∣un − f ∣ < εn/2n on E ∩ (Ln/Ln−1). Consider
u0 = 0. For n = 1, we only need to check the second condition on u1, because the first
condition is void. Note that U1 = L○1 ∩U is an open set containing E ∩ L1 such that
M/U1 has no compact connected components and P f = 0 on U1. By the Malgrange–
Lax theorem (see [5]), there exists a section u1 ∈ C∞(M , ϑ) with Pu1 = 0, such that
∣u1 − f ∣ < ε1/2 on E ∩ L1 .

Assume now that we have fixed (un)N−1
n=1 satisfying the required conditions. Con-

sider two open sets VN , WN such that

E ∩ (LN/LN−1) ⊂ VN ⊂ (U ∩ (LN/LN−1)),
LN−1 ⊂WN ,
VN ∩WN = ∅.

Because M∗/E is connected and (Ln)∞n=1 is a regular exhaustion, without loss of gen-
erality, we can assume that M/(VN ∪WN) has no compact connected components.

Define g ∈ C∞(G , ϑ), by putting g = uN−1 on WN and g = f on VN . Set

K = LN−1 ∪ (E ∩ (LN/LN−1))

and UN = (VN ∪Wn) ∩U . Then, Pg = 0 on UN and M/UN has no compact con-
nected components. By the Malgrange–Lax theorem again, there exists a section
uN ∈ C∞(M , ϑ) with PuN = 0, such that

max
x∈K

∣uN(x) − g(x)∣ < εN

2N .

The section uN has the required properties, which completes the inductive construc-
tion of the sequence (un)∞n=0 .

For every x ∈ M , the sequence {un(x)}∞n=0 is Cauchy, and hence u converges
pointwise to a section ϑ . Let u(x) = limn→∞ un(x) for every x ∈ M. Because, for
every natural number j, the sequence (un)∞n= j converges to u in C∞(L○j , ϑ) and
Pun = 0 on M , we have that u ∈ C∞(L○j , ϑ) and also Pu = 0 on L○j . Because this holds
for every j = 1, 2, . . . , we have that u ∈ C∞(M , ϑ) and Pu = 0.

To finish, we show that ∣u(x) − f (x)∣ ≤ ε(x) on E. Fix x ∈ E . Then, there exists a
unique natural number n = n(x), such that x ∈ Ln/Ln−1 . We have

∣u(x) − f (x)∣ ≤ ∣u(x) − un(x)∣ + ∣un(x) − f (x)∣

≤ (
∞

∑
k=n
∣uk+1(x) − uk(x)∣) +

εn

2n ≤
∞

∑
k=n

εk

2k <
εn

2n−1 ≤
ε(x)
2n−1 ≤ ε(x).

∎
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Corollary 2.3 Let E be a subset of M that is a union of a locally finite family of disjoint
continua, and suppose that M∗/E is connected. Then, E is a set of Runge–Carleman
approximation.

Proof Notice that E is closed, because it is the union of a locally finite family of
closed sets. We only need to show that E satisfies the open K − Q condition. For this,
fix a compact set K in M. We denote the connected components of E by E j, and we may
assume that they are ordered, so that E1 , . . . , Em are the connected components that
meet K . Set L = K ∪ E1 ∪⋯∪ Em , and let Q be a compact neighborhood of L disjoint
from the closed set Em+1 ∪ Em+2 ∪⋯. Then, Q satisfies the required conditions. ∎

3 Proof of Theorem 1.2

Lemma 3.1 Let U be a proper open subset of a manifold M and Q and K be disjoint
compact subsets of ∂U . Then, for each ε > 0, there exist δ > 0 and an open set Vδ that is
a δ-neighborhood of K in M disjoint from Q such that

μ(B(p, r) ∩U ∩ Vδ)
μ(B(p, r) ∩U)

< ε, ∀p ∈ Q , ∀r > 0.

Furthermore, δ can be chosen, so that B(p, r) ∩ Vδ = ∅, for all p ∈ Q and r < δ.

Proof Set r0 = d(Q , K)/2 > 0. We claim that

ρ ∶=min
p∈Q

μ(B(p, r0) ∩U) > 0.(3.1)

Assume that this was not the case and we have that ρ = 0. Then, by the compactness
of Q, we could find a sequence of points (pn)∞n=1 ⊂ Q convergent to a point p0 ∈ Q,
so that μ(B(pn , r0) ∩U) < 1/n and d(pn , p0) < r0/2. But then, we would have that
μ(B(p0 , r0/2) ∩U) ≤ μ(B(pn , r0) ∩U) < 1/n for every natural number n. Hence,
μ(B(p0 , r0/2) ∩U) = 0, contradicting the fact that μ has positive measure on open
sets. Thus, equation (3.1) holds.

Consider Vδ a δ-neighborhood of K in M with δ < r0 and μ(U ∩ Vδ) < ερ. It is
clear that, for such δ, we have that Vδ and Q are disjoint and B(p, r) ∩ Vδ = ∅, for
all p ∈ Q and all r < r0 . Thus, the last statement of the lemma is obvious by choosing
δ = r0. Furthermore, for any r ≥ r0, we have that

μ(B(p, r) ∩U ∩ Vδ)
μ(B(p, r) ∩U)

≤ μ(U ∩ Vδ)
μ(B(p, r) ∩U)

< ερ
μ(B(p, r) ∩U)

≤ ε. ∎

The following lemma was stated in [2, Lemma 4] for volume measure on a
Riemannian manifold, but the same proof yields the following more general version.

Lemma 3.2 Let U be a proper open subset of a manifold M and C a connected compact
subset of U with μ(C) = 0. Then, for each ε > 0, there is a connected open neighborhood
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R of C in U such that

μ(R ∩ B(p, r))
μ(U ∩ B(p, r))

< ε,

for every p ∈ ∂U and every r > 0.

We recall that an open subset W of a real manifold M is an open parametric ball
if there is a chart φ ∶W → B, where B is an open ball in the euclidean space and
φ(W) = B. A subset H ⊂ M is a closed parametric ball if there is a parametric ball
φ ∶W → B and a closed ball B ⊂ B, such that H = φ−1(B).

Lemma 3.3 Under the hypotheses of Theorem 1.2, there exists a set F , with S ⊂ F ⊂ ∂U
and ν(∂U/F) = 0, and u ∈ C(U , ξ) on U , such that, for every p ∈ F, u(x) → φ(p), as
x → p outside a set of μ-density 0 at p relative to U .

Proof In the following proof, we use the symbol ∪̇ to denote the disjoint union. We
start by showing that there exists a subset F ⊂ ∂U containing S of the form

F = S∪̇ (∪̇∞n=1Qn) ,

with Qn compact, so that the restriction of φ is continuous on Qn and ν(∂U/F) = 0.
First, we assume that ν(∂U/S) < +∞. By Lusin’s theorem (see [3] and [8, Theorem

2]), there exists a compact set Q1 in ∂U/S such that ν ((∂U/S)/Q1) < 2−1 and the
restriction of φ to Q1 is continuous. Now, again by Lusin’s theorem, we can find a
compact set Q2 in (∂U/S)/Q1 with ν(((∂U/S)/Q1)/Q2) < 2−2, so that the restriction
of φ to Q1∪̇Q2 is continuous. By induction, we can construct a sequence of compact
sets (Qn)∞n=1, so that Qn ⊂ (∂U/S)/ ∪n−1

j=1 Q j , ν((∂U/S)/ ∪n
j=1 Q j) < 2−n , and the

restriction of φ to Q1∪̇⋯∪̇Qn is continuous for n = 1, 2, 3, . . .. We set

F = S∪̇ (∪̇∞n=1Qn) .

It is obvious that (Qn)∞n=1 is a family of pairwise disjoint compact sets and
ν(∂U/F) = 0.

If ν(∂U/S) is not finite, by the σ-finiteness of the measure ν, there exists a pairwise
disjoint sequence of measurable sets (R l)∞l=1 with ν(R l) < +∞ and ∂U/S = ⋃̇∞l=1R l . By
the previous argument applied to the section φ restricted to the set R l , we can find a
pairwise disjoint sequence of compact sets (Qn , l)∞n=1 of R l , so that the restriction of
φ is continuous on Qn , l and ν(R l /∪̇∞n=1Qn , l) = 0. Then,

F = S∪̇ (∪̇∞n=1∪̇∞l=1Qn , l)

satisfies the desired result.
We now begin to extend the section φ. For this, we shall construct inductively a

sequence of increasing sets (En)∞n=1 and a sequence of sections ( fn)∞n=1. We can write
S = ∪∞n=1Sn and F = S∪̇ (∪̇∞n=1Qn), with Sn and Qn compact, Sn increasing, and Qn
pairwise disjoint, so that the restriction φn of φ to Fn = S ∪ Q1∪̇⋯∪̇Qn is continuous.
By Lemma 3.1, for l = 2, 3, . . . , there is an open δ1, l -neighborhood V1, l of Q l in M
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such that
μ(B(p, r) ∩U ∩ V1, l)

μ(B(p, r) ∩U)
< 1

2l , ∀p ∈ Q1 ∪ S1 , ∀r ≤ 1,

μ(B(p, r) ∩U ∩ V1, l) = 0, ∀p ∈ Q1 ∪ S1 , ∀r < δ1, l .
(3.2)

By the compactness of Q l , the sets V1, l can be chosen to be a finite union of open
parametric balls in M. Let

E1 = U/ ∪∞l=2 V1, l .

Because S ∪ Q1 is closed in E1 ∪ S ∪ Q1 , by the Tietze extension theorem, we can
extend the section φ1 to a continuous section f1 on E1 ∪ S ∪ Q1 .

Set E0 = ∅, and assume that, for j = 1, . . . , n, we have fixed positive constants δ j, l <
1/ j, for l ≥ j + 1, sets E j = U/ ∪∞l= j+1 Vj, l with Vj, l being an open δ j, l -neighborhood
of Q l in M/E j that is a finite union of open parametric balls in M, and sections f j
continuous on E j ∪ F j such that

f j(x) = {
f j−1(x), x ∈ E j−1 ,
φ j(x) = φ(x), x ∈ F j ,

and
μ(B(p, r) ∩U ∩ Vj, l)

μ(B(p, r) ∩U)
< 1

2l , ∀p ∈ ∪ j
k=1(Sk ∪ Qk), ∀r ≤ 1,

μ(B(p, r) ∩U ∩ Vj, l) = 0, ∀p ∈ ∪ j
k=1(Sk ∪ Qk), ∀r < δ j, l ,

(3.3)

for j = 1, . . . , n and l = j + 1, j + 2, . . .. For the step n + 1, using Lemma 3.1 again, we
have that, for every natural number l > n + 1, there is an open δn+1, l -neighborhood
Vn+1, l of Q l in M/En such that

μ(B(p, r) ∩U ∩ Vn+1, l)
μ(B(p, r) ∩U)

< 1
2l , ∀p ∈ ∪n+1

k=1(Sk ∪ Qk), ∀r ≤ 1,

μ(B(p, r) ∩U ∩ Vn+1, l) = 0, ∀p ∈ ∪n+1
k=1(Sk ∪ Qk), ∀r < δn+1, l .

Without loss of generality, we can assume that δn+1, l < 1/(n + 1), and, by the compact-
ness of Q l , the sets Vn+1, l can be chosen to be a finite union of open parametric balls
in M. Set

En+1 = U/ ∪∞l=n+2 Vn+1, l .

Note that En ∪ Fn+1 is relatively closed in En+1 ∪ Fn+1. Furthermore, the section
fn+1 defined as fn+1 = fn on En and fn+1 = φn+1 = φ on Fn+1 is continuous on the set
En ∪ Fn+1, because En ∩ Vn ,n+1 = ∅. Therefore, by the Tietze extension theorem, we
can extend the section fn+1 to a continuous section on En+1 ∪ Fn+1 that we denote in
the same way.

Note also that ∪∞n=1En = U . Indeed, if x ∈ U , because U is open, there exists rx > 0,
so that B(x , rx) ⊂ U . Fix a natural number l0, so that 1

l0
< rx . Then, for every l > l0,

because Vn , l is a 1
l -neighborhood of Q l ⊂ ∂U in M, we have that x ∉ Vn , l for every
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natural number n. Thus, for n ≥ l0, we have that x ∈ En = U/ ∪∞l=n+1 Vn , l . Then, the
section u, defined on U as u(x) = fn(x) if x ∈ En , is continuous at x . Because x is
arbitrary, we have the u is continuous on U.

There only remains to show that, for every p ∈ F, u(x) → φ(p), as x → p outside
a set of μ-density 0 at p relative to U . For this, fix p ∈ F . Then, we can find a natural
number n, so that p ∈ Fn . Note that fn is continuous on En ∪ Fn , and we have defined
u = fn on En and fn = φn = φ on Fn . Therefore, for every p ∈ F, u(x) → φ(p), as x →
p in En . By construction, U/En has μ-density 0 at p relative to U . ∎

Before we continue, we introduce some terminology. A compact subset K ⊂ M
is a parametric Mergelyan set if there is an open parametric ball φ ∶W → B, with
K ⊂W , and a compact set Q ⊂ B, such that B/Q is connected and K = φ−1(Q). A
subset E of a manifold M is a Mergelyan chaplet, which we simply call a chaplet, if
it is the countable disjoint union of a (possibly infinite) locally finite family E j of
pairwise disjoint parametric Mergelyan sets E j . We denote the chaplet by E = (E j) j .
By Corollary 2.3, a chaplet is a Runge–Carleman set.

Proof of Theorem 1.2 By Lemma 3.3, there exists a set F , with S ⊂ F ⊂ ∂U and
ν(∂U/F) = 0, and u ∈ C(U , ξ) on U , such that, for every p ∈ F, u(x) → φ(p), as
x → p outside a set of μ-density 0 at p relative to U .

Let S = {S l}∞l=1 be a locally finite family of smoothly bounded compact parametric
balls S l in U such that U = ∪l S0

l and ∣S l ∣ < dist(S l , ∂U), where ∣S l ∣ denotes the
diameter of S l . Assume also that none of these balls contains another. We may also
assume that the balls become smaller as we approach ∂U , so that the oscillation
ω l = ω l(u) of u on S l is less than 1/l , for each l . Let s l = ∂S l for l ∈ N. Because μ
is absolutely continuous, Lemma 3.2 tells us that there is an open neighborhood R j of
s j in U such that

μ(R j ∩ B(p, r))
μ(U ∩ B(p, r))

< 1
2 j , ∀ p ∈ ∂U , ∀ r > 0.(3.4)

Without loss of generality, we may assume that each R j is a smoothly bounded
shell. That is, that in a local coordinate system, R j = {x ∶ 0 < ρ j < ∥x∥ < 1}. By the local
finiteness of S, we may also assume that if s j ∩ s l = ∅, then R j ∩ R l = ∅.

Consider the closed set A = U/⋃∞k=1 Rk . Then, denoting by H j = S0
j ∩ A and A j =

H j/⋃ j−1
k=1 S0

k , we have that

A =
∞

⋃
j=1
(S0

j ∩ A) =
∞

⋃
j=1

H j = ⋃̇
∞

j=1 (H j/
j−1
⋃
k=1

S0
k) = ⋃̇

∞

j=1A j .

For each j, the set H j is a parametric Mergelyan set in S0
j and the family (H j)∞j=1 is

locally finite, but they may not be disjoint. However, the (A j)∞j=1 form a locally finite
family of disjoint compacta, and hence A = (A j)∞j=1 is a Mergelyan chaplet.

Let us fix now a continuous function ε ∶ A→ (0, 1], so that ε(x) → 0, when
x → ∂U . Because (A j)∞j=1 is a locally finite family of compacta, we may construct
a family (Vj)∞j=1 of disjoint open neighborhoods A j ⊂ Vj , j = 1, 2, . . . . For each
A j of A, we choose a point xA j ∈ A j and define a function g on V = ∪ jVj as
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g(x) = ∑ j u(xA j)χVj(x). Because the function g is constant in each connected
component Vj and P annihilates constants, we have that Pg = 0 on V.

We claim that U∗/A = ∪k Rk is connected. Choose some R j , and let R j be the
connected component of ∪k Rk containing R j . Then, R j is the union of a subfamily
of (Rk)∞k=1 . Let us show that this subfamily connects R j with ∗ in U∗. Suppose this
is not the case. Consider the sets V = ∪s l⊂R j S○l and W = ∪s l /⊂R j S○l . Both sets are open
because they are the union of open sets. Note that if sk ∩ s l = ∅, then Rk ∩ R l = ∅.
Now, for every set s l , either s l intersects some sk ⊂ R j or it is disjoint from every
sk ⊂ R j , in which case R� is disjoint from every Rk ⊂ R j . In the second case, R� cannot
be in the bounded complementary component of any Rk with Rk ⊂ R j , for then S�

would be a subset of S0
k which is forbidden. Therefore, R� and consequently S0

� lie in
the unbounded complementary component of every Rk with Rk ⊂ R j . This means that
S� ∩ Sk = ∅. We have shown that, if s� /⊂ R j , then S� ∩ Sk = ∅, for every sk ⊂ R j and
consequently V ∩W = ∅. If, as we supposed, R j is bounded in U , both V and W are
nonempty and this contradicts the assumption that U is connected. Thus, every R j is
unbounded in U . Because U∗/A = ∪ j(R j ∪ {∗}) is the union of a family of connected
sets having point ∗ in common, it follows that U∗/A is connected as claimed.

By Corollary 2.3, there exists a function φ̃ ∈ C∞(U , ϑ)with Pφ̃ = 0, such that ∣φ̃ −
g∣ < ε on A. We show now that

∣φ̃(x) − u(x)∣ → 0, as x → p ∈ ∂U , x ∈ A.(3.5)

If (xn)∞n=1 is a sequence of points in A tending to p ∈ ∂U , then (xA jn
)∞n=1 is also a

sequence of points in A tending to p ∈ ∂U , where xA jn
is the previously fixed point in

the A jn of A containing xn . Indeed, this follows automatically, because

d(xA jn
, xn) ≤ ∣A jn ∣ ≤ d(A jn , ∂U) ≤ d(xn , ∂U) → 0,

when n goes to infinity.
Furthermore,

lim sup
n→∞

∣φ̃(xn) − u(xn)∣ ≤ lim sup
n→∞

(∣φ̃(xn) − g(xn)∣ + ∣g(xn) − u(xn)∣)

≤ lim sup
n→∞

(ε(xn) + ∣u(xA jn
) − u(xn)∣)

≤ lim sup
n→∞

(ε(xn) + ω jn(u)) = 0.

We now show that A satisfies that,

μU(A, p) = lim inf
r→0

μ(B(p, r) ∩ A)
μ(B(p, r) ∩U)

= 1.(3.6)

For this, we shall show that

lim sup
r→0

μ(B(p, r) ∩ (U/A))
μ(B(p, r) ∩U) = 0.

For fixed ε > 0, consider jε , so that

∑
j≥ jε

2− j < ε.
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Consider rε > 0, so that B(p, rε) is disjoint from the neighborhoods R j of the sets
s j for j ≤ jε . Then, for all r < rε , because U/A = ∪ jR j , we have that

μ(B(p, r) ∩ (U/A))
μ(B(p, r) ∩U) =

μ(B(p, r) ∩ (∪ jR j))
μ(B(p, r) ∩U)

≤ ∑
j> jε

μ(B(p, r) ∩ R j)
μ(B(p, r) ∩U)

≤ ∑
j> jε

2− j < ε. (by (3.4))

Thus, the μ-density of U/A relative to U at p is at most ε. Because p and ε are arbitrary,
this proves (3.6).

Note that the function u has all the properties desired in the theorem, except that
of satisfying the differential equation Pu = 0. The function φ̃ does satisfy the equation
Pφ̃ = 0 and also satisfies the desired properties, because of (3.5) and (3.6). ∎
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