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Abstract

For a partially multiplicative quandle (PMQ) Q we consider the topological monoid
H̊M(Q) of Hurwitz spaces of configurations in the plane with local monodromies in
Q. We compute the group completion of H̊M(Q): it is the product of the (discrete)
enveloping group G(Q) with a component of the double loop space of the relative
Hurwitz space Hur+([0, 1]2, ∂[0, 1]2;Q, G)1; here G is any group giving rise, together
with Q, to a PMQ–group pair. Under the additional assumption that Q is finite and
rationally Poincaré and that G is finite, we compute the rational cohomology ring of
Hur+([0, 1]2, ∂[0, 1]2;Q, G)1.
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1. Introduction

In [Bia21, Section 2] we introduced the algebraic notion of partially multiplicative quandle (PMQ)
and the related notion of PMQ–group pair: roughly speaking, a PMQ is a set endowed with two
binary operations, called conjugation and product (the second being partially defined), subject
to axioms capturing the usual interrelations between conjugation and product in a group; and a
PMQ–group pair is a pair of a PMQ Q and a group G, together with a map of PMQs Q → G and
an action of G on Q, satisfying axioms resembling the case in which Q is a conjugation-invariant
subset of G. In [Bia23a, Section 3] we defined a Hurwitz–Ran space Hur(X ,Y;Q, G) associated
with a nice couple (X ,Y) of subspaces Y ⊆ X ⊆ H of the closed upper half-plane in C and with
a PMQ–group pair (Q, G). In the case Y = ∅ the group G plays no essential role and we can
write Hur(X ;Q) for the Hurwitz space: the reader may think of this as the absolute situation,
whereas the general case corresponds to the relative situation.

In this article, for a PMQ Q, we introduce a topological monoid H̊M(Q) arising from Hurwitz
spaces: an element of H̊M(Q) is a finite configuration P of points in a rectangle (0, t)× (0, 1) of
variable width t ≥ 0, together with a Q-valued monodromy, defined on certain loops of C \ P .
The monoid product is defined according to a well-established principle, relying on the fact that
a rectangle of width t+ t′ can be regarded as the union of two rectangles of widths t and t′ joined
along a vertical side. If Q is a PMQ with trivial product, then H̊M(Q) recovers the monoid of
Hurwitz spaces appearing in [EVW16, Subsection 2.6] and [RW19, Subsection 4.2].

1.1 Statement of results
Throughout the article we fix a PMQ–group pair (Q, G) = (Q, G, e, r) (see [Bia21, Definition
2.15]) and assume that G is generated by the image of the map of PMQs e : Q → G.

In addition to the aforementioned topological monoid H̊M(Q), we will introduce in this
article an auxiliary topological monoid H̆M(Q, G). The two main theorems of the article, that
we briefly describe in this subsection, show together that a component of the group completion
of H̊M(Q) is equivalent to a component of the double loop space of a certain relative Hurwitz
space Hur+([0, 1]2, ∂[0, 1]2;Q, G)1.

For present and future convenience of the reader, we recall that the index ‘+’ selects the
subspace of configurations with non-empty support in a Hurwitz space; the index ‘1’ selects the
subspace of configurations with trivial total monodromy 1 ∈ G; an index given by a finite subset
of C, such as ‘∂̆�̆lr’, selects configurations whose support contains the given finite subset; and
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the index ‘G,Gop’ refers to a quotient of another Hurwitz space by a certain free action of the
group G×Gop. This notation is introduced in detail in [Bia23a].

In favourable cases, the rational cohomology ring of Hur+([0, 1]2, ∂[0, 1]2;Q, G)1 can be com-
puted explicitly solely in terms of the PMQ Q and one can then use standard rational homotopy
theory to access H∗(Ω2

0 Hur+([0, 1]2, ∂[0, 1]2;Q, G)1; Q), which by the group completion theorem
is the ring of stable rational cohomology classes of components of H̊M(Q).

The first, main result of the article is the following theorem, describing the weak homotopy
type of the bar constructions BH̊M(Q) and BH̆M(Q, G) in terms of certain relative Hurwitz
spaces. The nice couples (�̆lr, ∂̆�̆lr) and (�, ∂�) are explicitly given in Definition 2.23; for instance,
� is the closed rhombus with vertices 1/2,

√−1/2, 1/2 +
√−1 and 1 +

√−1/2.

Theorem A (Theorem 4.1). There are weak homotopy equivalences

BH̊M(Q) 	 Hur(�̆lr, ∂̆�̆lr;Q, G)G,Gop ; BH̆M(Q, G) 	 Hur(�, ∂�;Q, G)G,Gop .

Now the space Hur(�̆lr, ∂̆;Q, G)G,Gop admits the space Hur(�̆lr, ∂̆;Q, G)∂̆�̆lr,1 as a finite cov-

ering space and the latter space is weakly equivalent to H̆M+(Q, G)1. Similarly, the space
Hur+([0, 1]2, ∂[0, 1]2;Q, G)1 is weakly equivalent to a covering space of Hur(�, ∂;Q, G)G,Gop : see
§ 4.4 for more details. Passing to loop spaces and double loop spaces, we obtain a weak homotopy
equivalence

ΩBH̊M(Q) 	 G(Q)× Ω2
0 Hur+([0, 1]2, ∂[0, 1]2;Q, G)1,

where G(Q) is the (discrete) enveloping group of Q.
Under the additional assumption that G is a finite group and Q is finite and rationally

Poincaré, the second, main result of the article computes the rational cohomology ring of
Hur+([0, 1]2, ∂[0, 1]2;Q, G)1 in terms of a certain algebra A(Q), that we briefly recall after the
statement.

Theorem B (Theorem 6.1). Let (Q, G) be a PMQ–group pair with Q finite and rationally
Poincaré and with G finite. Then there is an isomorphism of rings

H∗(Hur+([0, 1]2, ∂[0, 1]2;Q, G)1) ; Q) ∼= A(Q).

We recall that a PMQ is rationally Poincaré (or Q-Poincaré) if it is locally finite and
each component of Hur+((0, 1)2;Q) is a rational homology manifold [Bia23a, Definition 9.4].
The graded commutative Q-algebra A(Q) is defined as the sub-algebra of conjugation-invariant
elements of Q[Q], the rational PMQ-algebra associated with the PMQ Q (see [Bia21, Definition
4.26]). When Q is Poincaré we can consider Q[Q] as a graded Q-algebra, by putting the gen-
erator [[a]] ∈ Q[Q] in degree equal to the dimension of Hur+((0, 1)2;Q)a, for a ∈ Q. The degree
of [[a]] agrees, in fact, with 2h(a), where h : Q → N is the intrinsic norm of Q (see [Bia23a,
Proposition 9.7]). This makes also A(Q) into a graded Q-algebra and then Theorem B gives an
isomorphism of graded Q-algebras.

The rational cohomology ring of Ω0BH̊M(Q), i.e. the stable rational cohomology ring of
the components of H̊M(Q), can then in principle be computed by ‘looping twice’ the ratio-
nal cohomology of the space Hur+([0, 1]2, ∂[0, 1]2;Q, G)1, using that the latter space is simply
connected. More precisely, this requires the computation of a minimal Sullivan model for the
space Hur+([0, 1]2, ∂[0, 1]2;Q, G)1. We conclude the article with an explicit computation, dealing
with the case in which Q is a finite PMQ with trivial product; this recovers, in particular,
[RW19, Corollary 5.4].
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1.2 Outline of the article
In § 2 we introduce the topological monoids H̊M(Q) and H̆M(Q, G) and compute the
associated discrete monoids of path components π0(H̊M(Q)) and π0(H̆M(Q, G)), see
Theorems 2.15 and 2.19.

In § 3 we recall the simplicial space B•M associated with a unital, topological monoid M
and we distinguish between ‘bar construction’ BM and ‘thin bar construction’ B̄M , i.e. the
geometric realisations of B•M as a semisimplicial space and, respectively, a simplicial space. We
prove in Theorem 3.4 a homotopy equivalence H̆M+(Q, G) 	 ΩBH̆M(Q, G) and check that the
group completion theorem [MS76, FM94] applies to the topological monoid H̊M(Q).

The main result of § 4 is Theorem 4.1, whose direct consequence is that the bar construc-
tions BH̊M(Q) and BH̆M(Q, G) admit covering spaces that are homotopy equivalent to the
Hurwitz spaces H̆M+(Q, G)1 and Hur+([0, 1]2, ∂[0, 1]2;Q, G)1, respectively. The main applica-
tion is Theorem 4.22, computing the homology of the group completion of H̊M(Q) as the tensor
product of the group ring Z[G(Q)] and the homology of a component of the double loop space
Ω2 Hur+([0, 1]2, ∂[0, 1]2;Q, G)1; here G(Q) is the enveloping group of Q.

In § 5 we replace Hur+([0, 1]2, ∂[0, 1]2;Q, G)1 by a smaller, homotopy equivalent subspace
B(Q+, G), assuming that Q is augmented. Assuming further that Q is a normed PMQ, we
prove that B(Q+, G) admits a norm filtration, whose strata are fibre bundles over the space
BG := Hur(∂[0, 1]2;G)0;1; the space BG is, in turn, shown to be an Eilenberg–MacLane space of
type K(G, 1).

In § 6 we assume that Q is a finite and Q-Poincaré PMQ and G is a finite group and compute
the rational cohomology ring of B(Q+, G), using the Leray spectral sequence associated with the
filtration on B(Q+, G): Theorem 6.1 identifies H∗(B(Q+, G); Q) with the ring A(Q) ⊂ Q[Q] of
conjugation G(Q)-invariants of the PMQ-ring Q[Q]. As an application, we compute the stable
rational cohomology of classical Hurwitz spaces, recovering, in particular, [RW19, Corollary 5.4].

Throughout the article we make heavy use of the results of [Bia21, Sections 2–6] and [Bia23a,
Sections 2–6]: we cite every time which specific fact we are needing, so that the reader does not
need to be familiar with all details of [Bia21] and [Bia23a].

1.3 Motivation
This is the third article in a series about Hurwitz spaces. Our main motivation to study gen-
eralised Hurwitz spaces comes from the relation between Hurwitz spaces and moduli spaces of
Riemann surfaces given by considering the family of PMQs S

geo
d , for d ≥ 2: Theorems A and B

are applied in [Bia23b] to give an alternative proof of the Mumford conjecture on the stable
rational cohomology of moduli spaces of Riemann surfaces, originally proved by Madsen and
Weiss [MW07].

Moreover, this article shows how generalised Hurwitz spaces can be useful also in the study
of classical Hurwitz spaces as topological monoids: the (double) delooping of the classical monoid
of Hurwitz spaces is described by Theorem A as a relative Hurwitz space.

2. Hurwitz spaces as topological monoids

We start by fixing some conventions to simplify the notation. We fix a PMQ–group pair
(Q, G) = (Q, G, e, r) throughout the article; recall that e : Q → G is a map of PMQs and r : G→
AutPMQ(Q)op is a map of groups, giving a right action of G on Q, see [Bia21, Definition 2.15].
We assume in the entire article that the image of e generates G as a group. Two examples that
the reader may keep in mind are as follows:
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• G is a group, Q+ ⊂ G is a conjugation-invariant subset and Q = Q+ � {1Q} with the adjoined
element 1Q being the unit of Q; we put the trivial product on Q, we define e by 1Q → 1G
and Q+ ↪→ G; we let the action of G fix 1Q and conjugate elements of Q+;

• G = Sd is the dth symmetric group for some d ≥ 2, Q = S
geo
d is the geodesic PMQ from

[Bia21, Subsection 7.1], obtained from Sd by restricting the product, e is the identity of the
common underlying set and Sd acts on S

geo
d by usual conjugation of permutations.

We usually denote by C = (X ,Y) a nice couple, i.e. a couple of semialgebraic subspaces of
the closed upper half-plane H ⊂ C, with Y closed in X : see [Bia23a, Definition 2.3]. In the entire
article, we abbreviate the Hurwitz space Hur(C;Q, G), defined in [Bia23a, Section 3], as Hur(C);
in particular, if Y = ∅, we abbreviate Hur(X ;Q) as Hur(X ).

Recall from [Bia23a, Definition 2.9] that if C = (X ,Y) is a nice couple and if P ⊂ X is a
finite subset, we can define a PMQ QC(P ) as the subset of G(P ) := π1(C \ P, ∗) of conjugacy
classes of small simple loops spinning clockwise around exactly one point of P among those
lying in X \ Y (together with the neutral element 1G(P ); the inclusion QC(P ) ⊆ G(P ) and the
conjugation action of G(P ) on QC(P ) make (QC(P ),G(P )) into a PMQ–group pair.

Notation 2.1. Let Y ⊂ H be closed semialgebraic subspace. Then for every semialgebraic sub-
space X ⊂ H we obtain a nice couple C = (X ,Y) by setting Y = Y ∩ X ; for all finite subsets
P ⊂ X we then have that QC(P ) and Q(H,Y)(P ) are the same subset of G(P ).

We will abuse notation and abbreviate QC(P ) as Q(P ) also in certain situations in which
there may be some ambiguity on the nice couple C we are considering; we leverage on the fact
that all nice couples C that might reasonably be involved in the argument are obtained as above,
for a fixed and evident subspace Y ⊂ H, so that the fundamental PMQ QC(P ) is unambiguously
identified as a subset of G(P ).

Notation 2.2. We usually denote by P = {z1, . . . , zk} a finite collection of distinct points in
H, for some k ≥ 0. If a nice couple C = (X ,Y) is under consideration, we will usually assume
P ⊂ X and that there is 0 ≤ l ≤ k such that z1, . . . , zl are precisely the points of P lying in
X \ Y. We let ∗ = −√−1 ∈ C be our preferred choice of basepoint. If f1, . . . , fk is an admissible
generating set of G(P ) = π1(C \ P, ∗) (see [Bia23a, Definition 2.8]), then we usually assume that
fi is represented by a small simple loop spinning clockwise around zi.

A configuration c ∈ Hur(C;Q, G) is usually presented as (P, ψ, ϕ), with P as above and
(ψ,ϕ) : (Q(P ),G(P ))→ (Q, G) a map of PMQ–group pairs. Similarly, a configuration c ∈
Hur(X ;Q) is usually presented as (P, ψ), with P as above and ψ : Q(P )→ Q a map of PMQs.

2.1 Definition of the Hurwitz–Moore spaces
We first introduce notation for rectangles and horizontal strips in the plane.

Notation 2.3. For t ≥ 0 we denote by Rt ⊂ H the standard closed rectangle [0, t]× [0, 1] of width
t and height 1; we also denote R∞ = [0,∞)× [0, 1] the half-infinite, closed strip and by RR =
(−∞,+∞)× [0, 1] the infinite, closed strip.

For 0 ≤ t ≤ +∞ we denote by R̊t = (0, t)× (0, 1) the standard open rectangle (or half-infinite
strip) of width t and height 1 and by R̊R = (−∞,+∞)× (0, 1) the infinite open strip. Also let
∂Rt = Rt \ R̊t for all 0 ≤ t ≤ ∞ and ∂RR = RR \ R̊R, denote the boundary of Rt and RR,
respectively. We use the abbreviations (Rt, ∂) and (RR, ∂) for the nice couples (Rt, ∂Rt) and
(RR, ∂RR), respectively.

For 0 ≤ t ≤ +∞ we denote by R̆t = (0, t)× [0, 1] the standard, vertically closed rectangle
(or vertically closed half-infinite strip) of width t and height 1 and by ∂̆R̆t = (0, t)× {0, 1} ⊂ R̆t
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Figure 1. Left: the rectangle R̊1/2. Right: the nice couple (R̆3/4, ∂̆R̆3/4).

the horizontal boundary of R̆. Similarly, we denote R̆R = RR and ∂̆R̆R = ∂R̆R = (−∞,+∞)×
{0, 1}. We use the abbreviations (R̆t, ∂̆) and (R̆R, ∂̆) for the nice couples (R̆t, ∂̆R̆t) and
(R̆R; ∂̆R̆R), respectively.

Whenever t = 1 we drop it from the notation, so we abbreviateR1 asR, R̊1 as R̊ and R̆1 as R̆.
See Figure 1.

Note that R̆0 = R̊0 = ∅. For t ≤ t′ the identity of C restricts to an inclusion R̊t ⊂ R̊t′ and
induces an inclusion of Hurwitz spaces Hur(R̊t) ⊆ Hur(R̊t′).
Definition 2.4. The open Hurwitz–Moore space associated with the PMQ Q, denoted by
H̊M(Q) and abbreviated as H̊M in the entire article, is the subspace of [0,∞)×Hur(R̊∞) con-
taining couples (t, c) such that c ∈ Hur(R̊∞) is a configuration supported on R̊t, i.e. c takes the
form (P, ψ) with P ⊂ R̊t.

Similarly, the vertically closed Hurwitz–Moore space associated with (Q, G), denoted by
H̆M(Q, G) and abbreviated as H̆M in the entire article, is the subspace of [0,∞)×Hur(R̆∞, ∂̆)
containing couples (t, c) such that c is supported on R̆t, i.e. c = (P, ψ, ϕ) with P ⊂ R̆t.

Note that, for fixed t ≥ 0, the slice of H̊M containing couples of the form (t, c) is homeo-
morphic to Hur(R̊t): thus, H̊M, as a set, is the disjoint union

⊔
t≥0 Hur(R̊t). Similarly, H̆M is in

natural bijection with the set
⊔
t≥0 Hur(R̆t, ∂̆).

Notation 2.5. For a nice couple C we denote by (∅,1,1) ∈ Hur(C;Q, G) the unique configuration
supported on the empty set, i.e. of the form (P, ψ, ϕ) with P = ∅. The complement of {(∅,1,1)}
is denoted by Hur+(C;Q, G).

Note that (∅,1,1) is the only point in the spaces Hur(R̊0) and Hur(R̆0, ∂̆), since
R̊0 = R̆0 = ∅. In other words, we have Hur+(R̊0) = Hur+(R̆0, ∂̆) = ∅.
Notation 2.6. We write H̆M as the disjoint union [0,∞)× {(∅,1,1)} � H̆M+, where we set

H̆M+ : = ([0,∞)×Hur+(R̆∞, ∂̆)) ∩ H̆M ⊂ [0,∞)×Hur(R̆∞, ∂̆).

By the previous discussion, every couple (t, c) ∈ H̆M+ satisfies t > 0.

Lemma 2.7. The inclusions Hur(R̊) ⊂ H̊M and Hur(R̆, ∂̆) ⊂ H̆M are homotopy equivalences.

Proof. The proof is almost identical in the two cases, so we will focus on the second case, which
is slightly more difficult.
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For s > 0 the map Λs : C→ C given by Λs(z) = (s�(z),�(z)) is a morphism of nice couples
Λs : (R̆∞, ∂̆)→ (R̆∞, ∂̆). Putting all values of s ≥ 0 together we obtain a continuous map Λ: C×
(0,∞)→ C; by [Bia23a, Proposition 4.4] we obtain a continuous map

Λ∗ : Hur(R̆∞, ∂̆)× (0,∞)→ Hur(R̆∞, ∂̆).

Define Λ̃ : (0,∞)×Hur(R̆∞, ∂̆)× (0,∞)→ (0,∞)×Hur(R̆∞, ∂̆) by the formula Λ̃(t, c; s) =
(ts,Λ∗(c, s)). We are now able to define a homotopy HΛ : H̆M× [0, 1]→ H̆M by setting

HΛ(t, c; s) =

{
(ts+ 1− s, Λ̃(c, (ts+ 1− s)/t)) for all t > 0 and c ∈ H̆M+;

(ts+ 1− s, (∅,1,1)) for c = (∅,1,1) and all t ≥ 0.

Note that HΛ((1, c), s) = (1, c) for all c ∈ Hur(R̆, ∂̆), including (∅,1,1) and all 0 ≤ s ≤ 1; more-
over, the map H(−; 1) is the identity of H̆M, whereas the map HΛ(−; 0) has image inside
Hur(R̆, ∂̆). �

The reason for the name Moore in Definition 2.4 is that, as we will see in § 2.2, there is a
natural structure of topological monoid on both H̊M and H̆M. In contrast, Hur(R̊) and Hur(R̆)
are only endowed with the structure of E1-algebras in a natural way. The spaces H̊M and H̆M
play the role of the strictification of the E1-algebras Hur(R̊) and Hur(R̆) to actual topological
monoids, just as the Moore loop space ΩMooreX of a pointed topological space X is a strictly
associative and strictly unital replacement of the E1-algebra given by the usual loop space ΩX.

2.2 Topological monoid structure
In this subsection we define a topological monoid structure on H̊M and H̆M. For H̊M the basic idea
is to juxtapose two configurations c ∈ Hur(R̊t) and c′ ∈ Hur(R̊t′) to obtain a larger configuration
supported on the rectangle R̊t+t′ ; for H̆M the idea is similar, but using vertically closed rectangles
and juxtaposing also their horizontal boundaries.

In the entire subsection we focus on H̊M and write in parentheses the changes needed in
the analogous discussion about H̆M. Whenever we write Q(P ) for a subset P ⊂ H, we use
Notation 2.1 with Y = ∅ (respectively, Y = ∂̆R̆R, see Notation 2.3).

Notation 2.8. For t, t′ ≥ 0 we denote by R̊t′ + t the space (t, t+ t′)× (0, 1). Similarly, we denote
by (R̆t′ , ∂̆) + t the nice couple ((t, t+ t′)× [0, 1], (t, t+ t′)× {0, 1}), compare with Notation 2.3.

For a finite subset P ⊂ H as in Notation 2.2 and for t ≥ 0 we denote by P + t the subset
{z1 + t, . . . , zk + t} ⊂ H.

Note that for P, t, t′ as in Notation 2.8, if P ⊂ R̊t′ (respectively P ⊂ R̆t′), then P + t ⊂
R̊t′ + t ⊂ R̊t+t′ (respectively, P + t ⊂ R̆t′ + t ⊂ R̆t+t′).
Definition 2.9 (Definition 6.7 in [Bia23a]). For t ∈ R we define a homeomorphism τt : (C, ∗)→
(C, ∗) by

τt(z) =

⎧⎪⎨⎪⎩
z if �(z) ≤ −1,

z + t if �(z) ≥ 0,

z + (�(z) + 1)t if −1 ≤ �(z) ≤ 0.

Note that for t, t′ ≥ 0 we have τt(R̊t′) = R̊t′ + t (respectively, τt(R̆t′ , ∂̆) = (R̆t′ , ∂̆) + t).

Notation 2.10 (Notation 6.8 in [Bia23a]). For t ∈ R we denote by C�≥t ⊂ C the subspace con-
taining all z ∈ C with �(z) ≥ t. Similarly, we define C�>t, C�≤t, C�<t and C�=t, the latter being
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a vertical line. For all −∞ ≤ t ≤ t′ ≤ +∞ we define a subspace St,t′ ⊂ C by

St,t′ = τt(C�≥0) ∩ τt′(C�≤0),

where we use the conventions τ−∞(C�≥0) = τ+∞(C�≤0) = C and τ−∞(C�≤0) = τ+∞(C�≥0) = ∅.
For all t, t′ ≥ 0, we have that S0,t+t′ is contractible and can be written as the union of

the contractible spaces S0,t and St,t+t′ along the contractible space St,t. Moreover, R̊t ⊂ S̊0,t

(respectively, R̆t ⊂ S̊0,t), whereas R̊t′ + t ⊂ S̊t,t+t′ (respectively, R̆t′ + t ⊂ S̊t,t+t′). Note also that
τt restricts to a homeomorphism S0,t′ → St,t+t′ .

Recall [Bia23a, Definitions 3.15 and 3.16]: if T ⊆ C is a contractible subspace containing
∗ = −√−1, then for any nice couple of subspaces Y ⊆ X ⊆ T̊ we can give an alternative definition
of Hur(X ,Y), denoted by HurT(X ,Y), using T instead of the entire C as ‘ambient space’: indeed,
for any finite set P ⊆ X , the fundamental group π1(T \ P, ∗) is canonically identified with G(P ) =
π1(C \ P, ∗) and similarly for fundamental PMQs. We thus get an identification iCT : Hur(X ,Y)

∼=→
HurT(X ,Y).

If, moreover, ξ : (C, ∗)→ (C, ∗) is a semialgebraic and orientation-preserving homeomorphism
of the plane preserving the upper half-plane H and if T′,X ′,Y ′ are three other subspaces of C as
above such that ξ maps T→ T′, X → X ′ and Y → Y ′, then ξ induces a map ξ∗ : HurT(X ,Y)→
HurT′

(X ,Y).
There is finally a ‘disjoint union’ map − �− : HurT1(X1,Y1)×HurT2(X2,Y2)→

HurT1∪T2(X1 � X2,Y1 � Y2), defined when T1 ∩ T2 is contractible and disjoint from both X1,X2

(in particular, this implies that X1 and X2 are disjoint).

Definition 2.11. For t, t′ ≥ 0 we define the maps μt,t′ : Hur(R̊t)×Hur(R̊t′)→ Hur(R̊t+t′) and
μt,t′ : Hur(R̆t, ∂̆)×Hur(R̆t′ , ∂̆)→ Hur(R̆t+t′ , ∂̆) as the following compositions:

Definition 2.12. Recall Definition 2.11. We define a map of sets

μ : H̊M× H̊M→ H̊M (respectively, μ : H̆M× H̆M→ H̆M)

by the formula μ( (t, c), (t′, c′) ) = (t+ t′, μt,t′(c, c′)). See Figure 2.
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Figure 2. Left: two configurations in HurS0,1/2(R̆1/2, ∂̆) ∼= Hur(R̆1/2, ∂̆) ⊂ H̆M. Right: their
product in HurS0,1(R̆, ∂̆) ∼= Hur(R̆, ∂̆) ⊂ H̆M.

Proposition 2.13. The map μ : H̊M× H̊M→ H̊M (respectively, μ : H̆M× H̆M→ H̆M) is
continuous and makes H̊M (respectively, H̆M) into a topological monoid, with unit (0, (∅,1,1)).

The proof of Proposition 2.13 is in Appendix A.1.
Recall the notion of total monodromy from [Bia23a, Definitions 6.1 and 6.3]: for a generic

nice couple (X ,Y) we have a map ω : Hur(X ,Y)→ G sending a configuration (P, ψ, ϕ) to the
value of the monodromy ψ at the ‘large loop’, i.e. the element of G(P ) represented by a simple
loop spinning clockwise around all points of P .

If Y = ∅, one can lift this to a total monodromy ω̂ : Hur(X )→ Q̂, where Q̂ is the completion of
the PMQ Q, as in [Bia21, Definition 2.19]. Concretely, Q̂ can be defined as the free, non-unital
monoid generated by elements â for a ∈ Q, satisfying âb̂ = b̂âb for all a, b ∈ Q and satisfying
âb̂ = âb for all a, b ∈ Q such that the product ab is already defined in Q. The non-unital monoid
Q̂ happens to have a unit, namely 1̂ and a natural binary operation of conjugation can be defined
on it, so that it becomes a PMQ with complete product; there is a natural inclusion of PMQs
Q ↪→ Q̂, which is the universal map from Q to a complete PMQ. In the lift ω̂ of ω we need Q̂
rather than Q as target because the large loop in G(P ) is not, in general, an element of the
fundamental PMQ Q(P ) (unless P is a singleton), so we cannot directly evaluate ψ on it; but
we can factor the large loop as a product of elements in Q(P ), evaluate ψ on the factors and
compute in Q̂ the corresponding product of elements of Q.
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Notation 2.14. For (t, c) and (t′, c′) in H̊M (in H̆M) we denote by (t, c) · (t′, c′) the configuration
μ((t, c), (t′, c′)).

We denote by ω̂ : H̊M→ Q̂ (respectively, ω : H̆M→ G) the composition

where the first map is the projection on the second component and Q̂ denotes the completion of
the PMQ Q.

2.3 Computation of π0(H̊M)
In this subsection we study the discrete monoid of path components of H̊M. We will prove the
following theorem, which is similar to [Bia23a, Proposition 6.4].

Theorem 2.15. Recall Notations 2.6 and 2.14. The map ω̂ : π0(H̊M)→ Q̂ is a map of unital
monoids and it restricts to a bijection π0(H̊M+) ∼= Q̂.

Notation 2.16. We denote by zc = 1
2 +

√−1
2 ∈ C the centre of R̊.

Definition 2.17. For all a ∈ Q we define a configuration ca = ({zc}, ψa) ∈ Hur(R̊), where ψa
sends the (unique) element fc in Q({zc}) \ {1} to a.

For a space X we denote by π0 : X → π0(X) the map assigning to each point of X its path
component. We denote by · the product of the discrete monoid π0(H̊M).

Lemma 2.18. The monoid π0(H̊M) is generated by π0(0, (∅,1,1)), which is the unit and by the
elements of the form π0(1, ca), for a ∈ Q. Moreover, the following equalities hold in π0(H̊M):

• if a, b ∈ Q, then π0(1, ca) · π0(1, cb) = π0(1, cb) · π0(1, cab);
• if a, b ∈ Q and the product ab is defined in Q, then π0(1, ca) · π0(1, cb) = π0(1, cab).

The proof of Lemma 2.18 is in Appendix A.2.

Proof of Theorem 2.15. First we prove that ω̂ : H̊M→ Q̂ is a map of monoids. Let (t, c), (t′, c′) ∈
H̊M and use Notation 2.2: we can choose simple loops γ ⊂ S−∞,t and γ′ ⊂ St,+∞, spinning clock-
wise around P and P ′ + t, respectively; the product [γ] · [γ′] ∈ G(P ∪ (P ′ + t)) is represented by
a simple loop spinning clockwise around P ∪ (P ′ + t). Denoting (t, c) · (t′, c′) = (t+ t′, (P ′′, ψ′′)),
by definition of ψ′′ we have

ω̂((t, c) · (t′, c′)) = ψ′′([γ] · [γ′]) = ψ([γ]) · ψ′([γ′]) = ω̂(t, c) · ω̂(t′c′) ∈ Q̂.
Note that ω̂((0, (∅,1,1))) = 1, so ω̂ is a map of unital monoids; moreover, ω̂(1, ca) = â ∈ Q̂ for
all a ∈ Q, so that ω̂ : π0(H̊M)→ Q̂ hits the generators of Q̂ and is thus surjective.

By Lemma 2.18, the corresponding relations among the elements π0(1, ca) ∈ π0(H̊M) hold,
so that the assignment â → π0(1, ca) defines a map of non-unital monoids Ω: Q̂ → π0(H̊M); note
that, though both the source and the target of Ω are indeed unital monoids, π0(1, c1) = Ω(1) is
not the unit of π0(H̊M), so that Ω is not a map of unital monoids.

In fact Ω, as a map of sets, is a right inverse of ω̂, i.e. ω̂ ◦ Ω is the identity of Q̂. Moreover, Ω
hits all elements of π0(H̊M) of the form π0(1, ca) and by Lemma 2.18 every element of π0(H̊M+)
can be written as a product of one or more elements of the form π0(1, ca). It follows that Ω is a
bijection between Q̂ and π0(H̊M+) and this concludes the proof. �
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Figure 3. The nice couples (R̆lr, ∂̆) and (�̆lr, ∂̆).

2.4 Computation π0(H̆M)
We conclude the section by computing π0(H̆M). Recalling Notations 2.5 and 2.6, it suffices to
compute π0(H̆M+). The canonical structure we have on this last set is that of non-unital monoid,
since the multiplication μ of H̆M restricts to a map H̆M+ × H̆M+ → H̆M+. The total monodromy
gives again a morphism of non-unital monoids

ω : π0(H̆M+)→ G.

Theorem 2.19. Recall the map of PMQs e : Q → G, which is part of the PMQ–group pair
structure on (Q, G). Suppose that the image e(Q) ⊂ G generates G as a group. Then the map
ω : π0(H̆M+)→ G is bijective.

In other words, the unital monoid π0(H̆M) is isomorphic to G � {1}, where the extra element
1 plays the role of the monoid unit and the old unit 1G ∈ G still satisfies 1G · g = g · 1G = g for
all g ∈ G, but 1 · 1G = 1G · 1 = 1G.

We observe that the hypothesis that G is generated by e(Q) is necessary in Theorem 2.19:
if, for instance, Q = {1} and G is any non-trivial group, then π0(H̆M+) can rather be identified
(as a set) with G×G and ω with the product map G×G→ G.

The rough idea of the proof of Theorem 2.19 is the following: given a configuration (t, c), we
can shrink or stretch it until we have t = 1; we can move points of c to either horizontal side of
R̆, reducing to a configuration c supported on ∂̆; we can let all points on either component of ∂̆
collide with each other, reducing to a configuration c supported on at most two points lying on
∂̆; finally, we can use that e(Q) generates G to ‘trade’ factors of the total monodromy from one
component of ∂̆ to the other, reaching a configuration c supported on a single point.

The rest of the subsection is devoted to the proof of Theorem 2.19. We replace H̆M by the
homotopy equivalent space Hur(R̆, ∂̆), see Lemma 2.7.

Notation 2.20. We denote by R̆lr the horizontally closed square [0, 1]× (0, 1) ⊂ H and by ∂̆R̆lr =
{0, 1} × (0, 1) the union of the vertical sides of R̆lr. We abbreviate the nice couple (R̆lr, ∂̆R̆lr) as
(R̆lr, ∂̆). See Figure 3.

We fix once and for all a semialgebraic homeomorphism ξrot : C→ C which fixes the basepoint
∗ = −√−1 and restricts to the homeomorphism R̆lr → R̆ given by the 90◦ clockwise rotation
around zc (see Notation 2.16).
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By functoriality we have a homeomorphism ξrot∗ : Hur(R̆lr, ∂̆)→ Hur(R̆, ∂̆). We will prove
Theorem 2.19 by classifying connected components of Hur+(R̆lr, ∂̆); from now on we will focus
on the latter space.

Lemma 2.21. Let c ∈ Hur(R̆lr, ∂̆); then c is connected to a configuration c′ supported in ∂̆R̆lr.

To prove Lemma 2.21 we will use the following family of homotopies of C.

Definition 2.22. For all 0 < t < 1 we define homotopies Hl
t,Hr

t : : C× [0, 1]→ C by the
following formulas:

Hl
t(z, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z if �(z) ≤ 0 or �(z) ≥ 1,

z − s�(z) if 0 ≤ �(z) ≤ t,
z −

( 1
1− st − 1

)
(1−�(z)) if t ≤ �(z) ≤ 1;

Hr
t(z, s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z if �(z) ≤ 0 or �(z) ≥ 1,

z +
( 1

1− s+ st
− 1

)
�(z) if 0 ≤ �(z) ≤ t,

z + s(1−�(z)) if t ≤ �(z) ≤ 1.

Roughly speaking, Hl
t collapses the vertical strip [0, t]× R to the vertical line C�=0 and

expands the vertical strip [t, 1]× R to the vertical strip [0, 1]× R; similarly Hr
t collapses [t, 1]× R

to C�=1 and expands [0, t]× R to [0, 1]× R. Both homotopies restrict at each time s to an
endomorphism of the nice couple (R̆lr, ∂̆), so they induce homotopies

(Hl
t)∗, (Hr

t)∗ : Hur(R̆lr, ∂̆)× [0, 1]→ Hur(R̆lr, ∂̆).

Proof of Lemma 2.21. Let c ∈ Hur(R̆lr, ∂̆) and use Notation 2.2. Let 0 < t < 1 be close enough
to 1 so that for all z ∈ P we have �(z) = 1 or �(z) ≤ t. Then Hl

t(−; 1) sends P inside ∂̆R̆lr and,
therefore, (Hl

t)∗ induces a path in Hur(R̆lr, ∂̆) from c to a configuration c′ := (Hl
t)∗(c, 1) which is

supported in ∂̆R̆lr. �
The following rhombus will help us to define a homotopy of C that squeezes the two segments

in ∂̆ to the two central points.

Definition 2.23. We define � as the closed subspace of H given by

� =
{
z ∈ H :

∣∣�(z)− 1
2

∣∣ +
∣∣�(z)− 1

2

∣∣ ≤ 1
2

}
.

Geometrically, � is a closed rhombus centred at the point zc (see Notation 2.16). The boundary
∂� contains points z for which equality holds in the formula above. The corners of � are denoted
by zl� =

√−1
2 , zr� = 1 +

√−1
2 , zu� = 1

2 +
√−1 and zd� = 1

2 . We denote by �̆lr the subspace of � given
by

�̆lr = (� \ ∂�) ∪ {zl
�, z

r
�};

we use the notation ∂̆�̆lr = {zl�, zr�} = �̆lr ∩ ∂̆R̆lr and we abbreviate the nice couple (�̆lr, ∂̆�̆lr) as
(�̆lr, ∂̆); compare with Notation 2.3 and see Figure 3.

We have an inclusion of nice couples (�̆lr, ∂̆) ⊂ (R̆lr, ∂̆), inducing an inclusion Hur(�̆lr, ∂̆) ⊂
Hur(R̆lr, ∂̆).

Lemma 2.24. The inclusion Hur(�̆lr, ∂̆) ⊂ Hur(R̆lr, ∂̆) is a homotopy equivalence.

Before proving Lemma 2.24 we define a suitable homotopy of C.
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Definition 2.25. For z ∈ C let d�(z) = min{|�(z)− 1
2 |; 1

2}. We define a homotopy H� : C×
[0, 1]→ C by the following formula:

H�(z, s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z − sd�(z)√−1 if �(z) ≥ 1,

z − 2sd�(z)
(
�(z)− 1

2

)√−1 if 0 ≤ �(z) ≤ 1,

z + s
(�(z)

2
+ d�(z)

)√−1 if �(z) ≤ 0.

The homotopy H� satisfies the following properties:

• for all 0 ≤ s ≤ 1, the map H�(−; s) : C→ C induces an endomorphism of the nice couple
(R̆lr, ∂̆) and an endomorphism of the nice couple (�̆lr, ∂̆);

• H�(−; 0) is the identity of C;
• H�(−; 1) sends R̆lr onto �̆lr and ∂̆R̆lr onto ∂̆�̆lr.
Proof of Lemma 2.24. By [Bia23a, Proposition 4.4] the homotopy H� induces a homotopy
H�∗ : Hur(R̆lr, ∂̆)× [0, 1]→ Hur(R̆lr, ∂̆) starting from the identity and ending with a map
Hur(R̆lr, ∂̆)→ Hur(�̆lr, ∂̆). The homotopy H�∗ preserves the subspace Hur(�̆lr, ∂̆) at all times and,
thus, witnesses that the inclusion of Hur(�̆lr, ∂̆) in Hur(R̆lr, ∂̆) is a homotopy equivalence. �

Note also that if c ∈ Hur(R̆lr, ∂̆) is supported in ∂̆R̆lr, then the entire path H�∗(c,−) consists
of configurations supported in ∂̆R̆lr. Using Lemmas 2.21 and 2.24 together, we can therefore
connect any c ∈ Hur(R̆lr, ∂̆) to a configuration c′ ∈ Hur(R̆lr, ∂̆) supported in ∂̆�̆lr = {zl�, zr�}.

We next define auxiliary configurations, supported on the three points zc, zl�, zr�: by moving
zc towards zl� or towards zr�, we can construct paths between configurations supported on ∂̆�̆lr =
{zl�, zr�}.
Definition 2.26. Recall Definition 2.17. For all g, h ∈ G and a ∈ Q we define a configuration
cg,a,h = (P, ψ, ϕ) ∈ Hur(R̆lr, ∂̆) as follows:

• P = {zc, zl�, zr�}; let fc, f
l�, f r� be an admissible generating set for G(P ), where fc is represented

by a loop in S0,1 \ P , f l� by a loop in S−∞,1/2 \ P and f r� by a loop in S1/2,∞ \ P ;
• ψ maps fc → a;
• ϕ maps fc → e(a), f l� → g and f r� → h.

We also define configurations c∅,a,h, cg,∅,h, cg,a,∅, cg,∅,∅, c∅,a,∅ and c∅,∅,h in a similar way: for every
occurrence of ‘∅’ we remove the corresponding point from P and we define ψ and ψ on the
relevant elements of the admissible generating set by the same formulas.

Proof of Theorem 2.19. Note first that ω(c1G,∅,h) = h ∈ G: this shows surjectivity of
ω : π0(Hur+(R̆lr, ∂̆))→ G.

Lemma 2.21 and the proof of Lemma 2.24 imply that every configuration c ∈ Hur+(R̆lr, ∂̆)
can be connected to a configuration supported on ∂̆�̆lr, i.e. of the form cg,∅,h, cg,∅,∅ or c∅,∅,h.

For all g, h ∈ G the homotopies Hl
1/2 and Hr

1/2 give paths joining the configuration c∅,1,h to
c1G,∅,h and c∅,∅,h, respectively; the same homotopies give paths joining the configuration cg,1,∅
to cg,∅,∅ and cg,∅,1G

, respectively. Thus, c∅,∅,h is connected to c1G,∅,h and cg,∅,∅ is connected to
cg,∅,1G

: we conclude that every configuration in Hur(R̆lr, ∂̆) can be connected to a configuration
of the form cg,∅,h.

Similarly, for all g, h ∈ G and a ∈ Q the homotopies Hl
1/2 and Hr

1/2 give paths joining the
configuration cg,a,h to cge(a),∅,h and cg,∅,e(a)h, respectively. Thus, cge(a),∅,h is connected to cg,∅,e(a)h.

1663

https://doi.org/10.1112/S0010437X2400719X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400719X


A. Bianchi

Since we assumed that e(Q) generates G, we can write g = e(a1)±1 · · · · · e(ar)±1. Using r
instances of the paths described above, or their inverses, we can connect any configuration of
the form cg,∅,h to the corresponding configuration c1G,∅,gh. We have thus proved that every
configuration in Hur+(R̆lr, ∂̆) can be connected to a configuration of the form c1G,∅,h and these
are sent bijectively to G along ω. �

3. Bar constructions of Hurwitz spaces

In this section we study the bar constructions of the topological monoids H̊M and H̆M. Many
arguments of this and the next section are adapted from [Hat14], so familiarity with this paper
may be valuable.

Recall that a topological monoid M is group-like if the monoid π0(M) is a group; a standard
argument ensures, in this case, that for every m ∈M the maps given by left multiplication
μ(m,−) : M →M and right multiplication μ(−,m) are self-homotopy equivalences of M . For
left multiplication, for instance, one chooses an element m′ ∈M with μ(m′,m) and μ(m,m′)
contained in the same component of the neutral element e; then a homotopy inverse of μ(m,−)
is given by μ(m′,−). Note that this argument strongly relies on M having a strict neutral
element e.

Unfortunately H̆M is a unital, but not group-like topological monoid; on the other hand
its subspace H̆M+ (see Notation 2.6) is a non-unital, but group-like topological monoid: see
Theorem 2.19. We will consider the space H̆M+ as a left module over H̆M in order to exploit the
good properties of both spaces.

3.1 Bar constructions
We recall the classical definition of bar construction with respect to a topological monoid M and
a left M -module X.

Definition 3.1. Let M be a topological monoid, let X be a left M -module and denote
by μ both multiplication maps M ×M →M and M ×X → X. We define a semisimplicial
space B•(M,X). For p ≥ 0, the space Bp(M,X) of p-simplices is Mp ×X. The face maps
di : Bp(M,X)→ Bp−1(M,X) are defined as follows:

• d0 : (m1, . . . ,mp, x) → (m2, . . . ,mp, x);
• di : (m1, . . . ,mp) → (m1, . . . , μ(mi,mi+1), . . . ,mp, x), for 1 ≤ i ≤ p− 1;
• dp : (m1, . . . ,mp) → (m1, . . . ,mp−1, μ(mp, x)).

The space B(M,X) is the thick geometric realisation of the semisimplicial space B•(M,X), i.e. it
is the quotient of

∐
p≥0 Δp ×Mp ×X by the equivalence relation ∼ generated by (di(w),m, x) ∼

(w, di(m,x)), for all choices of the following data:

• p ≥ 0 and 0 ≤ i ≤ p;
• a point w = (w0, . . . , wp−1) in Δp−1, represented by its barycentric coordinates w0, . . . , wp−1 ≥

0 with w0 + · · ·+ wp−1 = 1;
• a point (m,x) = (m1, . . . ,mp, x) ∈Mp ×X.

Here di : Δp−1 → Δp denotes the standard ith face inclusion.
When X = ∗ is a point, we also write BM for B(M, ∗); when X = M with left multiplication

coming from the monoid structure, we also write EM for B(M,M).
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In fact Definition 3.1 only uses that M is an associative non-unital monoid; in § 3.3 we will
recall the thin bar construction, which is a simplicial space whose degeneracy maps are defined
using the unit e ∈M .

It is a standard fact that if M is a topological monoid, X is a left M -module and for
all m ∈M the map μ(m;−) : X → X is a self-homotopy equivalence of X, then the natu-
ral projection map pX : B(M,X)→ BM = B(M, ∗) induced by the constant, M -equivariant
map X → ∗ is a quasi-fibration with fibres homeomorphic to X. See, for instance, [Hat14,
Lemma D.1].

Lemma 3.2. Recall Definitions 2.4 and 2.12 and let (t, c) ∈ H̆M; then the left multiplication
μ((t, c),−) restricts to a self-homotopy equivalence of H̆M+; moreover, if ω(c) = 1 ∈ G, then
μ((t, c),−)|H̆M+

is homotopic to the identity of H̆M+. It follows that

pH̆M+
: B(H̆M, H̆M+)→ BH̆M

is a quasifibration with fibre H̆M+.

Proof. It suffices to prove the statement for one configuration (t, c) in each connected component
of H̆M: the statement is obvious for (t, c) = (0, (∅,1,1)) ∈ H̆M, which is the neutral element of
H̆M. Using Theorem 2.19 we can then assume that t = 1 and c has the form cdg := (P, ψ, ϕ) for
some g ∈ G, where:

• P = {zd�} consists of the only point zd� (see Definition 2.23);
• ψ : Q(P ) = {1} → Q is the trivial map of PMQs;
• ϕ : G(P )→ G sends the unique standard generator of G(P ) to g.

We start with the case g = 1. We claim that μ((1, cd1),−)|H̆M+
is homotopic to the identity of

H̆M+; by Lemma 2.7 it suffices to prove that the restriction

μ((1, cd1),−) : Hur+(R̆, ∂̆)→ H̆M+

is homotopic to the natural inclusion Hur+(R̆, ∂̆) ↪→ H̆M+.
First we prove that the maps μ((1, cd1),−) and μ((1, (∅,1,1)),−) are homotopic maps

Hur+(R̆, ∂̆)→ Hur+(R̆2, ∂̆). We use an argument similar to the proof [Bia23a, Proposition 7.10].
Recall from [Bia23a, Definition 3.1] that the Ran space Ran+(R̆2) is the space of non-empty finite
subsets of R̆2; it is weakly contractible [Lur17, Theorem 5.5.1.6] and using the notion of stan-
dard explosion from [Bia23a, Subsection 7.2], one can find a homotopy E zd� : Ran+(R̆2)× [0, 1]→
Ran+(R̆2) contracting Ran+(R̆2) onto the configuration {zd�}. Recall also that there is an exter-
nal product −×− : Hur+(R̆2, ∂̆)× Ran+(R̆2)→ Hur+(R̆2, ∂̆), which essentially superposes to a
configuration in Hur+(R̆2, ∂̆) another configuration with trivial monodromies (i.e. a configuration
in Ran+(R̆2)); see [Bia23a, Definition 5.7 and Notation 5.9].

We consider the following homotopy Hzd� : Hur+(R̆2, ∂̆)× [0, 1]→ Hur+(R̆2, ∂̆)

where ε : Hur+(R̆2, ∂̆)→ Ran+(R̆2) is the canonical map (P, ψ, ϕ) → P . Roughly speaking, each
point in the support of a configuration in Hur+(R̆2, ∂̆) is split at time 0 into two points: the
first keeps the original local monodromy and does not move; the second carries a trivial local
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monodromy and moves straightly to zd� ; at time 1 all the second points have merged at zd� . We
observe the following:

• the composition Hzd� (−, 0) ◦ μ((1, (∅,1,1)),−) : Hur+(R̆, ∂̆)→ Hur+(R̆2, ∂̆) is equal to
μ((1, (∅,1,1)),−), since Hzd� (−, 0) is the identity of Hur+(R̆2, ∂̆);

• the composition Hzd� (−, 1) ◦ μ((1, (∅,1,1)),−) : Hur+(R̆, ∂̆)→ Hur+(R̆2, ∂̆) is equal to
μ((1, cd1),−).

We thus obtain that μ((1, cd1),−) and μ((1, (∅,1,1)),−) are homotopic as maps Hur+(R̆, ∂̆)→
Hur+(R̆2, ∂̆) ⊂ H̆M+.

We then note that (1, (∅,1,1)) is connected by a path to (0, (∅,1,1)) in H̆M; as a consequence
μ((1, (∅,1,1)),−) and μ((0, (∅,1,1)),−) are homotopic as maps Hur+(R̆, ∂̆)→ H̆M+ and the
second map is the natural inclusion. This concludes the case g = 1.

Now let g �= 1; by Theorem 2.19 the three configurations μ((1, cdg), (1, c
d
g−1)), μ((1, cdg−1),

(1, cdg)) and (1, cd1) are in the same connected component of H̆M+: hence, μ((1, cdg),−) and
μ((1, cdg−1),−) are homotopy inverses as maps H̆M+ → H̆M+. �

It is a classical fact that if M is a unital, topological monoid, then EM is contractible. In
the following proposition we prove an analogous statement for B(H̆M, H̆M+).

Proposition 3.3. The space B(H̆M, H̆M+) is weakly contractible.

The proof of Proposition 3.3 is in Appendix A.3. As a consequence of Lemma 3.2 and
Proposition 3.3 we obtain the following theorem.

Theorem 3.4. There is a weak equivalence H̆M+ 	 ΩBH̆M.

3.2 Pontryagin ring and group completion
If M is a unital topological monoid, H∗(M) is an associative, graded ring with unit, called a
Pontryagin ring. We usually denote by x · y ∈ H∗(M) the Pontryagin product of two homology
classes x, y ∈ H∗(M). The unit 1 ∈ H0(M) is the homology class corresponding to the connected
component of e in π0(M). The subset π0(M) ⊂ H0(M) ⊂ H∗(M) is closed under multiplication.

Definition 3.5. A topological monoid M is weakly braided if there is a homeomorphism
br : M ×M →M ×M such that:

• if p1, p2 : M ×M →M are the two natural projections, then p1 ◦ br = p2 as maps M ×M →
M ;

• μ and μ ◦ br are homotopic as maps M ×M →M .

Note that if M is weakly braided, then the ring localisation H∗(M)[π0(M)−1] can be
constructed by right fractions: for all x ∈ H∗(M) and a ∈ π0(M) there exist y ∈ H∗(M) and
b ∈ π0(M) with x · b = a · y. This follows from setting b = a and y = (p2)∗ ◦ br∗(x× a), where ×
denotes the homology cross-product and p2 : M ×M →M is as in Definition 3.5.

Lemma 3.6. The topological monoid H̊M is weakly braided.

Proof. We define br : H̊M× H̊M→ H̊M× H̊M by the formula

br((t, c), (t′, c′)) = ((t′, c′), (t, cω̂(c′))),

where ω̂ is the Q̂-valued total monodromy (see Notation 2.14) and we use the action by global
conjugation [Bia23a, Definition 6.6]. It is clear that br is a homeomorphism and that the first
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property in Definition 3.5 holds. To check the second property, note that br restricts to a map

br : Hur(R̊)×Hur(R̊)→ Hur(R̊)×Hur(R̊).

By Lemma 2.7 it suffices to prove that μ and μ ◦ br are homotopic when considered as maps
Hur(R̊)×Hur(R̊)→ Hur(R̊2). Let R̊1/2 ⊂ R̊ be the open unit square (1/4, 3/4)× (1/4, 3/4) of
side length 1/2 centred at zc ∈ R̊; we can regard Hur(R̊1/2) as an open subspace of Hur(R̊),
containing all configurations supported in R̊1/2. Note that br restricts to a map

br : Hur(R̊1/2)×Hur(R̊1/2)→ Hur(R̊1/2)×Hur(R̊1/2).

Let H1/2 : C× [0, 1]→ C be a semialgebraic isotopy of C fixing ∗ at all times, such that
H1/2(−, 0) = IdC and H1/2(−, 1) restricts to a homeomorphism R̊ → R̊1/2. Then by functori-
ality there is a deformation of Hur(R̊) into the subspace Hur(R̊1/2). Thus, it suffices to prove
that the following restricted maps are homotopic:

μ, μ ◦ br : Hur(R̊1/2)×Hur(R̊1/2)→ Hur(R̊2).

Let Hbr : C× [0, 1]→ C be a semialgebraic isotopy of C fixing pointwise C \ R̊2 at all times, such
that Hbr(−, 0) = IdC and Hbr(−, 1) : C→ C has the following properties:

• Hbr(−, 1) restricts to τ1 : R̊1/2 → τ1(R̊1/2) (see Definition 2.9);
• Hbr(−, 1) restricts to τ−1 : τ1(R̊1/2)→ R̊1/2;
• Hbr(−, 1) restricts to a self-homeomorphism of C \ (R̊1/2 ∪ τ1(R̊1/2)) representing a clockwise

half Dehn twist, for instance we may assume that there is a simple loop γ ⊂ S1,2 \ τ1(R̊1/2)
spinning clockwise around τ1(R̊1/2), such that Hbr(−, 1) ◦ γ is a simple loop contained in
S0,1 \ R̊1/2 and spinning clockwise around R̊1/2.

Then the composition of μ with Hbr∗ gives a homotopy from μ to μ ◦ br as maps Hur(R̊1/2)×
Hur(R̊1/2)→ Hur(R̊2). �

Recall that for any topological monoid M there is a canonical map M → ΩBM : the induced
map in homology H∗(M)→ H∗(ΩBM) sends the multiplicative subset π0(M) ⊂ H∗(M) to the
set of invertible elements of the Pontryagin ring H∗(ΩBM). Therefore, there is an induced map
of rings

H∗(M)[π0(M)−1]→ H∗(ΩBM).

We recall the group completion theorem (see [MS76] and [FM94, Theorem Q.4]).

Theorem 3.7 (Group completion theorem). Let M be a topological monoid and suppose that
the localisation H∗(M)[π0(M)−1] can be constructed by right fractions. Then the canonical map

H∗(M)[π0(M)−1]→ H∗(ΩBM)
is an isomorphism of rings.

Using Theorem 3.7 together with Lemma 3.6 we obtain an isomorphism of rings

H∗(H̊M)[π0(H̊M)−1] ∼= H∗(ΩBH̊M).

3.3 Thin bar construction
Recall Definition 3.1: the semisimplicial space B•(M,X) can be enhanced to a simplicial space
by defining the degeneracy map si : Bk(M,X)→ Bk+1(M,X), for 0 ≤ i ≤ k, by the following
formula, where e denotes the neutral element of M ,

si : (m1, . . . ,mk, x) → (m1, . . . ,mi, e,mi+1, . . . ,mk, x).
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Definition 3.8. The simplicial space defined above is denoted by B̄•(M,X); its geometric
realisation as a simplicial space is denoted by B̄(M,X) and called the thin bar construction. It
is the quotient of BM by the equivalence relation ∼̄ generated by [si(w),m, x]∼̄[w, si(m,x)] for
all choices of the following data:

• p ≥ 0 and 0 ≤ i ≤ p;
• a point w = (w0, . . . , wp+1) in Δp+1, represented by its barycentric coordinates;
• a point (m,x) = (m1, . . . ,mp, x) ∈Mp ×X.

Here si : Δp+1 → Δp denotes the ith degeneracy. The natural projection map is denoted by
pB̄ : B(M,X)→ B̄(M,X). In the case X = ∗ we also write B̄M for B̄(M, ∗).

It is a classical fact that if M is well-pointed, then pB̄ : BM → B̄M is a weak homotopy
equivalence, as B̄•(M) is a good simplicial space in the sense of [Seg73, Appendix 2]. The monoids
H̊M and H̆M are well-pointed, as the connected component of the unit (0, (∅,1,1)) is contractible
in both cases.

4. Deloopings of Hurwitz spaces

In this section we describe the weak homotopy types of BH̊M and BH̆M using suitable, relative
Hurwitz spaces. Recall from [Bia23a, Definition 6.9] that a left–right-based (lr-based) nice couple
(zl,C, zr) is a nice couple C = (X ,Y), together with a choice of two points zl, zr ∈ Y satisfying

�(zl) = min{�(z) | z ∈ X} < max{�(z) | z ∈ X} = �(zr).

We denote by Hur(C)zl,zr = Hur(C;Q, G)zl,zr the subspace of Hur(C) of configurations whose
support contains {zl, zr}; recall from [Bia23a, Definition 6.12] that there is an action of G×Gop

on the Hurwitz space Hur(C)zl,zr , i.e. there are compatible actions of G on left and on right on
this space; by [Bia23a, Lemma 6.16] the quotient map

pG,Gop : Hur(C)zl,zr → Hur(C)G,Gop := Hur(C)zl,zr/G×Gop

is a covering map, with G×Gop as the group of deck transformations.

Theorem 4.1. Recall Definitions 2.4, 2.23 and 3.1. Let (Q, G) be a PMQ–group pair and assume
that e(Q) generates G as a group; then there are weak homotopy equivalences

σ : BH̊M→ Hur(�̆lr, ∂̆)G,Gop ; σ : BH̆M→ Hur(�, ∂)G,Gop .

Here we consider the lr-based nice couples (zl�, (�̆lr, ∂̆), zr�) and (zl�, (�, ∂), zr�).

We will use a classical approach, going back to Segal [Seg73], which allows us to model
the classifying space of a monoid M , arising from configuration spaces, with another, relative
configuration space. We will follow tightly the strategy of the proof of [Hat14, Proposition 3.1]
and to some extent we will use the same notation: we do this for convenience of the reader. We
focus on the case of H̊M and write in parentheses the necessary changes for H̆M.

We will first define the comparison map σ in the two cases and then show that it induces
isomorphisms on all homotopy groups.

4.1 Definition of the comparison map
By Definition 3.1 the space BH̊M (respectively, BH̆M) arises as a quotient of the disjoint union∐
p≥0 Δp × H̊M

p
(respectively,

∐
p≥0 Δp × H̆M

p
). We will first define σ on this disjoint union and

then prove that the given assignment induces a map on the quotient.
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Notation 4.2. We usually denote by (w; t, c) a point in
∐
p≥0 Δp × H̊M

p
(respectively,

∐
p≥0 Δp ×

H̆M
p
), where:

• w = (w0, . . . , wp) is a system of barycentric coordinates in Δp, i.e. w0, . . . , wp ≥ 0 and w0 +
· · ·+ wp = 1;

• t = (t1, . . . , tp) and c = (c1, . . . cp), such that (ti, ci) is an element in H̊M (in H̆M) for all
1 ≤ i ≤ p.

We usually present ci as (Pi, ψi) (respectively, as (Pi, ψi, ϕi)).

Given (w, t, c) as in Notation 4.2, note that the product (t1, c1) · · · (tp, cp) has the form
(t1 + · · ·+ tp, c), with c supported on the set

P = P1 ∪ (P2 + t1) ∪ (P3 + t1 + t2) ∪ · · · ∪ (Pp + t1 + · · ·+ tp−1).

By Definition 2.4 we have c ∈ Hur(R̊∞) (respectively, c ∈ Hur(R̆∞, ∂̆)), but in the following we
will consider c as a configuration in Hur(R̊R) (in Hur(R̆R, ∂̆), see Notation 2.3).

Definition 4.3. The above assignment (w; t, c) → c gives a continuous map

μ̂ :
∐
p≥0

Δp × (H̊M)p → Hur(R̊R)
(

respectively, μ̂ :
∐
p≥0

Δp × (H̆M)p → Hur(R̆R, ∂̆)
)
.

Note that μ̂ factors, on each subspace Δp × (H̊M)p (respectively, Δp × (H̆M)p), through the
projection on the factor (H̊M)p (respectively, (H̆M)p). The first subspace Δ0 is sent to the empty
product in H̊M (in H̆M), i.e. to the neutral element (0, (∅,1,1)).

Definition 4.4. For (w; t, c) as in Notation 4.2, define a0 = 0 and ai =
∑i

j=1 tj for all 1 ≤ i ≤ p.
Define the barycentre of (w; t, c) as b =

∑p
i=0wiai. Set a+

i = max{ai, b} and a−i = min{ai, b} for
all 0 ≤ i ≤ p and define the upper barycentre and the lower barycentre as b+ =

∑p
i=0wia

+
i and

b− =
∑p

i=0wia
−
i .

See Figure 5(left). Note that the barycentres b, b+, b− vary continuously on
∐
p≥0 Δp × (H̊M)p

(on
∐
p≥0 Δp × (H̆M)p), but do not factor to continuous functions on BH̊M (respectively, BH̆M):

indeed, if w0 = 0, the triple (w; t, c) is equivalent to the triple (w′; t′, c′) obtained by removing
w0, t1 and c1; all barycentres b, b+, b− drop by t1 when passing from the first to the second triple.
Nevertheless, the differences b+ − b and b− b− factor to continuous functions defined on BH̊M
(respectively, BH̆M).

Note also that for all (w; t, c) we have a0 ≤ b− ≤ b ≤ b+ ≤ ap. More precisely, let imin ≥ 0
be minimal with wimin > 0 and let imax ≤ p be maximal with wimax > 0; then aimin ≤ b− ≤ b ≤
b+ ≤ aimax , with all these inequalities strict unless they are all equalities: in this case all ti with
imin < i ≤ imax are equal to 0 and all corresponding ci are equal to (∅,1,1), so that μ̂(w, t, c)
is equal to the product (t1, c1) · · · (timin , cimin) · (timax+1, cimax+1) · · · (tp, cp). In particular, if b− =
b = b+, then we have that μ̂(w, t, c) is supported away from Sb,b, in fact it is supported away
from Sb−ε,b+ε for ε > 0 small enough.

Definition 4.5. We define a continuous function ε :
∐
p≥0 Δp × (H̊M)p → [0, 1] (respectively,

ε :
∐
p≥0 Δp × (H̆M)p → [0, 1]): for (w; t, c) as in Notation 4.2, we denote by P ⊂ R× [0, 1] the

support of μ̂(w; t, c) and set

ε : (w; t, c) = 1
2 sup{t ∈ [0, 1] |P ∩ Sb−−t,b++t = ∅},

1669

https://doi.org/10.1112/S0010437X2400719X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400719X


A. Bianchi

where upper and lower barycentres are computed with respect to (w; t, c). We denote b−ε = b− − ε
and b+ε = b+ + ε.

We observe that ε satisfies the following properties:

• for all (w, t, c) satisfying b− = b+, we have ε(w, t, c) > 0;
• for all (w, t, c) with ε(w, t, c) > 0, the configuration μ̂(w, t, c) is supported away from

Sb−−ε,b++ε.

The advantage of replacing b− and b+ by b−ε and b+ε is that we now have strict inequalities
b−ε < b < b+ε for all (w; t, c). As we will see, the disadvantage that b+ε − b−ε does not factor through
a function defined on BH̊M (respectively, on BH̆M) will be inessential.

Recall the proof of Lemma 2.7: for s > 0 the map Λs : C→ C is an endomorphism of the
nice couple (R̊R, ∅) (respectively, (R̆R, ∂̆)), depending continuously on s. We obtain a continuous
map

Λ∗: Hur(R̊R)× (0,∞)→Hur(R̊R) (respectively, Λ∗: Hur(R̆R, ∂̆)× (0,∞)→Hur(R̆R, ∂̆)).

Similarly, recall Definition 2.9: for all t ∈ R the map τt is an endomorphism of the nice couple
(R̊R, ∅) (respectively, (R̆R, ∂̆)), depending continuously on t. We obtain a continuous map

τ∗ : Hur(R̊R)× R→ Hur(R̊R) (respectively, τ∗ : Hur(R̆R, ∂̆)× R→ Hur(R̆R, ∂̆)).

Definition 4.6. We define a map

μ̂b :
∐
p≥0

Δp × (H̊M)p → Hur(R̊R)
(

respectively, μ̂b :
∐
p≥0

Δp × (H̆M)p → Hur(R̆R)
)

by the following assignment:

(w; t, c) → Λ∗
(
τ∗(μ̂(w; t, c);−b−ε (w; t, c));

1
b+ε (w; t, c)− b−ε (w; t, c)

)
.

Roughly speaking, the map μ̂b has the effect of a horizontal translation and a dilation of
the configuration μ̂(w; t, c): the effect of the translation and dilation is to map the rectangle
[b−ε , b+ε ]× [0, 1] homeomorphically onto the unit square R.

Definition 4.7. Let �̊ denote the interior of � (see Definition 2.23) and denote R +
√−1/2 =

{t+
√−1/2 | t ∈ R} ⊂ H. We introduce several nice couples:

• C̆� = (R̊R, R̊R \ R̊); • C̆� =
(
�̆lr ∪

(
R +

√−1
2

)
,

(
�̆lr ∪

(
R +

√−1
2

))
\ �̊

)
;

• C� = (R̆R, R̆R \ R̊); • C� =
(
� ∪

(
R +

√−1
2

)
,

(
� ∪

(
R +

√−1
2

))
\ �̊

)
.

Since IdC is a map of nice couples (R̊R, ∅)→ C̆� (respectively, (R̆R, ∂̆)→ C�), it induces a
map Hur(R̊R)→ Hur(C̆�) (respectively, Hur(R̆R, ∂̆)→ Hur(C�)). See Figure 4.

Notation 4.8. By abuse of notation we will also denote by μ̂b the composition

respectively
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Figure 4. Top: nice couples C̆� and C̆�. Bottom: nice couples C� and C�.

Definition 4.9. We define maps κ− and κ+ : C× [0,∞)→ C by the formulas

κ−(z, s) =

⎧⎪⎨⎪⎩
z if �(z) ≥ 0,
z −�(z) if − s ≤ �(z) ≤ 0,
z + s if �(z) ≤ −s;

κ+(z, s) =

⎧⎪⎨⎪⎩
z if �(z) ≤ 1,
z −�(z) + 1 if 1 ≤ �(z) ≤ 1 + s,

z − s if �(z) ≥ 1 + s.

Roughly speaking, both κ− and κ+ fix the vertical strip [0, 1]× R for all s ≥ 0; the map
κ−(−, s) collapses the strip [−s, 0]× R to the vertical line C�=0 and translates (−∞, s]× R

to the right; instead κ+(−, s) collapses the strip [1, 1 + s]× R to the vertical line C�=1 and
translates [1 + s,∞)× R to the left.

Both κ−(−, s) and κ+(−, s) are morphisms of nice couples C̆�→ C̆� (respectively, C�→ C�)
for all s ≥ 0. We obtain continuous maps

κ−∗ , κ
+
∗ : Hur(C̆�)× [0,∞)→ Hur(C̆�)

(respectively, κ−∗ , κ
+
∗ : Hur(C�)× [0,∞)→ Hur(C�)).

Notation 4.10. Recall Definition 2.25; we use the notation H�
1 := H�(−; 1) : C→ C.

Note that H�
1 is a morphism of nice couples C̆�→ C̆� (respectively, C�→ C�).
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Figure 5. Left: the product (t1, c1)(t2, c2)(t3, c3) of three configurations in H̆M; for a given
w ∈ Δ̊3 the barycentres b, b+ε , b

−
ε are shown as dotted, vertical lines. We use the letter ‘q’ to

represent the Q-valued monodromies around points in R̊R. Right: the image of (w; t, c) along σ̌;
the question marks suggest that, because of the quotient by theG×Gop-action, the monodromies
of the loops spinning around zl� and zr� are just not defined.

Definition 4.11. We define a map

μ̂� :
∐
p≥0

Δp × (H̊M)p → Hur(C̆�)
(

respectively, μ̂� :
∐
p≥0

Δp × (H̆M)p → Hur(C�)
)

by the following assignment, where p, ap, b−ε and b+ε depend on (w; t, c):

μ̂�(w; t, c) = κ−∗

(
κ+
∗

(
μ̂b(w; t, c);

ap − b+ε
b+ε − b−ε

)
;
b−ε − a0

b+ε − b−ε

)
.

We further define

μ̂� :
∐
p≥0

Δp × (H̊M)p → Hur(C̆�)
(

respectively, μ̂� :
∐
p≥0

Δp × (H̆M)p → Hur(C�)
)

as the composition (H�
1)∗ ◦ μ̂�.

Roughly speaking, μ̂� improves the effect of μ̂b as follows: μ̂b(w; t, c) is a configuration sup-
ported in the rectangle [(b−ε − a0)/(b+ε − b−ε ), 1 + (ap − b+ε )/(b+ε − b−ε )]× [0, 1] and the further
application of κ−∗ and κ+∗ collapse μ̂b(w; t, c) to a configuration supported in R. The further
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composition μ̂� changes the configuration μ̂�(w; t, c) to a configuration μ̂�(w; t, c) supported
in �.

Note that there is a natural inclusion of spaces Hur(�̆lr, ∂̆) ⊂ Hur(C̆�) (respectively,
Hur(�, ∂) ⊂ Hur(C�)). The following lemma summarises the previous discussion.

Lemma 4.12. The map μ̂� has values inside Hur(�̆lr, ∂̆) (inside Hur(�, ∂)).

Proof. Let (w; t, c) be as in Notation 4.2. Then μ̂b(w; t, c) is supported in the rectangle
((−b−ε − a0)/(b+ε − b−ε ), 1 + (ap − b+ε )/(b+ε − b−ε ))× (0, 1) (in the rectangle ((−b−ε − a0)/(b+ε −
b−ε ), 1 + (ap − b+ε )/(b+ε − b−ε ))× [0, 1]). This rectangle is mapped to R̆lr (to R) by the compo-
sition κ−∗ (κ+∗ (−; (ap − b+ε )/(b+ε − b−ε )); (b−ε − a0)/(b+ε − b−ε )) and the map H�

1 sends R̆lr to �̆lr
(respectively, R to �). �

We consider now the external product

−×− : Hur(�̆lr, ∂̆)× Ran(�̆lr)→ Hur(�̆lr, ∂̆)

(respectively, −×− : Hur(�, ∂)× Ran(�)→ Hur(�, ∂))

from [Bia23a, Definition 5.7 and Notation 5.9] and evaluate the second component at
∂̆�̆lr = {zl�, zr�}, thus obtaining a map −× ∂̆�̆lr : Hur(�̆lr, ∂̆)→ Hur(�̆lr, ∂̆)∂̆�̆lr (respectively, −×
∂̆�̆lr : Hur(�, ∂)→ Hur(�, ∂)∂̆�̆lr).

Definition 4.13. We denote by μ̂�
∂̆�̆lr the composition

We denote by σ̌ the composition of μ̂�
∂̆�̆lr with the covering projection

pG,Gop : Hur(�̆lr, ∂̆)∂̆�̆lr → Hur(�̆lr, ∂̆)G,Gop

(respectively, pG,Gop : Hur(�, ∂)∂̆�̆lr → Hur(�, ∂)G,Gop).

Here we regard (�̆lr, ∂̆) (respectively, (�, ∂)) as an lr-based nice couple, using the two points zl�
and zr� of ∂̆�̆lr. See Figure 5.

Roughly speaking, μ̂�
∂̆�̆lr improves the effect of μ̂� by forcing the presence of zl� and zr� in

support of the configuration μ̂�(w; t, c), which is already supported in �̆lr (in �); if either point
zl�, zr� is already in support of μ̂�(w; t, c), then its local monodromy does not change when passing
to μ̂�

∂̆�̆lr(w; t, c). The further composition σ̌ forgets the monodromy information around the two
points zl� and zr� of the support of μ̂�

∂̆�̆lr(w; t, c).

Notation 4.14. We endow BH̊M and B̄H̊M (respectively, BH̆M and B̄H̆M) with the basepoint
corresponding to the (unique) 0-simplex in B•(H̊M, ∗) (in B•(H̆M, ∗)). Similarly Hur(�̆lr, ∂̆)G,Gop

(respectively, Hur(�, ∂)G,Gop) is endowed with the basepoint given by pG,Gop((∅,1,1)× ∂̆�̆lr). We
denote this basepoint by clr ∈ Hur(�̆lr, ∂̆)G,Gop (respectively, clr ∈ Hur(�, ∂)G,Gop).

Proposition 4.15. The map σ̌ from Definition 4.13 sends every sequence (w; t, c) satisfy-
ing ε(w; t, c) > 0 to the basepoint clr. Moreover, σ̌ descends to a pointed map σ : BH̊M→
Hur(�̆lr, ∂̆)G,Gop (respectively, σ : BH̆M→ Hur(�, ∂)G,Gop); the map σ descends further to a

pointed map σ̄ : B̄H̊M→ Hur(�̆lr, ∂̆)G,Gop (respectively, σ̄ : B̄H̆M→ Hur(�, ∂)G,Gop).
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The proof of Proposition 4.15 is in Appendix A.4. Since the quotient map BH̊M→ B̄H̊M
(respectively, BH̆M→ B̄H̆M) is a weak equivalence, Theorem 4.1 reduces to proving that the
map σ̄ is a weak equivalence. In fact, we will prove surjectivity of σ∗ and injectivity of σ̄∗ on
homotopy groups.

4.2 Surjectivity on homotopy groups
We fix q ≥ 0 and want to show that σ∗ : πq(BH̊M)→ πq(Hur(�̆lr, ∂̆)G,Gop) (respectively,
σ∗ : πq(BH̆M)→ πq(Hur(�, ∂)G,Gop)) is surjective. For q = 0 this will imply, in particular, that
Hur(�̆lr, ∂̆)G,Gop (respectively, Hur(�, ∂)G,Gop) is connected.

Notation 4.16. We denote by H̊M∅ ⊂ H̊M (respectively, H̆M∅ ⊂ H̆M) the component of the
neutral element: it contains all couples (t, (∅,1,1)) for t ≥ 0.

Note that H̊M∅ (respectively, H̆M∅) is a contractible topological monoid, hence the subspace
BH̊M∅ ⊂ BH̊M (respectively, BH̆M∅ ⊂ BH̆M) is also contractible. Moreover, the map σ sends
BH̊M∅ (respectively, BH̆M∅) constantly to the basepoint clr.

In order to prove that σ induces an isomorphism on q-homotopy groups, it suf-
fices to prove that the map σ∗ : πq(BH̊M, BH̊M∅)→ πq(Hur(�̆lr, ∂̆)G,Gop) (respectively,
σ∗ : πq(BH̆M, BH̆M∅)→ πq(Hur(�, ∂)G,Gop)) is an isomorphism, i.e. we can consider relative
homotopy groups.

To show that σ∗ is surjective, represent an element of πq(Hur(�̆lr, ∂̆)G,Gop) (of
πq(Hur(�, ∂)G,Gop)) by a map

f : Dq → Hur(�̆lr, ∂̆)G,Gop (respectively, f : Dq → Hur(�, ∂)G,Gop)

sending ∂Dq to the basepoint clr. Thus, for all v ∈ Dq we have an orbit f(v) = [cv]G,Gop of the
action of G×Gop on Hur(�̆lr, ∂̆)∂̆�̆lr (on Hur(�, ∂)∂̆�̆lr). We choose for all v ∈ Dq a representative
cv = (Pv, ψv, ϕv) of f(v); note that the sets Pv ⊂ �̆lr (respectively, Pv ⊂ �) do not depend on this
choice; similarly the evaluation of ψv and ϕv is independent of the choice of cv on those elements
of Q(Pv) and G(Pv) that can be represented by a loop contained in [0, 1]× R \ Pv.

For all v ∈ Dq we can find an open interval Jv ⊂ (0, 1) and a neighbourhood v ∈ Vv ⊆ Dq

such that for all v′ ∈ Vv the finite set �(Pv′) is disjoint from Jv. Using the compactness of Dq, we
can then choose a cover of Dq by finitely many open sets Vi with corresponding open intervals
Ji ⊂ (0, 1), satisfying �(Pv) ∩ Ji = ∅ for all v ∈ Vi. After shrinking the intervals Ji appropriately,
we can assume they are disjoint. To fix notation, we assume that we have r open sets V1, . . . , Vr,
such that the corresponding intervals J1, . . . , Jr appear in this order, from left to right, on (0, 1).

We choose numbers Ai ∈ Ji: note that SAi,Ai is disjoint from Pv for all v ∈ Vi and that the
numbers A1, . . . , Ar are all distinct. We fix weights Wi : Dq → [0, 1] giving a partition of unity
on Dq subordinate to the covering {V1, . . . , Vr}. We also assume that for each v ∈ Dq there are
at least two distinct indices 1 ≤ i ≤ r such that Wi(v) > 0.

Notation 4.17. Let 0 < t < t′ < 1. We denote by �̆lrt,t′ (respectively, (�t,t′ , ∂)) the space �̆lr ∩
(t, t′)× R (the nice couple (� ∩ (t, t′)× R, ∂ � ∩(t, t′)× R)).

Recall Notation 2.3: we denote by R̊t,t′ (by (R̆t,t′ , ∂̆)) the space (t, t′)× (0, 1) (the nice couple
((t, t′)× [0, 1], (t, t′)× {0, 1})).
Lemma 4.18. For all 0 < t < t′ < 1 the map H�

1 induces a homeomorphism Hur(R̊t,t′) ∼=
Hur(�̆lrt,t′) (respectively, Hur(R̆t,t′ , ∂̆) ∼= Hur(�t,t′ , ∂)).
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Proof. Note that H�
1 restricts to a semialgebraic homeomorphism of the subspace

T := ((0, 1)× R) ∪ {∗} ⊂ C.

The space T is contractible and the interior T̊ contains the spaces R̊t,t′ and �̆lrt,t′ (the spaces R̆t,t′
and �t,t′). Moreover, the space R̊t,t′ (the nice couple (R̆t,t′ , ∂̆)) is mapped alongH�

1 homeomorphi-
cally to the space �̆lrt,t′ (to the nice couple (�t,t′ , ∂)). It follows that H�

1 induces a homeomorphism
HurT(R̊t,t′) ∼= HurT(�̆lrt,t′) (respectively, HurT(R̆t,t′ , ∂̆) ∼= HurT(�t,t′ , ∂)) and the statement is a
consequence of the natural homeomorphism iCT : Hur(C) ∼= HurT(C) holding for all nice couples C

contained in the interior of T. �

Notation 4.19. For all v ∈ Dq we list the indices 1 ≤ i0 < · · · < ipv ≤ r satisfying Wij (v) > 0,
for some pv ≥ 1 depending on v: here, recall our assumption that for each v ∈ Dq there are
at least two indices i with Wi(v) > 0. We denote by Av0, . . . , A

v
pv

the list Ai0 , . . . , Aipv
. We set

Bv =
∑pv

j=0Wij (v)A
v
ij

. For all 0 ≤ j ≤ pv we set Av,+i = max{Avi , Bv} and Av,−i = min{Avi , Bv}.
We set Bv,+ =

∑pv

j=0Wij (v)A
v,+
ij

and Bv,− =
∑pv

j=0Wij (v)A
v,−
ij

.

Note that the numbers Bv, Bv,+ and Bv,− vary continuously in v ∈ Dq and attain values
in (0, 1). Note also that we have a sequence of strict inequalities 0 < Av0 < Bv,− < Bv < Bv,+ <
Avpv

< 1. In the following, for all 1 ≤ j ≤ pv we construct a configuration cv,j = (Pv,j , ψv,j , ϕv,j)
in Hur(�̆lrAv

j−1,A
v
j
, ∂̆) (in Hur(�Av

j−1,A
v
j
, ∂)): roughly speaking, cv,j will be the part of cv contained

in the vertical strip (Avj−1, A
v
j )× R. See Figure 6.

To define cv,j , note that Pv is disjoint from the vertical lines {Avj−1, A
v
j} × R; as a conse-

quence Pv is contained in the disjoint union �̆lrAv
j−1,A

v
j
� (�̆lr \ SAv

j−1,A
v
j
) (respectively, �Av

j−1,A
v
j
�

(� \ SAv
j−1,A

v
j
)); note that the first space �̆lrAv

j−1,A
v
j

(respectively, �Av
j−1,A

v
j
) is contained in the inte-

rior of SAv
j−1,A

v
j
, whereas the second space �̆lr \ SAv

j−1,A
v
j

(respectively, � \ SAv
j−1,A

v
j
) is contained

in the interior of C \ SAv
j−1,A

v
j
. We use the restriction map

iCSAv
j−1

,Av
j

: Hur
(
�̆lrAv

j−1,A
v
j
� (�̆lr \ SAv

j−1,A
v
j

)
, ∂̆�̆lr

)
→ Hur

SAv
j−1

,Av
j

(
�̆lrAv

j−1,A
v
j

)
(
respectively, iCSAv

j−1
,Av

j

: Hur
(
�Av

j−1,A
v
j
�( � \SAv

j−1,A
v
j

)
, ∂

)
→ Hur

SAv
j−1

,Av
j
(�Av

j−1,A
v
j
, ∂

))
from [Bia23a, Definition 3.15] and define cv,j as the image of cv along this map. We can then use
the canonical identification

iCSAv
j−1

,Av
j

: Hur
(
�̆lrAv

j−1,A
v
j

) ∼= Hur
SAv

j−1
,Av

j

(
�̆lrAv

j−1,A
v
j

)
(
respectively, iCSAv

j−1
,Av

j

: Hur
(�Av

j−1,A
v
j
, ∂

)→ Hur
SAv

j−1
,Av

j
(�Av

j−1,A
v
j
, ∂

))
to regard cv,j as a configuration in Hur(�̆lrAv

j−1,A
v
j
) (in Hur(�Av

j−1,A
v
j
, ∂)).

Note that cv,j does not depend on the choice of a representative cv of f(v) = [cv]G,Gop . Let T

be as in the proof of Lemma 4.18; then we can regard cv,j as a configuration in HurT(�̆lrAv
j−1,A

v
j
)

(in HurT(�Av
j−1,A

v
j
, ∂)) using the canonical identification iTSAv

j−1
,Av

j

.

By Lemma 4.18 we can consider for all 1 ≤ j ≤ pv the configuration (H�
1)

−1∗ (cv,j) lying in
the space HurT(R̊Av

j−1,A
v
j
) (in HurT(R̆Av

j−1,A
v
j
, ∂̆)); using the identification iCT we can regard

(H�
1)

−1∗ (cv,j) as lying in Hur(R̊Av
j−1,A

v
j
) (in Hur(R̆Av

j−1,A
v
j
, ∂̆)). Composing further with the map
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Figure 6. Left: a configuration cv ∈ Hur(�, ∂)∂̆�̆lr , in the case pv = 1. Right: the clipped
configuration cv,1 ∈ Hur(�Av

0 ,A
v
1
, ∂).

τ−Av
j−1

we obtain configurations

c′v,j := (τ−Av
j−1

)∗((H�
1)

−1
∗ (cv,j))

lying in Hur(R̊Av
j−Av

j−1
) (in Hur(R̆Av

j−Av
j−1
, ∂̆)), for 1 ≤ j ≤ pv.

In other words, we obtain couples (Av1 −Av0, c′v,1), . . . , (Avpv
−Avpv−1, c

′
v,pv

) in H̊M (in H̆M);
the product (Av1 −Av0, c′v,1) · · · (Avpv

−Avpv−1, c
′
v,pv

) of these configurations has the form (Avpv
−

Av0, c
′), for some c′ ∈ Hur(R̊Av

pv−Av
0
) (respectively, c′ ∈ Hur(R̆Av

pv−Av
0
, ∂̆)): we then have, roughly

speaking, that H�
1(τAv

0
(c′)) recovers the part of cv in the vertical strip (Av0, A

v
pv

)× R.
We can define a map g : Dq → BH̊M (respectively, g : Dq → BH̆M) by the formula

v → (
Wi0(v), . . . ,Wipv

(v); (Av1 −Av0, c′v,1), . . . , (Avpv
−Avpv−1, c

′
v,pv

)
)
.

To see that g is continuous, note that if a weight Wij (v) goes to 0, then the number Avj is dropped
from the list Av0, . . . , A

v
pv

and the following happens:

• if 1 ≤ j ≤ pv − 1, then the configurations (Avj −Avj−1, c
′
v,j) and (Avj+1 −Avj , c′v,j+1) are replaced

in the formula above by their product in H̊M (in H̆M), according to the identifications
defining BH̊M (respectively, BH̆M); this is compatible with the fact that the configurations
cv,j and cv,j+1 are ‘adjacent’ in �̆lr (in �) and if Avj is dropped these two configurations
are replaced in the construction by their ‘concatenation’ in Hur(�̆lrAv

j−1,A
v
j+1

) (respectively,

Hur(�Avj−1, A
v
j+1, ∂)), which is up to canonical identifications the configuration iCSAv

j−1
,Av

j+1

(cv);
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• if j = 0 or j = pv, then the configuration (Av1 −Av0, c′v,1) or (Avpv
−Avpv−1, c

′
v,pv

) is dropped
in the formula above, according to the identifications defining of BH̊M (respectively, BH̆M);
this is compatible with the fact that the configuration cv,0 or cv,pv is also dropped in the
construction, as soon as Av0 or Avpv

is dropped.

Note also that g sends ∂Dq inside BH̊M∅ (inside BH̆M∅): in fact, if f(v) = clr, then all
configurations c′v,j are supported on the empty set. For v ∈ Dq we remark, moreover, the equal-
ities Bv,− −Av0 = b−(g(v)) and Bv,+ −Av0 = b+(g(v)), by virtue of which the lower and upper
barycentres of g(v) can be recovered from the numbers Bv,− and Bv,+ and vice versa, once the
‘translation parameter’ Av0 is known; in particular, Bv,+ −Bv,− = b+(g(v))− b−(g(v)).

We are left to prove that σg is homotopic to f , relative to ∂Dq, i.e. they represent the same
element in πq(Hur(�̆lr, ∂̆)G,Gop) (in πq(Hur(�, ∂)G,Gop)).

Definition 4.20. Recall Definitions 2.22 and 2.25. For all 0 < t < 1 we define homotopies
H�,l
t ,H�,r

t : C× [0, 1]→ C by the following formula:

H�,•
t (z, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

H•
t (z, s) + (d�(z)− d�(H•

t (z, s)))
√−1 if z /∈ �̊, �(z) ≥ 1

2

H•
t (z, s)− (d�(z)− d�(H•

t (z, s)))
√−1 if z /∈ �̊, �(z) ≤ 1

2

H•
t (z, s)−

(
�(z)− 1

2

)
d�(H•

t (z, s))− d�(z)
1
2
− d�(z)

√−1 if z ∈ �, z �= zl�, zr�.

Here • is either l or r.

Roughly speaking, H�,l
t collapses the part of � contained in [0, t]× R to zl� and expands the

other part � \ [0, t]× R inside �; similar remarks hold for H�,r
t .

Note that for z ∈ � close to zl� we have the equalities

d�(Hl
t(z, s))− d�(z)
1
2 − d�(z)

= s and
d�(Hr

t(z, s))− d�(z)
1
2 − d�(z)

=
−s+ st

1− s+ st
.

Similarly, for z ∈ � close to zr� we have

d�(Hl
t(z, s))− d�(z)
1
2 − d�(z)

=
st

1− st and
d�(Hr

t(z, s))− d�(z)
1
2 − d�(z)

= s.

In particular, the homotopies H�,l
t ,H�,r

t are continuous; note also that they depend continuously
on t ∈ (0, 1), so that we can define continuous maps

H�,l, H�,r : C× [0, 1]× (0, 1)→ C

by H�,l(z, s, t) = H�,l
t (z, s) and H�,r(z, s, t) = H�,r

t (z, s). Note also that, for • = l, r, the following
properties hold:

(1) H�,•
t (−, s) is an endomorphism of the nice couple (�̆lr, ∂̆) (respectively, (�, ∂)) for all (s, t) ∈

[0, 1]× (0, 1);
(2) H�,•

t (−, s) fixes pointwise the subspaces C�≤0 and C�≥1 and preserves the subspaces �,
[0, 1]× (−∞, 1

2

] \ �̊ and [0, 1]× [
1
2 ,∞

) \ �̊; in particular, it fixes the points zl�, zr�;
(3) H�,•

t (−, 0) = IdC for all t ∈ (0, 1).
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It follows from property (1) and [Bia23a, Proposition 4.4] that for • = l, r there is an induced
map

H�,•
∗ : Hur(�̆lr, ∂̆)× [0, 1]× (0, 1)→ Hur(�̆lr, ∂̆)

(respectively, H�,•
∗ : Hur(�, ∂)× [0, 1]× (0, 1)→ Hur(�, ∂)).

Property (2) ensures that for all (s, t) ∈ [0, 1]× (0, 1) the map H�,•
∗ (−, s, t) restricts to a self-map

of the subspace Hur(�̆lr, ∂̆)∂̆�̆lr (respectively, Hur(�, ∂)∂̆�̆lr) and is equivariant with respect to the
G×Gop action on this subspace. In particular, there is an induced map

H�,•
∗ : Hur(�̆lr, ∂̆)G,Gop × [0, 1]× (0, 1)→ Hur(�̆lr, ∂̆)G,Gop

(respectively, H�,•
∗ : Hur(�, ∂)G,Gop × [0, 1]× (0, 1)→ Hur(�, ∂)G,Gop).

Property (3) ensures that H�,•
∗ (−, 0, t) is the identity of Hur(�̆lr, ∂̆)G,Gop (of Hur(�, ∂)G,Gop)

for all t ∈ (0, 1). We can now define a map H : Dq × [0, 1]→ Hur(�̆lr, ∂̆)G,Gop (respectively,
H : Dq × [0, 1]→ Hur(�, ∂)G,Gop) by setting

H(v, s) = H�,l
∗

(
H�,r

∗ (f(v), s, Bv,+), s,
Bv,−

Bv,+

)
,

where we recall that 0 < Bv,− < Bv,+ < 1. By the construction of g we have H(−, 1) = σg. This
concludes the proof that σ∗ is surjective on πq.

In the particular case q = 0 we obtain that, since BH̊M and BH̆M are connected, then
Hur(�̆lr, ∂̆)G,Gop and Hur(�, ∂)G,Gop are also connected. The fact that Hur(�̆lr, ∂̆)G,Gop is connected
can also be proved by combining [Bia23a, Lemma 6.16 and Proposition 7.10], Theorem 2.19 and
Lemma 2.24: the space Hur(�̆lr, ∂̆)G,Gop is the quotient of the space Hur(�̆lr, ∂̆)∂̆�̆lr by the action
of G×Gop and on π0(Hur(�̆lr, ∂̆)∂̆�̆lr) ∼= G this action can be identified with the action by left
and right multiplication, which is transitive. The fact that Hur(�, ∂)G,Gop is connected is instead
new in our discussion, although it could have been proved directly using simpler arguments.

4.3 Injectivity on homotopy groups
For q ≥ 0 we want now to prove that σ∗ : πq(BH̊M)→ πq(Hur(�̆lr, ∂̆)G,Gop) (respectively,
σ∗ : πq(BH̆M)→ πq(Hur(�, ∂)G,Gop)) is injective. We fix a basepoint ∗ ∈ Sq ⊂ Dq+1 and start
with a pointed map f̃ : Sq → BH̊M (respectively, f̃ : Sq → BH̆M) and a map f : Dq+1 →
Hur(�̆lr, ∂̆)G,Gop (respectively, f : Dq+1 → Hur(�, ∂)G,Gop), such that the restriction of f on
Sq = ∂Dq+1 is equal to σf̃ .

We can construct a map g : Dq+1 → BH̊M (respectively, g : Dq+1 → BH̆M) in the same way
as we constructed g : Dq → BH̊M (respectively, g : Dq → BH̆M) in the previous subsection: using
compactness of Dq+1, we can find a suitable cover V1, . . . , Vr of Dq+1 and disjoint intervals
J1, . . . , Jr ⊂ (0, 1), ordered from left to right, such that for all v ∈ Vi, if cv is a representative
of f(v) = [cv]G,Gop , then cv is supported on a set Pv with �(Pv) ∩ Ji = ∅. We also fix Ai ∈ Ji
for all 1 ≤ i ≤ r and a partition of unity W1, . . .Wr subordinate to the covering Vi; again we
assume that for all v ∈ Dq+1 there are at least two indices 1 ≤ i ≤ r such that Wi(v) > 0. The
rest of the construction is the same as in the previous subsection; note that, in general, g(∗)
is a point in the contractible subspace BH̊M∅ (respectively, BH̆M∅), but g(∗) is not necessarily
the basepoint of BH̊M (of BH̆M). For our scopes it suffices to prove that g|Sq is homotopic to
f̃ as maps Sq → BH̊M (as maps Sq → BH̆M), through a homotopy sending ∗ ∈ Sq inside BH̊M∅
(respectively, BH̆M∅) at all times. We are thus replacing πq(BH̊M) (respectively, πq(BH̆M))
with the set of homotopy classes of maps of pairs from (Sq, ∗) to (BH̊M, BH̊M∅) (respectively,
to (BH̆M, BH̆M∅).
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At this point of the discussion it becomes convenient to switch our focus to the thin bar con-
struction. Recall Definition 3.8: the projection pB̄ : BH̊M→ B̄H̊M (respectively, pB̄ : BH̆M→
B̄H̆M) is a weak homotopy equivalence; similarly, note that the subspace B̄H̊M∅ ⊂ B̄H̊M (respec-
tively, B̄H̆M∅ ⊂ B̄H̆M) is contractible. Therefore, it suffices to prove that pB̄ ◦ g|Sq and pB̄ ◦ f̃
are homotopic as maps Sq → B̄H̊M (as maps Sq → B̄H̆M), by a homotopy sending ∗ ∈ Sq inside
B̄H̊M∅ (inside B̄H̆M∅) at all times. Exhibiting such homotopy will be much easier than comparing
g|Sq and f̃ directly.

One of the advantages of the thin bar construction occurs already in the construction of
the map g : Dq+1 → BH̊M (respectively, g : Dq+1 → BH̆M). Recall that we had to shrink the
intervals J1, . . . , Jr to make them disjoint, in order to ensure that the numbers A1, . . . , Ar are
all distinct. This was crucial when defining g(v) for v ∈ Dq+1 (or, in the previous subsection,
for v ∈ Dq): we started from the list of indices 1 < i0 < · · · < ipv < l satisfying Wij (v) > 0; we
denoted by Av0, . . . , . . . A

v
pv

the list Ai0 , . . . , Aipv
and used the portions of f(v) contained in the

slices �̆lrAv
j−1,A

v
j

(in (�Av
j−1,A

v
j
, ∂)) to define the configurations c′v,1, . . . , c′v,pv

. The fact that the
numbers A1, . . . , Ar are all distinct was crucial in ensuring that all slices have strictly positive
width and, most important, the numbers Wi0(v), . . . ,Wipv

(v) naturally form an ordered list
of p+ 1 numbers: this is crucial, as we want to use these numbers to define the barycentric
coordinates of a point in Δp.

Suppose instead that we repeat the above construction of g, but using directly the thin
bar construction; in other words, consider the composition of g with the projection pB̄: then
the fact that A1, . . . , Ar are all distinct ceases to be important. Indeed, suppose that for some
v ∈ Dq+1 we write a list Av0, . . . , . . . A

v
pv

as above and suppose that for some 1 ≤ j ≤ pv we
have Avj−1 = Avj : this means, in particular, that c′v,j = (∅,1,1). On the one hand, we cannot
unequivocally determine which of the barycentric coordinates Wij−1(v) and Wij (v) should come
first in the list of barycentric coordinates for g(v); on the other hand, the two possibilities give rise
to the same configuration in B̄H̊M (in B̄H̆M). For simplicity, in the following we keep assuming
that the numbers 0 < A1 < · · · < Ar < 1 are distinct and we keep considering g and f̃ as maps
with values in BH̊M (in BH̆M).

Fix v ∈ Sq and let f̃(v) ∈ BH̊M (respectively, f̃(v) ∈ BH̆M) be represented, for some p̃v ≥ 0,
by the p̃v-tuple (tv1, c

v
1), . . . , (t

v
p̃v
, cvp̃v

) of configurations in H̊M (in H̆M), with barycentric coordi-
nates wv0 , . . . , w

v
p̃v

. Let the numbers av0, . . . , a
v
p̃v

and the barycentres bv, b−ε,v and b+ε,v be computed
as in Definitions 4.4 and 4.5 with respect to (tv1, c

v
1), . . . , (t

v
p̃v
, cvp̃v

) and wv0 , . . . , w
v
p̃v

.
Using the notation from § 4.2, for v ∈ Sq let 1 ≤ i0 < · · · < ipv ≤ r be the list of all indices

ij satisfying Wij (v) > 0; again let Av0, . . . , . . . A
v
pv

denote the corresponding list of numbers
0 < Ai0 < · · · < Aipv

< 1. Recall that g(v) ∈ BH̊M (respectively, g(v) ∈ BH̆M) is constructed
using the numbers Wi0(v), . . . ,Wip′ (v) as barycentric coordinates and using the portions of
cv contained in the slices [Ai0 , Ai1 ]× R, . . . , [Aip′−1

, Aip′ ]× R to obtain configurations (Aij −
Aij−1 , c

′
v,j) in H̊M (in H̆M).

For 0 ≤ j ≤ pv define αvj = b−ε,v + (b+ε,v − b−ε,v)Avj . Then b−ε,v ≤ αv0 ≤ · · · ≤ αvp′ ≤ b+ε,v and the
inequality b−ε,v < b+ε,v is strict. To fix notation, let

βv0 ≤ · · · ≤ βvp̃v+pv+1

be the union of the lists of numbers av0, . . . , a
v
p̃v

and αv0, . . . , α
v
pv

: all numbers βvj , as well as the
numbers bv, b−ε,v and b+ε,v, belong to the interval [av0 − ε, avp̃v

+ ε] = [−ε, avp̃v
+ ε].

In writing the list βv0 ≤ · · · ≤ βvp̃v+pv+1 we choose a shuffle of the sets {0, . . . , p̃v}
and {0, . . . , pv} into {0, . . . , p̃v + pv + 1}, i.e. a pair of strictly increasing and commonly
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surjective maps

η̃ : {0, . . . , p̃v} → {0, . . . , p̃v + pv + 1}, η : {0, . . . , pv} → {0, . . . , p̃v + pv + 1}.
In the generic case, the numbers av0, . . . , a

v
p̃v
, αv0, . . . , α

v
pv

are all distinct and the choice of the
shuffle is unique, but nothing prevents that, for some v ∈ Sq, some of these numbers become
equal.

Let ŵv0 , . . . , ŵ
v
p̃v+pv+1 denote the corresponding shuffle of the lists of barycentric coordinates,

i.e. ŵvη̃(j) = wvj and ŵvη(j) = Wij (v). Define also

e : {0, . . . , p̃v + pv + 1} × [0, 1]→ [0, 1], e : (η̃(j), s) → s, e : (η(j), s) → 1− s.
Let (avp̃v

, c) be the product (tv1, c
v
1) · · · (tvp̃v

, cvp̃v
) in H̊M (in H̆M) and use Notation 2.2. Then

for all 0 ≤ j ≤ p̃v + pv + 1 the vertical line C�=βj is disjoint from P . We can then cut the
rectangle R̊av

p̃v
(respectively, R̆av

p̃v
) along these vertical lines and define configurations c̄vj in

Hur(R̊βj−1,βj ) (in Hur(R̆βj−1,βj , ∂̆)) as the parts of c lying in the regions Sβj−1,βj , for all 1 ≤ j ≤
p̃v + pv + 1: formally, we evaluate the restriction maps iCSβj−1,βj

on c. Let ĉvj be the configuration

in Hur(R̊βj−βj−1) (in Hur(R̆βj−βj−1 , ∂̆)) given by (τ−βj−1)∗(c̄
v
j ), for all 1 ≤ j ≤ p̃v + pv + 1.

We define a homotopy H : Sq × [0, 1]→ B̄H̊M (respectively, H : Sq × [0, 1]→ B̄H̆M) by the
formula

H(v, s) =
(
e(0, s)ŵv0 , . . . , e(p̃v + pv + 1, s)ŵvp̃v+pv+1;

(β1 − β0, ĉ
v
1), . . . ,

(
βp̃v+pv+1 − βp̃v+pv , ĉ

v
p̃v+pv+1

))
.

The continuity of the formula relies on the fact that we are using the thin bar construction:
if varying v ∈ Sq two consecutive values βj−1 and βj become equal, then the corresponding
configuration (βj − βj−1, ĉ

v
j−1) becomes equal to (0, (∅,1,1)) and can, thus, be dropped from

the list: the weights e(j − 1, s)ŵvj−1 and e(j, s)ŵvj are replaced by their sum e(j − 1, s)ŵvj−1 +
e(j, s)ŵvj and we obtain a description of the same configuration in B̄H̊M (in B̄H̆M) which is
formally symmetric in the indices j − 1 and j.

For s = 1 the list of weights e(0, s)ŵv0 , . . . , e(p+ p′ + 1, s)ŵvp̃v+pv+1 reduces to the list of
weights wv0 , . . . , w

v
p̃v

, shuffled with pv + 1 occurrences of 0; if we drop the zeros and perform
the corresponding products of consecutive elements in the list (β1 − β0, ĉ

v
1), . . . , (βp̃v+pv+1 −

βp̃v+pv , ĉ
v
p̃v+pv+1), we recover f̃(v).

Similarly, for s = 0 we obtain the weightsWi1(v), . . . ,Wipv
(v) shuffled with p̃v + 1 occurrences

of 0; in particular, since β0 = a0 = 0 and βp̃v+pv+1 = ap, at least one zero at the beginning and
at least one zero at the end of the list of all weights are dropped. If we perform the corresponding
products of consecutive elements in the list (β1 − β0, ĉ

v
1), . . . , (βp̃v+pv+1 − βp̃v+pv , ĉ

v
p̃v+pv+1) and

if we drop the corresponding elements at the two ends of the list, we recover g(v).
Finally, note that for v = ∗ ∈ Sq we have that all configurations ĉvj are supported on the

empty set, so that H(v,−) is a path in B̄H̊M∅ (in B̄H̆M∅). This concludes the proof that σ∗ is
injective on homotopy groups.

4.4 Homology of the group completion of H̊M
The second part of Theorem 4.1 implies, together with Theorem 3.4, that there is a weak
equivalence

H̆M+ 	 Ω Hur(�, ∂)G,Gop .
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If we select one connected component on each side, using Theorem 2.19 for the left-hand side,
we obtain a weak equivalence

H̆M+,1 	 Ω0 Hur(�, ∂)G,Gop .

By [Bia23a, Lemma 6.16] we have that Hur(�, ∂)∂̆�̆lr is a (disconnected) covering of Hur(�, ∂)G,Gop :
more precisely, there is a free and properly discontinuous action of G×Gop on the former
space and the latter is the quotient by this action. Hence, also the connected component
Hur(�, ∂)∂̆�̆lr;1 ⊆ Hur(�, ∂)∂̆�̆lr is a covering of Hur(�, ∂)G,Gop , with deck transformation group
given by the stabiliser in G×Gop of this component, which is the ‘diagonal’ copy of G, consisting
of pairs (g, g−1,op) for varying g ∈ G. We obtain a weak equivalence

H̆M+,1 	 Ω0 Hur(�, ∂)∂̆�̆lr;1,

and Lemmas 2.7 and 2.24 and [Bia23a, Proposition 7.10] yield a weak equivalence

Hur(�̆lr, ∂̆)∂̆�̆lr;1 	 Hur+(�̆lr, ∂̆)1 	 H̆M+,1 	 Ω0 Hur(�, ∂)∂̆�̆lr;1 	 Ω0 Hur+(�, ∂)1.

Now we use the first part of Theorem 4.1, together with the fact that Hur(�̆lr, ∂̆)∂̆�̆lr,1 is a covering

of Hur(�̆lr, ∂̆)G,Gop , again by [Bia23a, Lemma 6.16]; taking one component of loop spaces we
obtain a weak equivalence

Ω0BH̊M 	 Ω0 Hur(�̆lr, ∂̆)G,Gop 	 Ω0 Hur(�̆lr, ∂̆)∂̆�̆lr,1.

Putting the above weak equivalences together, we obtain

Ω0BH̊M 	 Ω0 Hur(�̆lr, ∂̆)∂̆�̆lr,1 	 Ω2
0 Hur+(�, ∂)1.

Finally, Theorem 3.7 (which is applicable thanks to Lemma 3.6) and Theorem 2.15, imply the
following homology isomorphism,

H∗(H̊M)[π0(H̊M)−1] ∼= Z[G(Q)]⊗H∗(Ω2
0 Hur+(�, ∂)1).

Here G(Q) denotes the enveloping group of the PMQ Q, as in [Bia21, Definition 2.9]: concretely,
this is the group generated by elements [a] for a ranging in Q, under the relations [a][b] = [b][ab]
for all a, b ∈ Q and [a]b̂ = âb for all a, b ∈ Q such that the product ab is already defined in Q. In
fact, G(Q) is the universal group receiving a map of PMQs from Q; moreover, G(Q) coincides
with the enveloping group of both the monoid Q̂ and its free unitalisation Q̂ � {1} ∼= π0(H̊M).

In fact, the combination of Theorems 2.19, 3.4 and 4.1 implies the following isomorphisms
of discrete monoids (which happen to be groups):

π1(Hur(�, ∂)G,Gop) ∼= π1(BH̆M) ∼= π0(H̆M+) ∼= G.

On the other hand, [Bia23a, Lemma 6.16] implies that Hur(�, ∂)∂̆�̆lr,1 is a covering of
Hur(�, ∂)G,Gop with group of deck transformations G and Hur(�, ∂)∂̆�̆lr,1 is connected by
Theorem 2.19. In the next lemma we prove that Hur(�, ∂)∂̆�̆lr,1 is, in fact, the universal cover of
Hur(�, ∂)G,Gop .

Lemma 4.21. The space Hur(�, ∂)∂̆�̆lr,1 is simply connected.

Proof. Recall the weak equivalence σ : BH̆M→ Hur(�, ∂)∂̆�̆lr,1. For g ∈ G let (1, cg) ∈ H̆M+

be the pair with cg being a configuration supported on the unique point 1
2 , carrying local

monodromy g ∈ G. Consider the loop γg : [0, 1]→ BH̆M sending t ∈ [0, 1] to the class of
(t, 1− t; (1, cg)) ∈ Δ1 × H̆M ⊂∐

p≥0 Δp × H̆M
p

in the quotient. Observe that the class of γg
in π1(BH̆M) corresponds to the class of (1, cg) ∈ π0(H̆M+), which along the total monodromy
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corresponds to the element g ∈ G; in particular, every element of π1(BH̆M) is represented by a
loop γg.

Recall now Definition 2.22 and the proof of Theorem 2.19 and let ĉg−1,g,1G
∈ Hur(R, ∂)0,1;1

be the configuration supported on the set {0, 1
2 , 1}, such that the G-valued total monodromy

sends small loops spinning clockwise around 0, 1
2 , 1 to g−1, g,1, respectively. Let γ̂g : [0, 1]→

Hur(R, ∂)0,1;1 be the path defined by

γ̂g(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hl
1/2(ĉg−1,g,1G

, 1) if 0 ≤ t ≤ 1− 1√
2
;

Hl
1/2

(
ĉg−1,g,1G

, 1− 1− 2(1− t)2
2t(1− t)

)
if 1− 1√

2
≤ t ≤ 1

2
;

Hr
1/2

(
ĉg−1,g,1G

,
1− 2(1− t)2

2t(1− t) − 1
)

if
1
2
≤ t ≤ 1√

2
;

Hr
1/2(ĉg−1,g,1G

, 1) if
1√
2
≤ t ≤ 1.

Consider also the map (H�
1)∗ : Hur(R, ∂)0,1;1 → Hur(�, ∂)∂̆�̆lr;1 induced byH�

1; then γ̃g := (H�
1)∗ ◦

γ̂g : [0, 1]→ Hur(�, ∂)∂̆�̆lr;1 is a path lifting the loop σ ◦ γg : [0, 1]→ Hur(�, ∂)∂̆�̆lr;1 along the
covering Hur(�, ∂)∂̆�̆lr;1 → Hur(�, ∂)G,Gop .

Both configurations γ̃g(0) and γ̃g(1) are supported on ∂̆�̆lr; the local monodromies around zl�
and zr� are 1G and 1G, respectively, for the first configuration and are g−1 and g, respectively,
for the second. It follows that the path γ̃g is a loop if and only if g = 1G. This shows that
Hur(�, ∂)∂̆�̆lr;1 → Hur(�, ∂)G,Gop is a universal covering and, in particular, Hur(�, ∂)∂̆�̆lr;1 is simply
connected. �

From now on it is convenient to replace the nice couple (�, ∂) with the nice couple (R, ∂).
For this, fix an orientation-preserving, semialgebraic homeomorphism ξ : C→ C fixing ∗ and
restricting to a homeomorphism of couples (�, ∂) ∼= (R, ∂); then ξ induces a homeomorphism
ξ∗ : Hur(�, ∂) ∼= Hur(R, ∂), restricting to a homeomorphism Hur+(�, ∂)1 ∼= Hur+(R, ∂)1. Using
again [Bia23a, Proposition 7.10] we can then replace Hur+(R, ∂)1 by the weakly equivalent space
Hur(R, ∂)0;1, where 0 ∈ ∂R is the lower left vertex.

We rephrase the last homology isomorphism, together with the discussion about simply
connectedness, as the following theorem.

Theorem 4.22. In the hypotheses of Theorem 4.1 there is an isomorphism of graded abelian
groups

H∗(H̊M(Q))[π0(H̊M(Q))−1] ∼= Z[G(Q)]⊗H∗(Ω2
0 Hur(R, ∂;Q, G)0;1).

Moreover, the space Hur(R, ∂;Q, G)0;1 is simply connected.

We immediately observe that the left-hand side of the isomorphism in Theorem 4.22 only
depends on the PMQ Q and not on the PMQ–group pair (Q, G) (in particular, not on the
group G). In fact, the isomorphism of Theorem 4.22 is an isomorphism of rings, if we consider
on Z[G(Q)]⊗H∗(Ω2

0 Hur(R, ∂)0;1) the correct structure of twisted tensor product of rings, which
we briefly describe in the following.

The group G(Q) acts on the right on Hur(R, ∂)0;1 = Hur(R, ∂;Q, G)0;1 by global conjuga-
tion: in fact, G acts on the right on this space by global conjugation and we consider the map
of groups G(e) : G(Q)→ G. Consequently, G(Q) acts on the right on H∗(Ω2

0 Hur(R, ∂)0;1) by
automorphisms of rings.
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For g1, g2 ∈ G(Q) and x1, x2 ∈ H∗(Ω2
0 Hur(R, ∂)0;1) we define the twisted product (g1 ⊗ x1) ·

(g2 ⊗ x2) := (g1g2 ⊗ (xg21 · x2). This assignment extends to an associative product on Z[G(Q)]⊗
H∗(Ω2

0 Hur(R, ∂)0;1) and with this ring structure the isomorphism of Theorem 4.22 is an
isomorphism of rings.

The isomorphism of Theorem 4.22 is a bit surprising at first glance, because H̊M(Q) is not ,
in general, weakly equivalent to an E2-algebra.

5. The space B(Q+, G)

For concrete homology computations the space Hur(R, ∂;Q, G)0;1 is too large. In this section,
we introduce a homotopy equivalent subspace

B(Q+, G) ⊂ Hur(R, ∂;Q, G)0;1;

under the assumption that Q is augmented. If, in addition, we assume that Q is normed, then
B(Q+, G) admits a natural filtration by closed subspaces. In the next section, assuming further
that Q is finite and rationally Poincaré, we will exploit this filtration to compute explicitly the
rational cohomology ring of B(Q+, G).

Recall from [Bia21, Definitions 4.1 and 4.9] that a PMQ is augmented if the setQ+ := Q \ {1}
is an ideal for the partial product, i.e. if for all a, b ∈ Q such that ab = 1 we have a, b = 1. A
normed PMQ is a PMQ Q together with a morphism of PMQs N : Q → N such that N−1(0) =
{1}. Every normed PMQ is also augmented.

Definition 5.1. Let c ∈ Hur(R, ∂;Q, G)0;1 and use Notation 2.2, so that the support P of c

splits as {z1, . . . , zl} ⊂ R̊ and {zl+1, . . . , zk} ⊂ ∂R. Let β ⊂ R̊ be a clockwise oriented simple
closed curve in R̊ \ P such that the disc bounded by β contains all points z1, . . . , zl.

The configuration c lies in the subspace B(Q, G) ⊂ Hur(R, ∂;Q, G)0;1 if the conjugacy class
of G(P ) corresponding to β is contained in the PMQ Qext(P )ψ ⊂ G(P ) (see [Bia23a, Definition
2.13]).

If Q is augmented, we define B(Q+, G) as the intersection

B(Q+, G) := B(Q, G) ∩Hur(R, ∂;Q+, G)0;1 ⊂ Hur(R, ∂;Q, G)0;1.

Roughly speaking, a configuration c ∈ Hur(R, ∂;Q, G)0;1 lies in B(Q, G) if, using
Notation 2.2, the l values of the monodromy ψ around the l points of P ∩ R̊ can be multiplied
in Q. See Figure 7.

Definition 5.2. Let C be a nice couple and let (Q, G) be a PMQ–group pair with Q augmented.
Let c = (P, ψ, ϕ) ∈ Hur(C;Q, G); a point z ∈ P is inert for c if z ∈ X \ Y and ψ sends to 1Q each
element of Q(P ) represented by a small loop spinning clockwise around z.

If Q is augmented, a configuration c lies in B(Q+, G) if it lies in B(Q, G) and, moreover, no
point of the support of c is inert: in other words, ψ attains values different from 1 around all l
points of P ∩ R̊.

Example 5.3. Suppose that Q is finite and normed and let Nmax ∈ N be the maximal norm of
an element of Q. Let c ∈ B(Q, G) and use Notation 2.2. Then at most Nmax of the l points in
P ∩ R̊1 can be non-inert; in particular, if c ∈ B(Q+, G), then l ≤ Nmax. There is also another
evident restriction on the behaviour of ψ: if f1, . . . , fk is an admissible generating set for G(P ),
then

∑l
i=1N(ψ(fi)) ≤ Nmax.

Example 5.4. LetQ be the abelian PMQ {1, •} with trivial partial multiplication and letG = {1}
be the trivial group. Let c ∈ B(Q+, G) and use Notation 2.2. Then P ∩ R̊ is either empty or it
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Figure 7. The configuration c lies in the space B(Q+, G) if g6e(a1)g4e(a2)g5e(a3) = 1 ∈ G, none
of a1, a2, a3 is equal to 1 ∈ Q and the product a1a2(a

g−1
5

3 ) is defined in Q.

contains exactly one point. We can define a map B(Q+, G)→ R/∂R ∼= S2 by looking at the
position of the unique point of P in R̊ and taking the quotient point [∂R] ∈ R/∂R if P ∩ R̊ = ∅.
In fact, the map B(Q+, G)→ R/∂R is a quasifibration with fibre the Ran space Ran(∂R), so it
is a weak homotopy equivalence.

We will see in Proposition 5.5 that the inclusion B(Q+, G) ⊂ Hur(R, ∂R;Q, G)0;1 is also a
homotopy equivalence; hence, in this case, Theorem 4.22 reduces to a classical result of Segal
[Seg73] stating that the group completion of the topological monoid

∐
n≥0 Confn(R2) is Ω2S2.

Passing from Hur(R, ∂;Q+, G)0;1 to its subspace B(Q+, G) should thus be regarded as the ana-
logue of passing from the relative configuration space Conf(R, ∂) to the sphere R̊/∂R̊ by a
scanning argument.

5.1 Deformation retraction onto B(Q, G)
In this subsection we will prove that Hur(R, ∂;Q, G)0;1 admits a deformation retraction onto its
subspace B(Q, G); if Q is augmented, the same argument will give by restriction a deformation
retraction of Hur(R, ∂;Q+, G)0;1 onto its subspace B(Q+, G). Using [Bia23a, Proposition 7.4],
we will therefore obtain the following proposition.

Proposition 5.5. For any PMQ–group pair (Q, G) the inclusion of B(Q, G) into
Hur(R, ∂;Q, G)0;1 is a homotopy equivalence. If Q is augmented, the following is a square of
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inclusions which are homotopy equivalences:

The rough idea of the proof of Proposition 5.5 is that each configuration c ∈
Hur(R, ∂;Q, G)0;1 can be gradually magnified around the centre zc ∈ R, letting gradually more
and more points collide with ∂R: such points are downgraded to points in the support of c around
which only the G-valued monodromy is defined and they remain fixed during further magnifi-
cation. At some finite time we obtain a configuration satisfying the properties of Definition 5.1
and we stop the magnification.

Definition 5.6. Let z0 ∈ R̊. For z ∈ C let dB
z0(z) ∈ [1,∞] be the infimum of all s ≥ 1 such

that z0 + s(z − z0) /∈ R; note that dB
z0(z) =∞ if and only if z = z0. We define a map HB

z0 : C×
[1,∞)→ C by the formula

HB
z0(z, s) =

⎧⎪⎨⎪⎩
z if z /∈ R̊,
z0 + s(z − z0) if z ∈ R and z0 + s(z − z0) ∈ R,
z0 + dB

z0(z) · (z − z0) if z ∈ R and z0 + s(z − z0) /∈ R.
Roughly speaking, the map HB

z0(−, s) expands the square (s− 1)/sz0 + (1/s)R̊, which has
side length 1/s, to the entire R, by a homothety centred at z0 of rescaling factor s and collapses

R
∖(

s− 1
s

z0 +
1
s
R̊

)
onto ∂R. Note that for all s ≥ 1 the map HB

z0(−, s) is an endomorphism of the nice couples
(R, ∂); note also that HB

z0(0, s) = 0 for all s ≥ 1 and that HB
z0(−, 1) is the identity of C. Thus,

we obtain a continuous map

(HB
z0)∗ : Hur(R, ∂;Q, G)0;1 × [1,∞)→ Hur(R, ∂;Q, G)0;1,

such that (HB
z0)∗(−, 1) is the identity of Hur(R, ∂;Q, G)0;1.

Definition 5.7. Let z0 ∈ R̊. For each 0 < ε < 1 denote by βz0,ε ⊂ R̊ the simple closed curve
whose support is the square (1− ε)z0 + ε(∂R), i.e. the boundary of the square of side length ε
obtained from ∂R by a homothety centred at z0 of rescaling factor ε; we orient βz0,ε clockwise.
Let c ∈ Hur(R, ∂)1 and use Notation 2.2. We denote by Wz0(c) ∈ [0, 1] the supremum of all
0 < ε < 1 satisfying the following properties:

• P ∩ βz0,ε = ∅;
• every element g ∈ G(P ) in the conjugacy class corresponding to βz0,ε belongs to Qext(P )ψ ⊆

G(P ).

Note that Wz0(c) ≤ 1 for all c ∈ Hur(R, ∂;Q, G)1; moreover, Wz0(c) = 1 if and only if c ∈
B(Q, G). Note, on the other hand, that Wz0(c) > 0, as for a generic and very small ε > 0 the
curve βz0,ε is disjoint from P and encloses at most one point of P , so it corresponds to a conjugacy
class of G(P ) which is contained in Q(P ) ⊂ Qext(P )ψ. Note also that the assignment c →Wz0(c)
is continuous in c.

Notation 5.8. Recall Notation 2.16. We simplify the notation and write HB = HB
zc and W = Wzc .
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Proof of Proposition 5.5. We define a homotopy

HB : Hur(R, ∂;Q, G)0;1 × [0, 1]→ Hur(R, ∂;Q, G)0;1,

HB(c, s) = HB
∗

(
c, 1− s+ s

1
W(c)

)
.

Note that HB(−, 0) is the identity of Hur(R, ∂;Q, G)0;1, that HB(−, 1) takes values in B(Q, G)
and that HB(−, s) restricts to the identity of B(Q, G) ⊂ Hur(R, ∂;Q, G) for all 0 ≤ s ≤ 1.

This proves the first homotopy equivalence in the statement. The second homotopy
equivalence is completely analogous: we have constructed the deformation retraction of
Hur(R, ∂;Q, G)0;1 onto its subspace B(Q, G) using enriched functoriality with respect to
maps of nice couples; this implies that HB(−, s) restricts at all times to a self-map of
Hur(R, ∂;Q+, G)0;1 and, in particular, the restriction of HB(−, 1) on Hur(R, ∂;Q+, G)0;1 takes
values in Hur(R, ∂;Q+, G)0;1 ∩ B(Q, G) = B(Q+, G). �

5.2 Norm filtration
In the rest of the section we assume that Q is endowed with a norm N : Q → N. Our aim is to
introduce a filtration F• on B(Q+, G). It will be convenient to define a norm filtration F• more
generally on the Hurwitz space Hur(C;Q, G) associated with any nice couple C.

Definition 5.9. Let C be a nice couple, let c ∈ Hur(C;Q, G) and use Notation 2.2. Let f1, . . . , fk
be an admissible generating set for G(P ). We define a function of sets N : Hur(C;Q, G)→ N by

N(c) = N(ψ(f1)) + · · ·+N(ψ(fl)),

and call N(c) the norm of the configuration c.
For ν ≥ 0 we define the νth filtration layer Fν Hur(C;Q, G) as the subspace of configurations

c with N(c) ≤ ν. We also set F−1 Hur(C;Q, G) = ∅.
For ν ≥ 0 we denote by Fν Hur(C;Q, G) the νth filtration stratum

Fν Hur(C;Q, G) := Fν Hur3(C;Q, G) \ Fν−1 Hur(C;Q, G).

Recall from [Bia23a, Definition 2.5] that given a nice couple C = (X ,Y) and a finite subset
P ⊂ X , an adapted covering of P is a collection U of disjoint, semialgebraic open discs in C

containing each a single point of P and such that each point in P \ Y is surrounded by a disc
disjoint from Y. The topology on Hur(C;Q, G) has a basis given by the open neighbourhoods
U(c;U), for varying c = (P, ψ, ϕ) ∈ Hur(C;Q, G) and varying U among adapted covers of P .

Lemma 5.10. For all ν ≥ 0 we have that Hur(C;Q, G) \ Fν−1 Hur(C;Q, G) is open in
Hur(C;Q, G).

Proof. Let c = (P, ψ, ϕ) ∈ Hur(C;Q, G) and assume that N(c) ≥ ν. Let U be an adapted cov-
ering of P . We claim that the open neighbourhood U(c, U) is contained in Hur(C;Q, G) \
Fν−1 Hur(C;Q, G).

Let c′ ∈ U(c, U) and use Notation 2.2. For all 1 ≤ i ≤ l let P ′
i = P ′ ∩ Ui and let P ′

i =
{z′i,1, . . . , z′i,k′i}. Choose an admissible generating set f1, . . . , fk of G(P ) ∼= G(U). We can regard
G(U) as a subgroup of G(P ′). We can choose an admissible generating set f ′1, . . . , f ′k′ of G(P ′)
with the following property: for all 1 ≤ i ≤ l, if f ′i,1, . . . , f

′
i,k′i

are the elements represented by
loops spinning around the points z′i,1, . . . , z

′
i,k′i

, respectively, then the product f ′i,1 · · · f ′i,k′i is equal
to fi in G(P ′). The hypothesis c′ ∈ U(c, U) implies the following equality in Q, for all 1 ≤ i ≤ l:

ψ′(f ′i,1) · · · · · ψ′(f ′i,k′i) = ψ(fi),
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whence, using the norm on Q, we obtain

N(ψ′(f ′i,1)) + · · ·+N(ψ′(f ′i,k′i)) = N(ψ(fi)).

Summing over 1 ≤ i ≤ l and recalling that P ′
1 ∪ · · · ∪ P ′

l might be a proper subset of P ′ \ Y =
{z′1, . . . , z′l′}, we obtain

ν ≤ N(c) =
l∑

i=1

N(ψ(fi)) =
l∑

i=1

k′i∑
j=1

N(ψ′(f ′i,j)) ≤
l′∑
i=1

N(ψ′(f ′i)) = N(c′),

which shows that U(c, U) is contained in Hur(C;Q, G) \ Fν−1 Hur(C;Q, G). �
Notation 5.11. For every subspace X ⊂ Hur(C;Q, G) and for ν ≥ −1, we use the notation FνX =
Fν Hur(C;Q, G) ∩X. For ν ≥ 0, we use the notation FνX = Fν Hur(C;Q, G) ∩X.

We will use Notation 5.11 mainly in the case X = B(Q+, G) ⊂ Hur(R, ∂;Q, G).

5.3 A model for BG
Our next goal is to analyse the strata FνB(Q+, G). We start with F0B(Q+, G), which can be
identified with Hur(∂R, ∂R;Q, G)0;1. By [Bia23a, Lemmas 5.4 and 5.5] we can equivalently
consider the space Hur(∂R;G)0;1, where the group G is considered as a (complete) PMQ. In this
subsection we prove the following proposition.

Proposition 5.12. The space Hur(∂R;G)0;1 is an Eilenberg–Maclane space of type K(G, 1).

Definition 5.13. We denote by � ⊂ ∂R the union of the three closed sides of R
� := {0} × [0, 1] ∪ [0, 1]× {1} ∪ {1} × [0, 1].

Lemma 5.14. The spaces Hur(�;G)0;1 and Hur(�;G)0,1;1 are contractible.

Proof. Note that � is contractible; more precisely, we can fix a semialgebraic homotopy H� : C×
[0, 1]→ C with the following properties:

• H�(−, s) is a lax endomorphism of the nice couple (�, ∅), for all 0 ≤ s ≤ 1 (see [Bia23a,
Definition 4.2]);

• H�(0, s) = 0 ∈ C for all 0 ≤ s ≤ 1;
• H�(−, 0) = IdC;
• H�(−, 1) maps � constantly to 0.

By functoriality, using that G is a complete PMQ, we obtain a homotopy

H�
∗ : Hur(�;G)0;1 × [0, 1]→ Hur(�;G)0;1.

Note that the map H�∗ (−, 1) takes values in Hur({0}, G)0;1, which is just a point. Thus, the
homotopy H�∗ exhibits Hur(�;G)0;1 as a contractible space.

By [Bia23a, Proposition 7.10], the inclusion Hur(�;G)0,1;1 ⊂ Hur(�;G)0;1 is a homotopy
equivalence, hence Hur(�;G)0,1;1 is also contractible. �

Now let ξ� : C→ C be a semialgebraic map with the following properties:

(1) ξ� is a lax endomorphism of the nice couple (∂R, ∅), in particular it restricts to a map
∂R → ∂R;

(2) ξ� fixes C�≤0 pointwise;
(3) ξ� maps the horizontal segment [0, 1]× {0} constantly to 0;
(4) ξ� restricts to a homeomorphism C \ ([0, 1]× {0})→ C \ {0}.
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Figure 8. Left: a configuration c ∈ Hur(∂R;G)0;1. Right: a configuration c′ in the fibre
(ξ�∗ )−1(c) ⊂ Hur(�;G)0,1;1.

Note that ξ� is a lax morphism of nice couples (�, ∅)→ (∂R, ∅); we obtain by functoriality a
map ξ�∗ : Hur(�;G)0,1;1 → Hur(∂R;G)0;1, see Figure 8.

We will prove that ξ�∗ is a covering map.

Lemma 5.15. For c ∈ Hur(∂R;G)0;1, the fibre of ξ�∗ over c is a non-empty and discrete subspace
of Hur(�;G)0,1;1.

Proof. Write c = (P, ψ), where P = {z1, . . . , zk} and ψ : Q(∂R,∅)(P )→ G is a map of PMQs;
without loss of generality suppose zk = 0. Assume that we are given c′ = (P ′, ψ′) ∈ (ξ�∗ )−1(c).
Note that if ξ�∗ (c′) = c, then, in particular, ξ�(P ′) = P and by properties (3) and (4) of ξ� we
must have P ′ = (ξ�)−1(P ) ∩ � ⊂ C. To fix notation, let z′i = (ξ�)−1(zi) ∈ P ′ for 1 ≤ i ≤ k − 1
and let z′k = 0 ∈ P ′ and z′k+1 = 1 ∈ P ′.

Fix an admissible generating set f1, . . . , fk for G(P ) and assume that fk is represented by
a loop supported in a small neighbourhood of the vertical segment {0} × [−1, 0] ⊂ C joining ∗
to 0. Then we can consider (ξ�)−1 as a map C \ P → C \ ([0, 1]× {0} ∪ P ′) ⊂ C \ P ′ and map
the generators f1, . . . , fk to elements of G(P ′). Note that f1, . . . , fk−1 are mapped to simple
loops spinning clockwise around the points z′1, . . . , z′k−1, whereas fk is mapped to a simple loop
spinning clockwise around the segment [0, 1] ⊂ C. We decompose (ξ�)−1∗ (fk) as a product of
two elements f ′k, f

′
k+1, represented by simple loops in C \ P ′ spinning clockwise around z′k and

z′k+1, respectively, and define f ′i = (ξ�)−1∗ (fi) for 1 ≤ i ≤ k − 1: thus, we obtain an admissible
generating set f ′1, . . . , f ′k+1 for G(P ′). Note that for 1 ≤ i ≤ k − 1 the generator f ′i can be rep-
resented by a simple loop in C \ P ′ supported in C \ (P ′ ∪ [0, 1]× {0}); similarly f ′k and f ′k+1

can be represented by loops supported on small neighbourhoods of the straight segments in C

joining ∗ with 0 and 1, respectively.
Since ξ�∗ (c′) = c, we have in G the equalities ψ′(f ′i) = ψ(fi) for 1 ≤ i ≤ k − 1 and ψ(fk) =

ψ′(f ′k)ψ
′(f ′k+1).
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Vice versa, for any factorisation of ψ(fk) ∈ G as the product gh of two elements in G, we can
define a configuration c′ = (P ′, ψ′) by setting P ′ = (ξ�)−1(P ) ∩ � and by defining ϕ′ by sending
f ′i → ψ(fi) for 1 ≤ i ≤ k − 1, f ′k → g and f ′k+1 → h. This shows that (ξ�)−1(c) is non-empty.

Now note that, for c′ as above and for any adapted covering U ′ of P ′, we have that c′ is
the unique configuration in U(P ′;U ′) ⊂ Hur(�)0,1;1 supported on the set P ′. In fact, the normal
neighbourhoods U(c̄;U ′), for fixed U ′ and varying c̄ in (ξ�)−1(c), are disjoint: compare with the
proof of [Bia23a, Proposition 3.8]. This proves that (ξ�)−1(c) is a discrete topological space. �
Lemma 5.16. There is a free action of G on Hur(�;G)0,1;1 whose orbits are precisely the fibres
of ξ�∗ .

Proof. Let c′ ∈ Hur(�;G)0,1;1 and write c′ = (P ′, ψ′) with P ′ = {z′1, . . . , z′k+1}, where we assume
z′k = 0, z′k+1 = 1. For g ∈ G we can define a new configuration g ∗ c′ = (P ′, g ∗ ψ′) ∈ Hur(�)0,1;1

by setting g ∗ ψ′(f ′i) = ψ′(fi) for all 1 ≤ i ≤ k − 1, g ∗ ψ′(f ′k) = ψ′(f ′k)g
−1 and g ∗ ψ′(f ′k+1) =

gψ′(f ′k), where f ′1, . . . , f ′k+1 is an admissible generating set of G(P ′) as in the proof of Lemma 5.15.
This defines a left action of G on the set Hur(�;G)0,1;1. This action can also be obtained by

identifying Hur(�;G)0,1;1 with Hur(�,�;G,G)0,1;1 via [Bia23a, Lemma 5.4] and by considering
(0, (�,�), 1) as a left–right-based nice couple [Bia23a, Definition 6.9] and by restricting the action
of G×Gop on Hur(�,�;G,G)0,1;1 to the diagonal subgroup G ⊂ G×Gop, which leaves the
subspace Hur(�,�;G,G)0,1;1 invariant. This proves, in particular, that the action is continuous.

For c′ as above, we use the notation c = (P, ψ) := ξ�∗ (c′), with P = {z1, . . . , zk} and assume
zk = 0 and zi = ξ�(z′i) for all 1 ≤ i ≤ k − 1. Choose an admissible generating set f1, . . . , fk of
G(P ) as in Lemma 5.15. Then ψ(fi) = ψ′(f ′i) = g ∗ ψ′(f ′i) for all 1 ≤ i ≤ k − 1 and

ψ(fk) = ψ′(f ′k)ψ
′(f ′k) = ψ′(f ′k)g

−1gψ′(f ′k) = (g ∗ ψ′(f ′k))(g ∗ ψ′(f ′k)).

It follows that ξ�∗ (c′) = ξ�∗ (g ∗ c′). �
Lemma 5.17. The map ξ�∗ is open.

Proof. Let c and c′ be as in the proof of Lemma 5.15, i.e. ξ�∗ : c′ → c and let U ′ be an adapted
covering of P ′. We want to find an adapted covering U of P such that ξ�∗ (U(P ′;U ′)) contains
U(P,U). We choose U with the following properties:

• for all 1 ≤ i ≤ k the intersection Ui ∩ ∂ is contractible;
• for all 1 ≤ i ≤ k − 1 the intersection (ξ�)−1(Ui) ∩ � is contained in U ′

i ;
• the intersection (ξ�)−1(Uk) ∩ � is contained in U ′

k ∪ U ′
k+1.

Let c̃ = (P̃ , ψ̃) ∈ U(c, U): we want to find a configuration c̃′ ∈ U(c′, U ′) with ξ�∗ (c̃′) = c̃. Write
P̃ = {z̃1, . . . , z̃k̃}, with z̃k̃ = 0. Then the finite set P̃ ′ := (ξ�)−1(P̃ ) ∩ � is contained in U ′ and it
intersects non-trivially every component of U ′. We write P̃ ′ = {z̃′1, . . . , z̃′k̃+1

} and assume z̃′
k̃

= 0
and z̃′

k̃+1
= 1.

Let f̃ ′1, . . . , f̃ ′k̃+1
be an admissible generating set for G(P̃ ′) as in the proof of Lemma 5.15.

Note that we can regard f ′k and f ′k+1 as elements of G(P̃ ′) by the composition G(P ′) ∼= G(U ′) ⊂
G(P̃ ′); moreover, the sequence of elements f̃ ′1, . . . , f̃ ′k̃−1

, f ′k, f
′
k+1 is also a free generating set for

G(P̃ ′), although in general it is not an admissible generating set: in fact, f ′k can be decomposed
as a product of distinct elements f̃ ′i , with one element equal to f̃ ′

k̃
and similarly f ′k+1 can be

decomposed as a product with one factor equal to f̃ ′
k̃+1

. Nevertheless we can define a morphism

of groups ϕ̃′ : G(P̃ ′)→ G by setting ϕ̃′ : f̃ ′i → ϕ̃(f̃i) for 1 ≤ i ≤ k̃ − 1 and ϕ̃′ : f ′i → ϕ′(f ′i) for i =
k, k + 1. We can restrict ϕ̃′ to Q(�,∅)(P ′) and obtain a morphism of PMQs ψ̃′ : G(�,∅)(P ′)→ G.
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We can use the previous to define a configuration c̃′ = (P̃ ′, ψ̃′) ∈ U(c′;U ′), satisfying
ξ�∗ (c̃′) = c̃. �

In the last step of the proof, note that c̃′ is, in fact, the unique configuration in U(c′;U) with
ξ�∗ (c̃′) = c̃. This shows, in particular, that for c, c′, U ′ and U as in the proof of Lemma 5.17,
there is a unique map of sets s : U(c;U)→ U(c′;U ′) which is a section of ξ�∗ , i.e. such that ξ�∗ ◦ s

is equal to the inclusion of U(c;U) in Hur(∂R;G)0;1.

Lemma 5.18. Let c, c, U ′ and U be as in the proof of Lemma 5.17 and let s : U(c;U)→ U(c′;U ′)
be the section defined above. Then s is continuous.

Proof. Let c̃ ∈ U(c;U), denote c̃′ = s(c̃) ∈ U(c′;U ′) and use the notation from the proof of
Lemma 5.17. By continuity of ξ�∗ there is an adapted covering Ũ

′
of P̃ ′ with Ũ

′ ⊂ U ′ and such
that ξ�∗ maps U(c̃′; Ũ) inside U(c;U).

First, note that ξ�∗ is injective on U(c̃′; Ũ ′
): for a configuration c̃′′ ∈ U(c̃′; Ũ ′

) we have, in fact,
s(ξ�∗ (c̃′′)) = c̃′′.

By Lemma 5.17 we know that ξ�∗ is open; it follows that the map ξ�∗ : U(c̃′; Ũ ′
)→

Hur(∂R;G)0;1 is a homeomorphism onto its image and, hence, s is continuous on the open
set ξ�∗ (U(c̃′; Ũ ′

)), which contains c̃. �

Proof of Proposition 5.12. The combination of Lemmas 5.15, 5.17 and 5.18 shows that the
map ξ�∗ : Hur(�;G)0,1;1 → Hur(∂R;G)0;1 is a covering. Lemma 5.14 shows that the total space
is contractible, in particular connected and Lemma 5.16 exhibits G as the group of deck
transformations of ξ�∗ . �

Notation 5.19. We denote by BG the space

BG := Hur(∂R;G)0;1
∼= Hur(∂R, ∂R;Q, G)0;1 = F0B(Q+, G) = F0B(Q+, G).

5.4 Bundles over BG
In this subsection we define for all ν ≥ 0 a bundle map pν : FνB(Q+, G)→ BG; the fibre of pν
can be identified with ∐

a∈Qν

Hur(R̊;Q+)a,

where Qν ⊂ Q is the subset of elements of norm ν. In the case ν = 0, the map p0 is just the
identity of BG = F0B(Q+, G) and the fibre is a point, i.e. the space Hur(R̊;Q+)1.

In the next section we will investigate the rational cohomology of B(Q+, G) using the Leray
spectral sequence associated with the filtration F• = F•B(Q+, G): the first page of this spectral
sequence contains the relative cohomology groups H∗(Fν , Fν−1), rather than the cohomology
groups of the strata Fν . To acquire information about these relative cohomology groups, we
introduce in this subsection certain subspaces F fat

ν−1 = F fat
ν−1B(Q+, G) ⊂ B(Q+, G), for ν ≥ 0. We

will prove, between this subsection and the next section, that F fat
ν−1 ⊂ Fν , that Fν−1 is contained

in the interior of F fat
ν−1 when the latter is regarded as a subspace of Fν and that the inclusion

Fν−1 ⊂ F fat
ν−1 is a homotopy equivalence. In particular, after setting ∂fatFν := Fν ∩ F fat

ν−1, we will
obtain in Lemma 6.2 an isomorphism

H∗(Fν , Fν−1) ∼= H∗(Fν , ∂fatFν).
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In this subsection we will prove that pν exhibits (Fν , ∂fatFν) as a couple of bundles over BG,
with fibre a suitable couple of spaces

(Hur(R̊;Q+)ν , ∂fat Hur(R̊;Q+)ν) =
( ∐
a∈Qν

Hur(R̊;Q+)a,
∐
a∈Qν

∂fat Hur(R̊;Q+)a

)
;

the computation of the rational cohomology H∗(Fν , ∂fatFν ; Q) will then be possible using the
Serre spectral sequence associated with pν .

Definition 5.20. Recall Definition 5.9. Denote by ∂fatR the closed neighbourhood of ∂R in
R = [0, 1]2 given by ∂fatR = R \ (zc/2 + (1/2)R̊), where zc/2 + (1/2)R̊ is the image of R̊ along
the homothety centred at zc of rescaling factor 1

2 ; in other words, zc/2 + (1/2)R̊ is the open
square of side length 1

2 centred at zc.
The identity of C induces a map

(IdC)∗ : Hur(R, ∂;Q, G)→ Hur(R, ∂fatR;Q, G).

Recall that Hur(R, ∂fatR;Q, G) has a filtration by subspaces Fν Hur(R, ∂fatR;Q, G) for ν ≥ −1;
we define F fat

ν B(Q+, G) as the intersection

F fat
ν B(Q+, G) := (IdC)−1

∗ (Fν Hur(R, ∂fatR;Q, G)) ∩ Fν+1B(Q+, G).

In particular, we have F fat−1B(Q+, G) = ∅. Roughly speaking, for c ∈ B(Q+, G), we can use
Notation 2.2 and suppose without loss of generality that {z1, . . . , zl′} = P ∩ (1/4, 3/4)2 for some
0 ≤ l′ ≤ l; if f1, . . . , fk is an admissible generating set for G(P ), then c belongs to F fat

ν B(Q+, G)
if the following hold:

•
∑l

i=1N(ψ(fi)) ≤ ν + 1, that is, c ∈ Fν+1B(Q+, G);
•

∑l′
i=1N(ψ(fi)) ≤ ν.

Another characterisation is the following: F fat
ν B(Q+, G) is the preimage of the space FνB(Q+, G)

along the restricted map HB(−, 2) : Fν+1B(Q+, G)→ B(Q+, G), see Definition 5.6. Note that, in
fact, HB(−, 2) restricts to a self-map of Fν+1B(Q+, G). By construction, we have inclusions

FνB(Q+, G) ⊂ F fat
ν B(Q+, G) ⊂ Fν+1B(Q+, G).

Notation 5.21. For a subspace X ⊆ B(Q+, G) and ν ≥ −1 we denote by F fat
ν X the intersection

X ∩ F fat
ν B(Q+, G). For ν ≥ 0 we denote by ∂fatFνX the intersection FνX ∩ F fat

ν−1X.

Example 5.22. Let a ∈ Q and let X = Hur(R̊;Q+)a; the inclusion of nice couples (R̊, ∅) ⊂ (R, ∂)
induces an inclusion of spaces X ⊂ B(Q+, G); let ν = N(a) ≥ 0 and note that Fν−1X = ∅ and,
hence, X = FνX = FνX. The space F fat

ν−1X contains all configurations c ∈ X such that, using
Notation 2.2, P intersects non-trivially ∂fatR: in fact, the condition c ∈ Hur(R̊;Q+) implies that
the monodromy ψ attains values of norm ≥ 1 (i.e. different from 1 ∈ Q) around all points of P .
The space ∂fatFνX coincides with F fat

ν−1X in this case and by abuse of notation we will also write

∂fat Hur(R̊;Q+)a = ∂fatFν Hur(R̊;Q+)a.

Example 5.23. Let X = B(Q+, G); then F fat−1X = ∂fatF0X = ∅ and F0X = BG; hence, the
identity of BG can be regarded as a pair of bundles

p0 : (F0B(Q+, G), ∂fatF0B(Q+, G) )→ BG
with fibre the couple (Hur(R̊;Q+)1, ∂fat Hur(R̊;Q+)1) = ({(∅,1,1)}, ∅). In the rest of the
subsection we generalise this example to the other strata of B(Q+, G).
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Figure 9. The configuration c from Figure 7 belongs to ∂fatFν , where ν = N(a1) +N(a2) +
N(a3), because the two points z1 and z3 lie in ∂fatR. On the right, the image of c along pν ; note
that the loop with label g4 on the left is not constructed using an arc contained in C \ R̊; as
a consequence the monodromy on right around the ‘same’ loop is changed by conjugation: we

have, in fact, g′1 = g
e(a2)(e(a3)

g
−1
5 )

4 , g′2 = g5 and g′3 = g6e(a1)e(a2)g5(e(a3)g
−1
5 ).

Fix in the following ν ≥ 1, let c ∈ FνB(Q+, G) and use Notation 2.2. Let ζ1, . . . , ζk be embed-
ded arcs in C joining ∗ with the points z1, . . . , zk of P , intersecting pairwise only at the endpoint
∗ and such that ζi ⊂ C \ R̊ for l + 1 ≤ i ≤ k. Recall that, since c ∈ B(Q+, G), the point 0 belongs
to P ; we use the convention that zk = 0. Let f1, . . . , fk be the admissible generating set of G(P )
obtained by replacing each ζi by a loop contained in a small neighbourhood of ζi and spinning
clockwise only around zi.

We define a new configuration c′ = (P ′, ψ′) ∈ BG = Hur(∂R;G)0;1 as follows:

• P ′ is the intersection P ∩ ∂R;
• ψ′ sends, for l + 1 ≤ i ≤ k − 1, the generator fi to ϕ(fi) ∈ G and it sends fk to the unique

element ψ′(fk) ∈ G such that the resulting configuration c′ = (P ′, ψ′) satisfies ω(c′) = 1 ∈ G.

Note that G is treated as a complete PMQ when defining c′. See Figure 9.

Definition 5.24. The previous assignment c → c′ defines a map of sets

pν : FνB(Q+, G)→ BG.
To check that the previous is a good definition, we need to verify that the choice of the

arcs ζ1, . . . , ζk is not relevant in computing pν(c). The generator fi is uniquely defined up to
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conjugation by a power of the element [γ] ∈ G(P ) represented by a loop γ spinning clockwise
around R. It follows that ψ(fi) is well-defined, as an element of G, up to conjugation by a
power of ψ([γ]), i.e. up to conjugation by a power of ω(c) = 1 ∈ G: here we use that the total
monodromy attains constantly the value 1 ∈ G on configurations of B(Q+, G); this shows that
ψ(fi) ∈ G is well-defined for 1 ≤ i ≤ k − 1 and ψ(fk) is also uniquely determined by the values
ψ(fi) for 1 ≤ i ≤ k − 1 and by its characterising property. Therefore, pν(c) is well-defined.

We next check that pν : FνB(Q+, G)→ BG is continuous. Roughly speaking, pν splits a
configuration in FνB(Q+, G) in two parts, the part supported on ∂R and the part supported
on R̊ and it pushes all points in the second part to 0, thus giving rise to a new configuration
supported only on ∂R. Continuity of pν depends on the fact that if we perturb a configuration
staying inside the stratum FνB(Q+, G), then no point in R̊ can collide with ∂R and vice versa
no point in ∂R can move in the interior, as this would let the internal total norm jump (down
and up, respectively). Here it is important that, working with B(Q+, G), the local monodromy
of a point lying in R̊ is required to have positive norm.

Formally, let c ∈ FνB(Q+, G) and let U be an adapted covering of P : in particular, we have
zi ∈ Ui ⊂ R̊ for all 1 ≤ i ≤ l. Denote by c′ = pν(c) ∈ BG and let U ′ be the restricted, adapted
covering of P ′, i.e. U ′ = (Ul+1, . . . , Uk). Then pν sends the intersection U(c;U) ∩ FνB(Q+, G)
inside U(c′;U ′) ⊂ BG: this essentially follows from the observation that, for c̃ = (P̃ , ψ̃, ϕ̃) ∈
U(c;U) ∩ FνB(Q+, G), we have P̃ ⊂ U1 ∪ · · · ∪ Ul ∪ (U ′ ∩ ∂R).

Notation 5.25. Let ν ≥ 0, let T ⊂ C be a contractible subspace containing ∗, let X ⊂ T̊ be a
semialgebraic subspace and let X be a subspace of HurT(X ;Q). We denote Xν =

∐
a∈Qν

(X ∩
HurT(X ;Q)a).

Proposition 5.26. The map pν : FνB(Q+, G)→ BG is a bundle map with fibre Hur(R̊;Q+)ν .
The restricted map pν : ∂fatFνB(Q+, G)→ BG is also a bundle map with fibre ∂fat Hur(R̊;Q+)ν .
The two bundles admit compatible local trivialisations, i.e. they form a couple of bundles.

Proof. Choose a small closed interval J ⊂ (0, 1)× {0} ⊂ ∂R and choose an arc ζJ joining ∗ with
the midpoint of J . Let T be the union T = R̊ ∪ J ∪ ζJ ⊂ C and note that T is contractible and
contains R̊ in its interior. We can define a map of sets

iCT : FνB(Q+, G) ∩Hur(R \ J, ∂R \ J ;Q, G)→ HurT(R̊;Q+)ν ,

in the spirit of [Bia23a, Definition 3.15]. To define this map, let

c ∈ FνB(Q+, G) ∩Hur(R \ J, ∂R \ J ;Q, G).

Using Notation 2.2, this means that c ∈ FνB(Q+, G) and the support P of c does not intersect
J . The inclusion T \ P ⊂ C \ P gives rise to an inclusion of groups GT(P ∩ R̊) ⊂ G(P ) and,
by restriction, an inclusion of PMQs QT

(R̊,∅)(P ∩ R̊) ⊂ Q(R,∂)(P ). We define iCT(c) to be the

configuration c′ = (P ′, ψ′), where P ′ = P ∩ R̊ and ψ′ : QT

(R̊,∅)(P
′)→ Q is the composition of the

above inclusion with ψ : Q(R,∂)(P )→ Q.
To show that iCT is continuous at c ∈ FνB(Q+, G) ∩Hur(R \ J, ∂R \ J ;Q, G), let U be an

adapted covering of P with U ⊂ C \ J , let c′ = iCT(c) as above and let U ′ be the restriction of U
to P ′ ⊂ P , i.e. U ′ consists of those components of U that intersect non-trivially P ′; equivalently,
U ′ consists of those components of U that are contained in R̊.

We claim that iCT sends U(c, U) ∩ FνB(Q+, G) inside U(c′, U ′) ⊂ HurT(R̊;Q+)ν ; since every
small enough adapted covering U ′ of P ′ with respect to (R̊, ∅) can be extended to an adapted
covering U of P with respect to (R \ J, ∂R \ J), the claim suffices to prove continuity of iCT .
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For the claim, let ĉ = (P̂ , ψ̂, ϕ̂) ∈ U(c, U) ∩ FνB(Q+, G); fix an admissible generating set
f1, . . . , fk of G(P ) extending an admissible generating set f1, . . . , fl of GT(P ′) and regard
f1, . . . , fk as elements of G(P̂ ) by the inclusion G(P ) ∼= G(U) ⊂ G(P̂ ). Let P̂i = P̂ ∩ Ui for all
1 ≤ i ≤ k and write P̂i = {zi,1, . . . , zi,ki}. Choose an admissible generating set (f̂i,j)1≤i≤k,1≤j≤ki

of G(P̂ ), such that the equality fi = f̂i,1 · · · · · f̂i,ki holds in G(P̂ ) for all 1 ≤ i ≤ k. The hypoth-
esis on ĉ implies that for all 1 ≤ i ≤ l the product ψ̂(f̂i,1) · · · ψ̂(f̂i,ki) is defined in Q and is equal
to ψ(fi), in particular

∑ki
j=1N(ψ̂(f̂i,j)) = N(ψ(fi)). Summing over 1 ≤ i ≤ l and recalling that

ĉ ∈ FνB(Q+, G), we obtain the equality
∑l

i=1

∑ki
j=1N(ψ̂(f̂i,j)) = ν. This implies that P̂ can only

intersect the open sets Ul+1, . . . , Uk in points of ∂R or in inert points for ĉ; since ĉ has no inert
point, we have that P̂ is contained in the union ∂R∪ U ′. It follows that ĉ′ = iCT(ĉ) is supported
on U ′; the fact that ĉ′ is contained in U(c′, U ′) follows now directly from the definition of iCT and
from the already mentioned equalities ψ̂(f̂i,1) · · · · · ψ̂(f̂i,ki) = ψ(fi) for 1 ≤ i ≤ l.

Now note that the intersection FνB(Q+, G) ∩Hur(R \ J, ∂R \ J ;Q, G) is precisely the preim-
age along pν of the open subspace Hur(∂R \ J ;G)0;1 ⊂ BG. The product map pν × iCT gives a
homeomorphism

pν × iCT : p−1
ν (Hur(∂R \ J ;G)0;1) ∼= Hur(∂R \ J ;G)0;1 ×HurT(R̊;Q+)ν .

Since the open sets Hur(∂R \ J ;G)0;1 form an open covering of BG, for varying J , we obtain that
pν is a bundle map, i.e. it admits local trivialisations. The fibre of the bundle is homeomorphic
to the space Hur(R̊;Q+)ν .

The local trivialisation pν × iCT restricts to a local trivialisation of the restriction of pν to
∂fat FνB(Q+, G) ⊂ FνB(Q+, G), with restricted fibre ∂fat Hur(R̊;Q+)ν . �

6. Rational cohomology

In this section we assume that Q is a finite, Q-Poincaré PMQ and G is a finite group
and compute the rational cohomology of B(Q+, G). Recall from [Bia23a, Definition] that a
PMQ Q is Q-Poincaré if Q is locally finite and for all a ∈ Q the space Hur(R̊;Q+)a is a Q-
homology manifold of some dimension: in this case Q admits an intrinsic norm h : Q → N and
Hur(R̊;Q+)a is an orientable Q-homology manifold of dimension 2h(a) for all a ∈ Q. See [Bia23a,
Proposition 9.7].

Our interest for the space B(Q+, G) and its cohomology comes from Theorem 4.22 and
Proposition 5.5, relating B(Q+, G) to the topological monoid H̊M(Q). Note that, for a fixed PMQ
Q, we are free to choose a group G completing Q to a PMQ–group pair (Q, G, e, r). If Q is finite
we can, for instance, take G = G(Q)/K(Q), which is a finite group; here K(Q) denotes the kernel
of the map ρ : G(Q)→ AutPMQ(Q)op, giving the right action of G(Q) on Q by conjugation: if
Q is finite, then AutPMQ(Q)op is also finite and contains a subgroup isomorphic to G(Q)/K(Q).
See also [Bia21, Lemma 2.13]. Thus, if we are given a finite, Q-Poincaré PMQ Q, we can complete
Q to a PMQ–group pair by adjoining a suitable finite group G.

Recall from [Bia21, Definition 4.29] that A(Q) ⊂ Q[Q] is defined as the subring of the
PMQ–group ring Q[Q] consisting of the invariants under conjugation by G:

A(Q) = Q[Q]G.

As a Q-vector space, A(Q) is spanned by elements [[S]] =
∑

a∈S [[a]], for each conjugacy class
S ⊂ Q. In this section we consider Q[Q]G as a graded, associative ring, by putting the generator
[[a]] in degree 2h(a), for all a ∈ Q; similarly A(Q) is a graded ring with [[S]] in degree 2h(a), for
any a ∈ S. By [Bia21, Lemma 4.31] the ring A(Q) is a commutative ring, hence by our choice of
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degrees it is a graded-commutative ring, supported in even degrees. We will prove the following
theorem.

Theorem 6.1. Let (Q, G) be a PMQ–group pair with Q finite and Q-Poincaré and with G
finite. Then there is an isomorphism of rings

H∗(B(Q+, G); Q) ∼= A(Q).

In this entire section we use the abbreviation B = B(Q+, G).

6.1 Two spectral sequence arguments
Since the space B is equipped with a filtration by subspaces FνB, we can compute H∗(B; Q) by
the associated Leray spectral sequence, whose first page reads Ep,ν1 = Hp+ν(FνB, Fν−1B).

Lemma 6.2. For ν ≥ 0 the inclusion Fν−1B ⊂ F fat
ν−1B is a homotopy equivalence. Moreover, we

have cohomology isomorphisms

H∗(FνB, Fν−1B; Q) ∼= H∗(FνB, F fat
ν−1B; Q) ∼= H∗(FνB, ∂fatFνB; Q).

Proof. Recall Definitions 5.6 and 5.7. For c ∈ FνB let Wν(c) be the supremum in [1/2, 1] of all
1/2 < ε < 1 for which HB∗ (c, 1/ε) ∈ Fν−1B. We define a homotopy

HB
ν : FνB× [0, 1]→ FνB, (c, s) → HB

∗

(
c, 1− s+

s

Wν(c)

)
.

The homotopy HB
ν restricts to a deformation retraction of F fat

ν−1B onto Fν−1B, whence the first
cohomology isomorphism follows. The second cohomology isomorphism follows from excision: in
fact, Fν−1B = (Wν)−1(1) and the open set (Wν)−1((1/2, 1]) is contained in F fat

ν−1(B), so we can
apply excision. �

We can now focus on the relative cohomology groups H∗(FνB, ∂fatFνB; Q).

Proposition 6.3. For ν ≥ 0, the cohomology groups H∗(FνB, ∂fatFνB; Q) are concentrated in
degree ∗ = 2ν; the group H2ν(FνB, ∂fatFνB; Q) is isomorphic to A(Q)2ν , i.e. the degree-2ν part
of A(Q).

Proof. We use the Serre spectral sequence E(ν) associated with the couple of bundles
pν : (FνB, ∂fatFνB)→ BG: its second page reads

E(ν)p,q2 = Hp(BG;Hq(Hur(R̊;Q+)ν , ∂fat Hur(R̊;Q+)ν ; Q)).

The first step is to compute H∗(Hur(R̊;Q+)a, ∂fat Hur(R̊;Q+)a; Q) for a ∈ Qν and the argu-
ment for this will be similar to the proof of Lemma 6.2. Consider the closed unit square R and
define ∂fat Hur(R;Q+)a := Hur(R;Q+)a \Hur((zc/2 + (1/2)R̊);Q+)a and ∂Hur(R;Q+)a :=
Hur(R;Q+)a \Hur(R̊;Q+)a. The subspace ∂fat Hur(R;Q+)a ⊂ Hur(R;Q+)a contains config-
urations whose support intersects ∂fatR (see Definition 5.20), whereas ∂Hur(R;Q+)a ⊂
Hur(R;Q+)a contains configurations whose support intersects ∂R.

Recall Definition 5.6: for all s ≥ 1 the map HB(−, s) : C→ C is a lax endomorphism of the
nice couple (R, ∅); if we consider Hur(R;Q+)a as a connected component of Hur(R; Q̂+), under
the inclusion Q ⊂ Q̂, we obtain by functoriality a homotopy

HB
∗ : Hur(R;Q+)a × [1,∞)→ Hur(R;Q+)a.
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For c ∈ Hur(R;Q+)a denote by Wa(c) the supremum in [1/2, 1] of all 1/2 < ε < 1 for which
HB∗ (c, 1/ε) ∈ ∂Hur(R;Q+)a. We define a homotopy

HB
a : Hur(R;Q+)a × [0, 1]→ Hur(R;Q+)a, (c, s) → HB

∗

(
c, 1− s+

s

Wa(c)

)
.

The homotopy HB
a restricts to a deformation retraction of ∂fat Hur(R;Q+)a onto ∂Hur(R;Q+)a;

moreover, the subspace ∂Hur(R;Q+)a of Hur(R;Q+)a is contained in the interior of
∂fat Hur(R;Q+)a and

∂fat Hur(R;Q+)a \ ∂Hur(R;Q+)a = ∂fat Hur(R̊;Q+)a.

We thus obtain cohomology isomorphisms

H∗(Hur(R̊;Q+)a, ∂fat Hur(R̊;Q+)a; Q) ∼= H∗(Hur(R;Q+)a, ∂fat Hur(R;Q+)a; Q)
∼= H∗(Hur(R;Q+)a, ∂Hur(R;Q+)a; Q).

Since Q is Q-Poincaré, as a consequence of [Bia23a, Lemma 9.5 and Proposition 9.7] the coho-
mology H∗(Hur(R;Q+)a, ∂Hur(R;Q+)a; Q) vanishes in degrees ∗ �= 2ν = 2h(a) and it is equal
to Q in degree ∗ = 2ν. Going back to the Serre spectral sequence, the group E(ν)p,q2 vanishes
for q �= 2ν and E(ν)p,2ν2 is equal to the twisted cohomology group Hp(BG;⊕a∈Qν Q); this already
shows that the spectral sequence collapses on its second page. Moreover, since G is a finite group
and we are considering twisted cohomology with coefficients in a G-representation over Q, all
cohomology groups except possibly H0 vanish, i.e. the entire page E(ν)2 vanishes except possibly
E(ν)0,2ν2 = H0(BG;

⊕
a∈Qν

Q).
The action of G on

⊕
a∈Qν

Q is the Q-linearisation of the action of G on the set Qν by
conjugation; the invariants of the action of G on

⊕
a∈Qν

Q are therefore the Q-vector space
spanned by conjugacy classes of Q of norm ν: this vector space is isomorphic to the degree-2ν
part of A(Q). �

Proposition 6.3 implies that the E1-page of the Leray spectral sequence associated with the
filtered space B is supported on the main diagonal, i.e. Ep,ν1 = 0 whenever p �= ν. This implies
that the spectral sequence collapses on its first page and, thus, we obtain an isomorphism of
graded Q-vector spaces

H∗(B(Q+, G); Q) ∼= A(Q).

It will be convenient to specify a particular isomorphism of graded Q-vector spaces. Recall that,
since Q is Q-Poincaré, it is locally finite and coconnected; in particular, for all ν ≥ 0 and for all
b ∈ Qν there is a canonical fundamental class

[Arr(Q)b,NAdm(Q)b] ∈ H2ν(|Arr(Q)b|, |NAdm(Q)b|; Q),

see [Bia21, Definition 6.25]. Recall also the map of pairs

υ = υb : (|Arr(Q)b|, |NAdm(Q)b|)→ (Hur(R;Q+)b; ∂Hur(R;Q+)b);

by [Bia23a, Lemma 8.23] υ is a continuous bijection and the hypothesis that Q is locally finite
implies that |Arr(Q)b| is compact, hence υb is a homeomorphism. We thus obtain a fundamental
class

[Hur(R;Q+)b; ∂Hur(R;Q+)b] ∈ H2ν(Hur(R;Q+)b; ∂Hur(R;Q+)b; Q).

Using the homotopy equivalences of pairs

(Hur(R;Q+)b; ∂Hur(R;Q+)b) 	 (Hur(R;Q+)b; ∂fat Hur(R;Q+)b)
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and excision we obtain a fundamental class

[Hur(R̊;Q+)b; ∂fat Hur(R̊;Q+)b] ∈ H2ν(Hur(R̊;Q+)b; ∂fat Hur(R̊;Q+)b; Q).

Notation 6.4. Let [[S]] ∈ A(Q)2ν be the generator corresponding to the conjugacy class S ⊂ Qν .
We regard [[S]] as the (unique) cohomology class

[[S]] ∈ H2ν(Hur(R̊;Q+)ν , ∂fat Hur(R̊;Q+)ν ; Q)

satisfying the following property: for all b ∈ Qν , the Kronecker pairing of [[S]] with the
fundamental homology class [Hur(R̊;Q+)b, ∂fat Hur(R̊;Q+)b] is 1 if b ∈ S and is 0 if b /∈ S.

Note that [[S]] is invariant under the action of G by conjugation, hence [[S]] corresponds
to a cohomology class in H2ν(FνB, ∂fatFνB; Q), which we also denote [[S]]. Finally, we use the
canonical isomorphisms

H2ν(FνB, ∂fatFνB; Q)
∼=← H2ν(FνB, ∂fatF fat

ν−1B; Q)
∼=→ H2ν(FνB; Q)

∼=← H2ν(B; Q)

to regard [[S]] as a cohomology class in H2ν(B(Q+, G); Q).

6.2 A strategy to compute the cup product
We fix ν, ν ′ ≥ 0 throughout the rest of the section; our aim is to compute the cup prod-
uct H2ν(B; Q)⊗H2ν′(B; Q)→ H2ν+2ν′(B; Q). We fix [[S]] ∈ H2ν(B; Q) and [[S′]] ∈ H2ν′(B; Q):
our aim is to express the cup product [[S]] � [[S′]] ∈ H2ν+2ν′(B; Q) as a linear combination of
generators [[T ]], for T varying among conjugacy classes of Q contained in Qν+ν′ .

The restriction map H∗(B; Q)→ H∗(Fν+ν′B; Q) is an isomorphism in degrees ∗ ≤ 2ν + 2ν′:
therefore, it suffices to compute the cup product H2ν ⊗H2ν′ → H2ν+2ν′ for the space Fν+ν′B.
In the rest of the subsection we use the abbreviation F• = F•B.

The argument to compute the cup product on Fν+ν′ is based on certain subspaces Flr, F fat
l

and F fat
r of Fν+ν′ ; there are inclusions Fν+ν′−1 ⊂ Flr as well as Fν−1 ⊂ F fat

l and Fν′−1 ⊂ F fat
r

and we will prove that the last two inclusions are, in fact, homotopy equivalences. Postponing
the actual definition of Flr, F fat

l and F fat
r , we introduce some notation.

Notation 6.5. We introduce several subspaces of Fν+ν′ :

F fat
lr = F fat

l ∪ F fat
r ; Fν,ν′ = Fν+ν′ \ Flr;

∂fat
l Fν+ν′ = Fν+ν′ ∩ F fat

l ; ∂fat
r Fν+ν′ = Fν+ν′ ∩ F fat

r ; ∂fat
lr Fν+ν′ = Fν+ν′ ∩ F fat

lr ;

∂fat
l Fν,ν′ = Fν,ν′ ∩ F fat

l ; ∂fat
r Fν,ν′ = Fν,ν′ ∩ F fat

r ; ∂fat
lr Fν,ν′ = Fν,ν′ ∩ F fat

lr .

There is the following square of inclusions of subspaces, where both horizontal arrows are
inclusions of a closed subspace of Fν+ν′ in the interior of a larger subspace of Fν+ν′ :

This implies that the inclusions of couples (Fν+ν′ , ∂fat
lr Fν+ν′) ⊂ (Fν+ν′ , F fat

lr ) and (Fν,ν′ , ∂fat
lr Fν,ν′) ⊂

(Fν+ν′ , F fat
lr ) satisfy excision. Finally, the bundle projection pν+ν′ : Fν+ν′ → BG exhibits also the

subspaces ∂fat
l Fν+ν′ , ∂fat

r Fν+ν′ , ∂fat
lr Fν+ν′ , Fν,ν′ , ∂fat

l Fν,ν′ , ∂fat
r Fν,ν′ and ∂fat

lr Fν,ν′ as bundles over
BG, with suitable fibres: local trivialisations for these bundles can be obtained by restricting the
local trivialisations of pν+ν′ given in the proof of Proposition 5.26.
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The previous technical results will allow us to write two commutative diagrams of cohomol-
ogy groups, where we understand Q-coefficients for cohomology. We state the two diagrams as
propositions for future reference.

Proposition 6.6. There is a commutative diagram of cohomology groups as follows.

We will consider [[S]]⊗ [[S′]] as an element in H2ν(Fν+ν′ , F fat
l )⊗H2ν′(Fν+ν′ , F fat

r ) in the
previous diagram and compute explicitly the image of the cup product [[S]] � [[S′]] in
H2ν+2ν′(Fν+ν′ , ∂fat

lr Fν+ν′) ∼= H2ν+2ν′(Fν,ν′ , ∂fat
lr Fν,ν′).

Proposition 6.7. There is a commutative diagram of cohomology groups as follows.

We will compute the image along the natural map θ of [[S]] � [[S′]] and identify it with the
class [[S]] · [[S′]] ∈ A(Q)2ν+2ν′ .

6.3 Proof of Propositions 6.6 and 6.7
Definition 6.8. Recall Definition 5.20. We let zc,l = 2/7 +

√−1/2 and zc,r = 5/7 +
√−1/2;

note that the homothety centred at zc,l with rescaling factor 1/4 maps R̊ to the open square
(1/4, 3/8)× (7/16, 9/16), i.e. (1/4, 3/8)× (7/16, 9/16) = 7zc,l/8 + (1/8)R̊; similarly (5/8, 3/4)×
(7/16, 9/16) = 7zc,r/8 + (1/8)R̊. See Figure 10.

For • = l, r, we define a subspace ∂fat• R of R by ∂fat• R := R \ (7zc,•/8 + (1/8)R̊). The iden-
tity of C is a map of nice couples (R, ∂R)→ (R, ∂fat• R), giving rise to a map (IdC)∗ : Fν+ν′ =
Fν+ν′B→ Hur(R, ∂fat• R;Q, G). Recall Definition 5.9: we define F fat

l ⊂ Fν+ν′ as the preimage
along (IdC)∗ of Fν−1 Hur(R, ∂fat

l R;Q, G) and, respectively, F fat
r ⊂ Fν+ν′ as the preimage along

(IdC)∗ of Fν′−1 Hur(R, ∂fat
r R;Q, G).

Roughly speaking, a configuration c = (P, ψ, ϕ) ∈ Fν+ν′ lies in F fat
l if the sum of the norms

of the values of the monodromy ψ around points of P lying in the open square (1/4, 3/8)×
(7/16, 9/16) does not exceed ν − 1; similarly for F fat

r , referring to the open square (5/8, 3/4)×
(7/16, 9/16) and replacing the threshold ν − 1 with ν′ − 1. To keep the notation simple, we avoid
adding the indices ν and ν ′ to F fat

l and F fat
r . Note that Fν−1 ⊂ F fat

l and Fν′−1 ⊂ F fat
r .
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Figure 10. The complement of the left (respectively, right) white square is ∂fat
l R (respectively,

∂fat
r R), whereas the total grey area is ∂fatR; the dotted vertical line splits the total grey area

into ∂fatRl and ∂fatRr.

Lemma 6.9. The inclusions Fν−1 ⊂ F fat
l and Fν′−1 ⊂ F fat

r are homotopy equivalences.

Proof. We focus on the inclusion Fν−1 ⊂ F fat
l , the other one being analogous. Recall

Definition 5.6 and the proof of Lemma 6.2. For c ∈ Fν+ν′ we denote by Wl,ν(c) the supremum in
[1/8, 1] of all 1/8 < ε < 1 for which (HB

zc,l
)∗(c, 1/ε) ∈ Fν−1B. We define a homotopy

HB
l,ν : Fν+ν′ × [0, 1]→ Fν+ν′ , (c, s) → (HB

zc,l

)
∗

(
c, 1− s+

s

Wl,ν(c)

)
.

The homotopy HB
l,ν restricts to a deformation retraction of F fat

l onto Fν−1. �

Lemma 6.9 implies the top left isomorphism in Proposition 6.6.

Lemma 6.10. The space F fat
ν+ν′−1 is contained in the union F fat

l ∪ F fat
r .

Proof. Let c ∈ F fat
ν+ν′−1, use Notation 2.2 and for • = l, r denote by P• ⊂ P the intersection of P

with the open square (7zc,•/8 + (1/8)R̊). Without loss of generality, we may assume that there
are indices 0 ≤ l′ ≤ l′′ ≤ l such that Pl = {z1, . . . , zl′} and Pr = {zl′+1, . . . , zl′′}. Let f1, . . . , fk
be an admissible generating set. Then the hypothesis c ∈ F fat

ν+ν′−1, together with the fact that
(7zc,l/8 + (1/8)R̊) and (7zc,r/8 + (1/8)R̊) are disjoint and contained in (zc/2 + (1/2)R̊), implies
the inequality

l′∑
i=1

N(ψ(fi)) +
l′′∑

i=l′+1

N(ψ(fi)) ≤ ν + ν ′ − 1.

It follows that at least one of the following two inequalities holds:

l′∑
i=1

N(ψ(fi)) ≤ ν − 1,
l′′∑

i=l′+1

N(ψ(fi)) ≤ ν ′ − 1;

the first inequality implies c ∈ F fat
l , the second implies c ∈ F fat

r . �

1699

https://doi.org/10.1112/S0010437X2400719X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400719X


A. Bianchi

Notation 6.11. We introduce several subspaces of R, see Figure 10:

Rl = [0, 1/2]× [0, 1], Rr = [1/2, 1]× [0, 1],

R̊l = (0, 1/2)× (0, 1), Rr = (1/2, 1)× (0, 1),

∂Rl = Rl \ R̊l, ∂Rr = Rr \ R̊r,

∂fatRl = Rl

∖(
7zc,l
8

+
1
8
R̊

)
, ∂fatRl = Rl

∖(
7zc,l
8

+
1
8
R̊

)
,

∂fatR̊l = R̊l

∖(
7zc,l
8

+
1
8
R̊

)
, ∂fatR̊l = R̊l

∖(
7zc,l
8

+
1
8
R̊

)
.

Definition 6.12. Recall Definition 5.9. The identity of C induces maps of nice couples (R; ∂)→
(R,R \ R̊l) and (R; ∂)→ (R,R \ R̊r). We define Flr ⊂ Fν+ν′ as the subspace of configurations
c such that at least one of the following conditions holds:

• (IdC)∗(c) ∈ Hur(R,R \ R̊l;Q+, G) has norm ≤ ν − 1;
• (IdC)∗(c) ∈ Hur(R,R \ R̊r;Q+, G) has norm ≤ ν ′ − 1.

Roughly speaking, the complement Fν,ν′ of Flr in Fν+ν′ contains those configurations
c = (P, ψ, ϕ) such that P ⊂ R̊ \ {1/2} × (0, 1), the sum of the norms of the values of ψ around
points of P ∩ R̊l is equal to ν and the sum of the norms of the values of ψ around points of
P ∩ R̊r is equal to ν ′.

Lemma 6.13. The space Flr is contained in the interior of F fat
lr , considered as subspace of Fν+ν′ .

Proof. Given c = (P, ψ, ϕ) ∈ Flr, it suffices to note that for any adapted covering U of P with
the sets Ui of diameter at most 1/8, the restricted normal neighbourhood U(c;U) ∩ Fν+ν′ is
contained in F fat

lr . �

Lemma 6.13 implies, together with the inclusion Fν+ν′−1 ⊂ Flr, that the couple (Fν+ν′ , F fat
lr )

satisfies excision with respect to the subspaces Fν+ν′−1 and Flr, i.e. the two bottom right vertical
isomorphisms in Proposition 6.6 hold. This concludes the proof of Proposition 6.6.

In the same way, the two bottom vertical isomorphisms of Proposition 6.7 follow from excision
of the subspace Fν+ν′−1, whereas the top diagonal isomorphism follows from the computation of
H∗(B; Q) using the Leray spectral sequence. This concludes also the proof of Proposition 6.7.

6.4 Conclusion of the proof of Theorem 6.1
As remarked already, pν+ν′ exhibits all subspaces of Fν+ν′ occurring in the bottom rows
of Propositions 6.6 and 6.7 as bundles over BG: the proof of Proposition 5.26 provides local
trivialisations also for these bundles. Our next aim is to compute the cohomology groups of
these bundles and of the couples of bundles they form.

Definition 6.14. For ν, ν ′ ≥ 0 we denote by Qν,ν′ ⊂ Qν ×Qν′ the subset of couples (a, b) for
which the product ab is defined in Q. We set

Hur(R̊;Q+)ν,ν′ :=
∐

(a,b)∈Qν,ν′

Hur(R̊l;Q+)a ×Hur(R̊r;Q+)b.
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We regard Hur(R̊;Q+)ν,ν′ as a subspace of Hur(R̊;Q+)ν+ν′ by regarding each product
Hur(R̊l;Q+)a ×Hur(R̊r;Q+)b as a subspace of Hur(R̊;Q+)ab under the inclusion given by

The generic fibre of the bundle pν+ν′ : Fν,ν′ → BG is homeomorphic to the space
Hur(R̊;Q+)ν,ν′ . To see this, note that the same argument of the proof of Proposition 5.26
identifies the fibre of pν+ν′ : Fν,ν′ → BG with the subspace of Hur(R̊l ∪ R̊r;Q+)ν+ν′ containing
configurations c with the following properties:

• iCS0,1/2
sends c to a configuration in HurS0,1/2(R̊l;Q+) with total monodromy in Qν ;

• iCS1/2,1
sends c to a configuration in HurS1/2,1(R̊r;Q+) with total monodromy in Qν′ ;

• the product of the elements ω(iCS0,1/2
(c)) and ω(iCS1/2,1

(c)) is defined in Q.

We can further identify the fibres of the following restrictions of pν+ν′ :

• the fibre of Fν,ν′ → BG is identified with Hur(R̊;Q+)ν,ν′ , as already mentioned;
• the fibre of ∂fat

l Fν,ν′ → BG is identified with the intersection of Hur(R̊;Q+)ν,ν′ with the
product ∂fat Hur(R̊l;Q+)ν ×Hur(R̊r;Q+)ν′ , i.e. with the space

∂fat
l Hur(R̊;Q+)ν,ν′ :=

∐
(a,b)∈Qν,ν′

∂fat Hur(R̊l;Q+)a ×Hur(R̊r;Q+)b,

where ∂fat Hur(R̊l;Q+)a := Hur(R̊l;Q+)a \Hur(7zc,l/8 + (1/8)R̊;Q+)a;
• the fibre of ∂fat

r Fν,ν′ → BG is identified with the intersection of Hur(R̊;Q+)ν,ν′ with the
product Hur(R̊l;Q+)ν × ∂fat Hur(R̊r;Q+)ν′ , i.e. with the space

∂fat
r Hur(R̊;Q+)ν,ν′ :=

∐
(a,b)∈Qν,ν′

Hur(R̊;Q+)a × ∂fat Hur(R̊;Q+)b,

where ∂fat Hur(R̊r;Q+)b := Hur(R̊r;Q+)b \Hur(7zc,r/8 + (1/8)R̊;Q+)b;
• the fibre of ∂fat

lr Fν,ν′ → BG is identified with the union ∂fat
lr Hur(R̊;Q+)ν,ν′ := ∂fat

l Hur(R̊;
Q+)ν,ν′ ∪ ∂fat

r Hur(R̊;Q+)ν,ν′ .

By using functoriality with respect to suitable semialgebraic homeomorphisms of C, we can
identify the couples of spaces

(Hur(R̊l;Q+)a, ∂fat Hur(R̊l;Q+)a) ∼= (Hur(R̊;Q+)a, ∂fat Hur(R̊;Q+)a);

(Hur(R̊r;Q+)b, ∂fat Hur(R̊r;Q+)b) ∼= (Hur(R̊;Q+)b, ∂fat Hur(R̊;Q+)b).

Notation 6.15. For d ≥ 0 we denote by Q〈Qν,ν′〉[d] the graded Q-vector space concentrated in
degree d, with basis the set Qν,ν′ .

For d, d′ ≥ 0 we denote by μν,ν′ : Q〈Qν,ν′〉[d]⊗Q〈Qν,ν′〉[d′]→ Q〈Qν,ν′〉[d+ d′] the pairing
given by (a, b)⊗ (a, b) → (a, b) for (a, b) ∈ Qν,ν′ and (a, b)⊗ (a′, b′) → 0 for (a, b) �= (a′, b′) ∈
Qν,ν′ .
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Consider the bottom row of Proposition 6.6: all groups involved are cohomology groups of
couples of bundles over BG. The cup product on fibres reads as follows, where we simplify the
notation by writing Hur for Hur(R̊;Q+):

Notation 6.16. For a ∈ Qν we denote by cl,a ∈ Hur(R̊l;Q+)a the unique configuration sup-
ported on {zc,l}; similarly, for b ∈ Qν′ we denote by cr,b ∈ Hur(R̊r;Q+)b the unique configuration
supported on {zc,r}.

The three cohomology groups in the top row of the previous diagram have bases in
bijection with the set Qν,ν′ . For instance, H2ν(Hurν,ν′ , ∂fat

l )) has a basis given by the coho-
mology duals of the homology classes [Hur(R̊l;Q+)a, ∂fat]⊗ [cr,b]. Here [Hur(R̊l;Q+)a, ∂fat] ∈
H2ν(Hur(R̊l;Q+)a, ∂fat; Q) is the fundamental homology class and [cr,b] ∈ H0(Hur(R̊r;Q+)b; Q)
denotes the ‘ground’ homology class.

A similar description gives a basis for H2ν′(Hurν,ν′ , ∂fat
r ) in bijection with Qν,ν′ ,

whereas for H2ν+2ν′(Hurν,ν′ , ∂fat
lr ) we consider the cohomology duals of the homology classes

[Hur(R̊l;Q+)a, ∂fat]⊗ [Hur(R̊r;Q+)b, ∂fat]. Taking G-invariants, we obtain an explicit computa-
tion of the bottom row of Proposition 6.6 as follows:

Lemma 6.17. Let S ⊂ Qν be a conjugacy class of Q and consider [[S]] as a cohomology class
in the group ∈ H2ν(Fν+ν′ , F fat

l ) ∼= H2ν(Fν+ν′ , Fν−1) ∼= H2ν(Fν+ν′); the restriction of [[S]] to
H2ν(Fν,ν′ , ∂fat

l Fν,ν′) is the element ∑
(a,b)∈Qν,ν′∩S×Qν′

(a, b) ∈ Q〈Qν,ν′〉[2ν].

Similarly, for a conjugacy class S′ ⊂ Qν′ , the class [[S′]] ∈ H2ν′(Fν+ν′ , F fat
r ) restricts to∑

(a,b)∈Qν,ν′∩Qν×S′
(a, b) ∈ Q〈Qν,ν′〉[2ν ′] ∼= H2ν′(Fν,ν′ , ∂fat

r Fν,ν′).

Proof. We focus on the first part of the statement, the second being analogous. Fix (a, b) ∈ Qν,ν′ ;
the couple of spaces (Hur(R̊l;Q+)a, ∂fat)× cr,b can be embedded into the couple of bundles
(Fν,ν′ , ∂fat

l Fν,ν′) as part of the fibre over the basepoint of BG. We consider the homology class

[Hur(R̊l;Q+)a, ∂fat]⊗ [cr,b] ∈ H2ν(Fν,ν′ , ∂fat
l Fν,ν′ ; Q);

such classes generate the group H2ν(Fν,ν′ , ∂fat
l Fν,ν′ ; Q), so in order to identify the restriction of

[[S]] ∈ H2ν(Fν+ν′ , F fat
l ; Q) to H2ν(Fν,ν′ , ∂fat

l Fν,ν′ ; Q), it suffices to compute the Kronecker pairing
of the restricted [[S]] with all homology classes of the form [Hur(R̊l;Q+)a, ∂fat]⊗ [cr,b]. Let j be
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the composite

j : (Hur(R̊l;Q+)a, ∂fat)× {cr,b} ↪→ (Fν,ν′ , ∂fat
l Fν,ν′) ⊂ (Fν+ν′ , F fat

l );

then we can also consider the homology class j∗([Hur(R̊l;Q+)a, ∂fat]⊗ [cr,b]) inH2ν(Fν+ν′ , F fat
l ; Q)

and compute its Kronecker pairing with [[S]].
Fix a homotopy H : C× [0, 1]→ C with the following properties:

• for all 0 ≤ s ≤ 1, H(−, s) is a semialgebraic self-map of C fixing C \ R̊ pointwise and sending
∂fat

l R into itself;
• H(−, 0) is the identity of C;
• H(−, 1) restricts to a homeomorphism of couples (R̊l, ∂fatR̊l)

∼=→ (R̊, ∂fatR̊) and it sends zc,r →
zr�.

Then H induces a homotopy of maps of couples

H∗ : (Fν+ν′ , F fat
l )× [0, 1]→ (Fν+ν′ , F fat

l ),

and composing this homotopy with j we obtain a homotopy of maps of couples

H = H ◦ (j× Id) : (Hur(R̊l;Q+)a, ∂fat)× {cr,b} × [0, 1]→ (Fν+ν′ , F fat
l ).

Since H(−, 0) = j, we have

j∗([Hur(R̊l;Q+)a, ∂fat]⊗ [cr,b]) = H(−, 1)∗([Hur(R̊l;Q+)a, ∂fat]⊗ [cr,b]),

so we can focus on the Kronecker pairing of the latter homology class with [[S]].
Now note that, by construction, H(−, 1) can be considered as a map of couples

(Hur(R̊l;Q+)a, ∂fat)× {cr,b} → (Fν , ∂fatFν) ⊂ (Fν+ν′ , F fat
l );

more precisely H(−, 1) restricts to a homeomorphism of (Hur(R̊l;Q+)a, ∂fat)× {cr,b} onto
(Hur(R̊;Q+)a, ∂fat), where the latter couple is considered as part of the fibre of pν : (Fν , ∂fatFν)→
BG over the unique configuration cr,e(b) = (P, ψ) satisfying the following properties:

• cr,e(b) is supported on the set P = {0, zr�};
• if γ is a simple loop in S0,∞ spinning clockwise around zr�, then ψ([γ]) = e(b) ∈ G.

It follows that H(−, 1)∗([Hur(R̊l;Q+)a, ∂fat]⊗ [cr,b]) is the image of the homology class
[Hur(R̊;Q+)a, ∂fat] ∈ H2ν(Fν , ∂fatFν) under the inclusion (Fν , ∂fatFν) ⊂ (Fν+ν′ , F fat

l ); the
Kronecker pairing of the latter class with [[S]] is 1 if and only if a belongs to S. �

Lemma 6.17 implies that for S ⊂ Qν and S′ ⊂ Qν′ , the restriction of the cup product
[[S]] � [[S′]] to the cohomology group in the bottom right corner of Proposition 6.6, can be
identified with the G-invariant element∑

(a,b)∈Qν,ν′∩S×S′
(a, b) ∈ (Q〈Qν,ν′〉[2ν + 2ν ′])G ∼= H2ν+2ν′(Fν,ν′ , ∂fat

lr Fν,ν′ ; Q).

The following lemma concludes the proof of Theorem 6.1.

Lemma 6.18. There is a commutative diagram
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Here the vertical maps are the canonical isomorphisms, given by the bases of the top homology
groups of elements of the form [Hur(R̊l;Q+)a, ∂fat]⊗ [Hur(R̊r;Q+)b, ∂fat], for (a, b) ∈ Qν,ν′ and,

respectively, of the form [Hur(R̊;Q+)c, ∂fat], for c ∈ Qν+ν′ . Moreover, [[−]] · [[−]] denotes the map
(a, b) → [[a]] · [[b]]. Passing to G-invariants, we obtain the following commutative diagram:

Proof. We first argue that commutativity of the first diagram implies commutativity of the
second. The Serre spectral sequences computing the cohomology of the couples of bundles
(Fν+ν′ , ∂fat

lr Fν+ν′) and (Fν+ν′ , ∂fatFν+ν′) have both a second page concentrated in the single
entry in position (0, 2ν + ν ′), with value, respectively, the G-invariants

H2ν+2ν′(Hur(R̊;Q+)ν+ν′ , ∂fat
lr ; Q)G and H2ν+2ν′(Hur(R̊;Q+), ∂fat); Q)G.

This implies that the spectral sequences collapse and that the top row of the second diagram
is obtained from the top row of the first diagram by taking G-invariants. This, together with
the fact that all arrows in the first diagram are G-equivariant, shows that the second diagram is
obtained from the first by taking G-invariants.

It suffices therefore to prove commutativity of the first diagram. Recall that Hur(R̊;Q+)ν+ν′
is an orientable Q-homology manifold; moreover, both differences Hur(R̊;Q+)ν+ν′ \
∂fat

lr Hur(R̊;Q+)ν+ν′ and Hur(R̊;Q+)ν+ν′ \ ∂fat Hur(R̊;Q+)ν+ν′ are relatively compact inside
Hur(R̊;Q+)ν+ν′ . We can therefore apply Poincaré–Lefschetz duality and reduce to proving
commutativity of the following diagram, where we use the abbreviation Hur for Hur(R̊;Q+):

Here the bottom right group is abstractly isomorphic to Q[Q]2ν+2ν′ , but lives naturally in degree
0. The vertical isomorphisms are given as follows:

• the left vertical map comes from the identification of Hurν+ν′ \ ∂fat
lr Hurν+ν′ with∐

(a,b)∈Qν,ν′

Hur
(

7zc,l
8

+
1
8
R̊;Q+

)
a

×Hur
(

7zc,r
8

+
1
8
R̊;Q+

)
b

induced by the maps iCS0,1/2
and iCS1/2,1

; the second space has connected components in bijection
with Qν,ν′ , by taking the total monodromies of the two factors;

• the right vertical map comes from the identification of Hurν+ν′ \ ∂fat Hurν+ν′ with

Hur
(
zc
2

+
1
2
R̊;Q+

)
ν+ν′

;

the second space has connected components in bijection with Qν+ν′ by taking the total
monodromy.

Commutativity of the last diagram follows from the observation that for all (a, b) ∈ Qν,ν′ ,
if we set c = ab ∈ Q, then the inclusion of Hurν+ν′ \ ∂fat

lr Hurν+ν′ into Hurν+ν′ \ ∂fat Hurν+ν′
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restricts to an inclusion

Hur
(

7zc,l
8

+
1
8
R̊;Q+

)
a

×Hur
(

7zc,r
8

+
1
8
R̊;Q+

)
b

⊂ Hur
(
zc
2

+
1
2
R̊;Q+

)
c

. �

6.5 Stable rational cohomology of classical Hurwitz spaces
We apply Theorem 6.1 in the case of a finite PMQ Q with trivial multiplication: recall from
[Bia21, Example 6.20] that every PMQ with trivial product is Poincaré, in particular it is Q-
Poincaré. The algebra A(Q) is isomorphic in this case to Q[xS |S ∈ conj(Q+)]/(x2

S), i.e. the
quotient of the polynomial ring over Q with one variable xS in degree two for each conjugacy
class S ⊂ Q+, modulo the ideal generated by the squares x2

S . A minimal Sullivan model for A(Q)
is given by the commutative differential graded algebra (A(Q), d), where

A(Q) = Q[xS |S ∈ conj(Q+)]⊗ ΛQ[yS |S ∈ conj(Q+)],

with xS in degree two and yS in degree three and where the unique non-trivial differentials are
d(yS) = x2

S for all S ∈ conj(Q+). Looping twice the minimal Sullivan model (i.e. decreasing all
degrees of the xS and yS by 2) and restricting to one connected component, we obtain that
the rational cohomology of Ω0BH̊M(Q) is isomorphic to ΛQ[y′S |S ∈ conj(Q+)], i.e. it is the free
exterior algebra over Q generated by classes y′S in degree one, one for each S ∈ conj(Q+): the
class y′S is obtained by looping twice yS ∈ A(Q).

There is a special case of interest, namely when Q has the form c � {1Q}, for c ⊂ G a finite,
conjugacy invariant subset of a group G: then by [Bia23a, Proposition 7.3] the space H̊M+(Q)
is homotopy equivalent to the topological monoid HurcG :=

∐
n≥0 HurcG,n of classical Hurwitz

spaces with monodromies in c, see [EVW16, Subsection 2.6] and [RW19, Subsection 4.2]. Adding
a disjoint unit, we obtain a homotopy equivalence of topological monoids H̊M(Q) 	 {1} �HurcG;
we can now recall that the weak homotopy type of the group completion of a topological monoid
does not change up to homotopy if we add a disjoint unit to the monoid and, thus, we obtain
weak equivalences

ΩBH̊M(Q) 	 ΩB({1} �HurcG) 	 ΩBHurcG.

Thus, we obtain a computation of the rational cohomology of ΩBHurcG, which is computed
already in [RW19, Corollary 5.4]; a claim of the result already appears in the withdrawn
preprint [EVW12], as a combination of the statement of [EVW12, Theorem 2.8.1] for n = 2 and
X = BG and the discussion in [EVW12, Subsection 5.6]. See also the conjecture in [EVW16,
Subsection 1.5], which predicts the previous computation for c being the conjugacy class of
transpositions in a symmetric group on at least three letters.
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Appendix A. Deferred proofs

A.1 Proof of Proposition 2.13
The two cases H̊M and H̆M are analogous, so we will focus on the case of H̆M, which is slightly
more difficult.

Recall Definition 2.4. We define in a symmetric way H̆M
−

as the subspace of [0,∞)×
Hur(R̆R, ∂̆) containing couples (t, c) with c supported in S̊−t,0.

Note that H̆M
−

is contained in the subspace [0,∞)×Hur(R̆R− , ∂̆), where we define (R̆R− , ∂̆)
as the nice couple ((−∞, 0)× [0, 1], (−∞, 0)× {0, 1}).

By [Bia23a, Proposition 4.4] the assignment (t, c) → (t, (τ−t)∗(c)) gives a continuous map
τ− : H̆M→ [0,∞)×Hur(R̆R, ∂̆); note that τ− has values in the subspace H̆M

−
; in fact, τ− is a

homeomorphism H̆M ∼= H̆M
−
.

Recall [Bia23a, Definition 3.16]. The following composition of continuous maps takes values
in H̆M ⊂ [0,∞)×Hur(R̆R, ∂̆) and it coincides with μ : H̆M× H̆M→ H̆M as a map of sets:

Here, by abuse of notation, we denote by − �− the map (t, c, t′, c′) → (t, t′, c � c′); the map τ̂ is
defined by (t, t′, c) → (t+ t′, (τt)∗(c)). This shows continuity of the product μ.
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To prove associativity of μ, let ci = (Pi, ψi, ϕi) be a configuration in Hur(R̆ti , ∂̆) for i =
1, 2, 3. Under the identification iCS0,ti

we can regard ci as a configuration in HurS0,ti (R̆ti , ∂̆).

Then (τt1)∗(c2) is a configuration in HurSt1,t1+t2 (R̆t2 + t1, ∂̆) and (τt1+t2)∗(c3) is a configura-
tion in HurSt1+t2,t1+t2+t3 (R̆t3 + t1 + t2, ∂̆)). The compositions c1 � ((τt1)∗(c2) � (τt1+t2)∗(c3)) and(
c1 � (τt1)∗(c2)

) � (τt1+t2)∗(c3) represent the same configuration in HurS0,t1+t2+t3 (R̆t1 ∪ R̆t2 +
t1 ∪ R̆t3 + t1 + t2, ∂̆) and by inclusion and change of ambient to C, the same configuration in
Hur(R̆t1+t2+t3 , ∂̆). This proves associativity of μ.

The fact that (0, (∅,1,1)) is a two-sided unit for μ follows directly from Definition 2.11,
together with the fact that τ0 is the identity of C.

A.2 Proof of Lemma 2.18
We start by proving that the elements π0(1, ca) generate π0(H̊M) as a monoid. Let (t, c) ∈
H̊M and use Notation 2.2. If P = ∅, then we can continuously reduce t to 0, so that π0(t, c) =
π0(0, (∅,1,1)) is the neutral element of π0(H̊M). Suppose from now on that P �= ∅.

Suppose first that P = {z} consists of a single point. By Lemma 2.7 we can connect (t, c)
with a configuration of the form (1, c′); we can then connect (1, c′) with a configuration of the
form ca: for this we can use any homotopy of C through semialgebraic homeomorphisms which
is at all times supported on R̊ (i.e. C \ R̊ is fixed pointwise at all times) and pushes the unique
point z′ ∈ P ′ to zc. It follows that (t, c) and (1, ca) are connected in H̊M.

Suppose now that |P | ≥ 2. We can perturb the positions of the points zi ∈ P inside R̊t and
assume that their real parts �(zi) are all different: again, we use a semialgebraic isotopy of C

supported on R̊t, starting from the identity of C and ending with a semialgebraic homeomorphism
of C mapping P to a set of points with distinct real parts.

Without loss of generality we assume that P already has this property and we also assume
�(z1) < · · · < �(zk); choose positive real numbers 0 = t0 < t1 < · · · < tk = t such that ti−1 <
�(zi) < ti for all 1 ≤ i ≤ k. In particular, we can regard c as a configuration in

Hur(R̊t1 ∪ R̊t2−t1 + t1 ∪ · · · ∪ R̊tk−tk−1
+ tk−1).

Recall [Bia23a, Definition 3.15] and for all 1 ≤ i ≤ k let ci ∈ Hur(R̊ti−ti−1) be the image of c

along the following composition:

Then (t, c) is equal to the product (t1 − t0, c1) · · · · · (tk − tk−1, ck) in H̊M and each ci is supported
on the single point τ−ti−1(zi). It follows that the elements π0(1, ca) generate π0(H̊M) as a monoid.

Now let a, b ∈ Q and note that (1, ca) · (1, cb) has the form (2, c), for some c = (P, ψ) ∈
Hur(R̊2) with P = {z1 = zc, z2 = zc + 1}. Let f1, f2 be the admissible generating set for G(P )
with f1 represented by a loop supported on S−∞,1 and f2 represented by a loop supported on
S1,+∞.

We can fix a semialgebraic isotopy H : C× [0, 1]→ C supported on R̊2, starting from the
identity of C and swapping at time 1 the two points of P according to a clockwise half Dehn
twist. We use the notation c′ = (P, ψ′) := H∗(c; 1) ∈ Hur(R̊2).
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The homeomorphism H(−, 1) : C \ P → C \ P induces an automorphism of the fundamental
group H(−, 1)∗ : G(P )→ G(P ) which restricts to an automorphism of the fundamental PMQ
H(−, 1)∗ : QR̊2

(P )→ QR̊2
(P ).

Note that H(−, 1)∗ sends f2 → f1 and ff21 → f2. By definition, we have ψ′ = ψ ◦ H(−, 1)−1∗ ,
hence ψ′(f1) = ψ(f2) = b and ψ′(f2) = ψ(ff21 ) = ab. It follows that (P, ψ′) = (1, cb) · (1, cab),
hence π0(1, ca) · π0(1, cb) = π0(1, cb) · π0(1, cab).

Suppose now that the product ab is defined in Q. Again by Lemma 2.7 we can connect
(2, c) := (1, ca) · (1, cb) to a configuration of the form (1, c′′), with c′′ ∈ Hur(R̊); for instance we
can take c′′ = Λ∗(c, 1/2), where the semialgebraic isotopy Λ: C× (0,∞)→ C was introduced in
the proof of Lemma 2.7. In fact, we have c′′ ∈ Hur+(R̊)ab; by [Bia23a, Corollary 6.5] the space
Hur+(R̊)ab is contractible, in particular it is connected; hence, π0(1, ca) · π0(1, cb) = π0(1, c′′) =
π0(1, cab).

A.3 Proof of Proposition 3.3
Definition A.1. We introduce a subspace H̆M

	
+ ⊂ H̆M+. A couple (t, c) ∈ H̆M+ belongs to

H̆M
	
+ if t ≥ 1 and the point z	t := t− 1

2 belongs to the support of c.

Note that H̆M
	
+ is invariant under the action of H̆M by left multiplication.

Definition A.2. Let cd1 ∈ Hur(R̆, ∂̆) be as in the proof of Lemma 3.2 and note that (1, cd1) ∈
H̆M

	
+; in fact, the right multiplication map μ(−; (1, cd1)) : H̆M→ H̆M has image inside H̆M

	
+. We

define H̆M


+ ⊂ H̆M

	
+ as the image of μ(−; (1, cd1)).

See Figure A.1. Note that also the subspace H̆M


+ is invariant under the action of H̆M by left

multiplication. Moreover, μ(−, (1, c1)) : H̆M→ H̆M


+ is a homeomorphism of H̆M-left modules

and H̆M


+ ⊂ H̆M

	
+ contains precisely all couples (t, c) such that, using Notation 2.2, the following

hold:

• {z	t} ⊆ P ⊂ {z	t} ∪ R̆t−1;
• ψ : Q(P )→ Q factors through Q(P \ {z	t}) along the point-forgetting map iP

P\{z�
t}

: Q(P )→
Q(P \ {z	t}), see [Bia23a, Notation 2.17];

• similarly, ϕ : G(P )→ G factors through G(P \ {z	t}) along iP
P\{z�

t}
: G(P )→ G(P \ {z	t}).

Passing to bar constructions, we obtain inclusions of spaces

B(H̆M, H̆M


+) ↪→ B(H̆M, H̆M

	
+) ↪→ B(H̆M, H̆M+).

The first space B(H̆M, H̆M


+) is homeomorphic to EH̆M and, hence, is contractible, as H̆M

is a unital monoid. We will prove that the inclusions B(H̆M, H̆M
	
+) ↪→ B(H̆M, H̆M+) and

B(H̆M, H̆M


+) ↪→ B(H̆M, H̆M

	
+) are weak homotopy equivalences: this will conclude the proof

of Proposition 3.3.

Lemma A.3. The inclusion H̆M
	
+ ⊂ H̆M+ is a homotopy equivalence.

Proof. The argument is similar to that of the proof of Lemma 3.2, but a bit more care is needed.
We define a continuous map E 	 : (0,∞)× Ran+(R̆∞)× [0, 1]→ Ran+(R̆∞) by the formula

E 	(t, {z1, . . . , zk}, s) = {(1− s)z1 + st, . . . , (1− s)zk + st}.
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Figure A.1. Two configurations in H̆M
	
+; note that only the right one belongs to H̆M



+.

We also let j : (0,∞)→ (0,∞) be given by the formula

j(t) =

⎧⎪⎨⎪⎩
t− 1

2
for t ≥ 1,

t

2
for t ≤ 1.

We consider then the homotopy H	 : H̆M+ × [0, 1]→ (0,∞)×Hur(R̆∞, ∂̆) given by the formula

H	(t, c; s) = (t, c× E 	(j(t), ε(c), s)).

Let H̆M+,t≥1 denote the subspace of H̆M+ containing all couples (t, c) with t ≥ 1. Then the
homotopy H	 has the following properties:

• H	(−, s) sends H̆M+ inside H̆M+ for all 0 ≤ s ≤ 1;
• H	(−, 0) is the identity of H̆M+;

• H	(−, s) preserves the subspaces H̆M
	
+ and H̆M+,t≥1 at all times;

• H	(−, 1) sends H̆M+,t≥1 inside H̆M
	
+.

This shows that the inclusion H̆M
	
+ ↪→ H̆M+,t≥1 is a homotopy equivalence. Moreover, there is

a deformation retraction of H̆M+ onto H̆M+,t≥1 given by the formula

((t, c); s) → μ((max{0, s− t}, (∅,1,1)), (t, c)).

It follows that the inclusion H̆M
	
+ ⊂ H̆M+ is a homotopy equivalence. �

By Lemma A.3 the inclusion of semisimplicial spaces

B•(H̆M, H̆M
	
+) ⊂ B•(H̆M, H̆M+)
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is levelwise a homotopy equivalence; after (thick) geometric realisation we obtain the following
corollary.

Corollary A.4. The inclusion B(H̆M, H̆M
	
+) ⊂ B(H̆M, H̆M+) is a weak homotopy equivalence.

For the second step of the proof of Proposition 3.3 we define a homotopy

H
 : H̆M
	
+ × [0, 1]→ H̆M

	
+

by setting H
 : ((t, c); s) → (t+ s, c× {z	t+s}) for 0 ≤ s ≤ 1 and (t, c) ∈ H̆M
	
+; here c× {z	t+s} is

the evaluation at (c, {z	t+s}) of the external product

−×− : Hur(R̆∞, ∂̆)× Ran(R̆∞)→ Hur(R̆∞, ∂̆).

Roughly speaking, the homotopy H
 has the following effects on configurations (t, c) ∈ H̆M
	
+:

• it increases by 1 the first component t of a couple (t, c) ∈ H̆M
	
+;

• it splits z	t , which already belongs to the support of c, into two points; one point remains at
the position z	t and ‘keeps the local monodromy’ (which is only defined as an element of G,
because z	t ∈ ∂̆R̆∞); the other point moves gradually to a distance 1 to right and has trivial
local monodromy 1 (also only defined as element of G).

Note that H
 has the following properties:

• H
(−; 0) is the identity of H̆M
	
+;

• H
(−; 1) has values inside H̆M


+;

• for all 0 ≤ s ≤ 1 the map H
(−; s) is equivariant with respect to the action of H̆M on H̆M
	
+

by left multiplication.

As a consequence, H
 induces a homotopy of B(H̆M+, H̆M
	
+) starting from the identity and

ending with a map B(H̆M+, H̆M
	
+)→ B(H̆M+, H̆M



+). We obtain the following lemma, which is

the last step needed to prove Proposition 3.3.

Lemma A.5. The space B(H̆M+, H̆M
	
+) admits a deformation into its contractible subspace

B(H̆M+, H̆M


+). As a consequence B(H̆M+, H̆M

	
+) is weakly contractible.

A.4 Proof of Proposition 4.15
We first give a rough idea of the proof: the value of σ̌ at a given sequence (w; t, c) in
Δp × (H̊M)p (respectively, in Δp × (H̆M)p) is obtained by combining several steps: the first
step is computing the product μ̂(w; t, c) = (t1, c1) · · · · · (tp, cp) in H̊M (in H̆M). The product
map μ̂, however, does not factor through BH̊M (respectively, BH̆M): one of the reasons is
that if w0 = 0, the sequence (w; t, c) is equivalent in BH̊M (respectively, in BH̆M) to the
sequence obtained by forgetting w0 and (t1, c1); yet the product (t1, c1) · · · · · (tp, cp) is, in gen-
eral, different from the product (t2, c2) · · · · · (tp, cp). In fact, letting 0 ≤ imin ≤ imax ≤ p be as
in the discussion before Definition 4.5, we might reduce (w; t, c) to an equivalent sequence
(wimin , . . . , wimax ; timin+1, . . . , timax ; cimin+1, . . . , cimax), yet the product (t1, c1) · · · · · (tp, cp) is, in
general, different from the subproduct (timin+1, cimin+1) · · · · · (timax , cimax).

We solve this problem by using the barycentres b−ε < b+ε and by considering only the part of
the configuration (t1, c1) · · · · · (tp, cp) lying in the strip Sb−ε ,b+ε : more precisely, using a suitable
expansion and translation (implemented via the homotopies τ∗ and Λ∗), we map the strip Sb−ε ,b+ε
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to the strip S0,1 and then we collapse the two parts of the obtained configuration lying outside the
strip S0,1: we first collapse all points lying on left (respectively, on right) of S0,1 to the segment
0× [0, 1] (respectively, 1× [0, 1]) via the homotopies κ+∗ and κ−∗ , we further collapse these vertical
segments to the two points zl� and zr� via (H�

1)∗ and finally we get rid of the residual information
of the G-valued local monodromy at zl� and zr� by quotienting by the action of G×Gop. The
key observation is that the part of (t1, c1) · · · · · (tp, cp) lying in the strip Sb−ε ,b+ε only depends on
the subproduct (timin+1, cimin+1) · · · · · (timax , cimax). The conditions on ε, moreover, ensure that
either ε = 0, i.e. b−ε = b− and b+ε = b+, or the part of μ̂(w; t, c) lying inside Sb−ε ,b+ε is ‘empty’ and,
in particular, independent of the positive value of ε; this is the rough reason why σ̌ and, hence,
σ and σ̄, do not depend on ε.

Before starting the proof of Proposition 4.15, we give a definition.

Definition A.6. Let C be a nice couple, let c, c′ ∈ Hur(C;Q, G) be two configurations and let
∗ ∈ T ⊂ C be a contractible subspace. We say that c and c′ agree on T if the following hold,
using Notation 2.2:

• P ∩ T = P ′ ∩ T;
• for every loop γ ⊂ T \ P representing an element [γ] in QC(P ) we have ψ(γ) = ψ′(γ);
• for every loop γ ⊂ T \ P representing an element [γ] in G(P ) we have ϕ(γ) = ϕ′(γ)).

Consider the particular case in which C splits as a disjoint union of nice couples C1,C2 with
C1 ⊂ T̊ and C2 contained in the interior of C \ T: then [Bia23a, Definition 3.15] gives configura-
tions iCT(c) and iCT(c′) in HurT(C1;Q, G) and the condition that c and c′ agree on T is equivalent
to the equality iCT(c) = iCT(c′).

Now let (w; t, c) be as in Notation 4.2 and assume wj = 0 for a fixed 0 ≤ j ≤ p; let (t′, c′) =
dj(t, c) (see Definition 3.1), let w′ be obtained from w by removing the (vanishing) jth coordinate
and present w′ as (w′

0, . . . , w
′
p−1), t

′ as (t′1, . . . , t′p−1) and c′ as (c′1, . . . , c′p−1). We want to prove
that σ̌(w; t, c) = σ̌(w′; t′, c′): this implies that σ̌ descends to a map σ defined on BH̊M (on BH̆M).

Let a0, . . . , ap, b, b
+, b− be computed as in Definition 4.4 with respect to (w; t, c) and, similarly,

let a′0, . . . , a′p−1, b
′, (b+)′, (b−)′ be computed with respect to (w′; t′, c′). We observe that ε(w; t, c) =

0 if and only if the support P of μ̂(w; t, c) intersects non-trivially the strip Sb−,b+ . Similarly,
ε(w′; t, c) = 0 if and only if the support P ′ of μ̂(w′; t′, c′) intersects non-trivially S(b−)′,(b+)′ . We
now observe that for j > 0 we have P ∩ Sb−,b+ = P ′ ∩ S(b−)′,(b+)′ , whereas for j = 0 we have
τ(P ∩ Sb−,b+ ,−t1) = P ′ ∩ S(b−)′,(b+)′ . In particular, either intersection is empty if and only if the
other is or, in other words, ε(w; t, c) > 0 if and only if ε(w′; t′, c′) > 0. In this case, however,
we have that both σ̌(w; t, c) and σ̌(w′; t′, c′) coincide with the basepoint clr of Hur(�̆lr, ∂̆)G,Gop

(respectively, of Hur(�, ∂)G,Gop) and, in particular, they are equal. This proves also the first
statement of Proposition 4.15.

From now on we assume ε(w; t, c) = ε(w′; t′, c′) = 0, allowing us to use the lower and upper
barycentres instead of their ε-variations in the computations of the rest of the argument. Note
that b− b− = b′ − (b−)′ and b+ − b = (b+)′ − b′. In particular, in the following we assume b+ −
b− = (b+)′ − (b−)′ > 0.

First, we give an alternative description of the configuration μ̂b(w; t, c). We regard ci, for
1 ≤ i ≤ p, as a configuration in HurS0,ti (R̊ti) (in HurS0,ti (R̆ti , ∂̆)) and consider the configuration

(τai−1−b−)∗(ci) ∈ Hur
Sai−1−b−,ai−b− (R̊ti + ai − b−)(

respectively, (τai−1−b−)∗(ci) ∈ Hur
Sai−1−b−,ai−b− (R̆ti + ai − b−, ∂̆)

)
.
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Using the disjoint union map − �− from [Bia23a, Definition 3.16] we obtain a configuration

c := (τa0−b−)∗(c1) � · · · � (τap−1−b−)∗(cp),

which a priori belongs to

HurSa0−b−,ap−b−
(R̊t1 + a0 − b− � · · · � R̊tp + ap−1 − b−

)
(
respectively, HurSa0−b−,ap−b−

(R̆t1 + a0 − b− � · · · � R̆tp + ap−1 − b−, ∂̆
))
,

but can be naturally considered as a configuration in Hur(R̊R) (respectively, Hur(R̆R, ∂̆)). The
equality (τ−b−)∗(μ̂(w; t, c)) = c follows directly from Definitions 2.11 and 4.6. It follows then
from Definition 4.6 that μ̂b(w; t, c) is equal to Λ∗(c; 1/(b+ − b−)). In a similar way, we obtain a
configuration

c′ := (τa′0−(b−)′)∗(c′1) � · · · � (τa′p−2−(b−)′)∗(c′p−1),

which we consider as a configuration in Hur(R̊R) (in Hur(R̆R, ∂̆)) and identifications c′ =
(τ−(b−)′)∗(μ̂(w′; t′, c′)) and μ̂b(w′; t′, c′) = Λ∗(c′; 1/((b+)′ − (b−)′)).

Lemma A.7. The configurations c and c′ agree on the vertical strip [0, b+ − b−]× R.

Proof. We use Notation 2.2 and argue the statement differently, depending on the value of j.

• If 1 ≤ j ≤ p− 1, then c = c′.
• If j = 0, note that a1 − b− = a′0 − (b−)′ ≥ 0 and ap − b− = a′p−1 − (b−)′ ≥ b+ − b−; then both

c and c′ can be regarded as configurations in

Hur(R̊t1 + a0 − b− � R̊ap−a1 + a1 − b−),(
respectively, Hur(R̆t1 + a0 − b− � R̆ap−a1 + a1 − b−, ∂̆)

)
,

and the restriction map iCSa1−b−,ap−b−
from [Bia23a, Definition 3.15] sends c and c′ to the same

configuration in the space

HurSa1−b−,ap−b− (R̊ap−a1 + a1 − b−)
(
respectively, HurSa1−b−,∞(R̊ap−a1 + a1 − b−)

)
;

this common image is essentially the configuration c′. Now we use that S0,b+−b− ⊂ Sa1−b−,ap−b−
to conclude that c and c′ also agree on S0,b+−b− and, finally, we note that agreeing on S0,b+−b−
is equivalent to agreeing on [0, b+ − b−]× R, as all configurations are supported in H.

• If j = p, note that a0 = a′0, b− = (b−)′ and b+ = (b+)′ ≤ ap−1 = a′p−1; then both c and c′ can
be regarded as configurations in

Hur(R̊ap−1 + a0 − b− � R̊tp + ap−1 − b−),(
respectively, Hur(R̆ap−1 + a0 − b− � R̆tp + ap−1 − b−, ∂̆)

)
,

and iCSa0−b−,ap−1−b−
sends c and c′ to the same configuration in the space

Hur
S−∞,ap−1−b− (R̊ap−1 + a0 − b−)(

respectively, Hur
S−∞,ap−1−b− (R̊ap−1 + a0 − b−)

)
;

this common image is essentially the configuration c′. Now we use that S0,b+−b− ⊂
Sa0−b−,ap−1−b− to conclude that c and c′ also agree on S0,b+−b− and again we note that agreeing
on S0,b+−b− is equivalent to agreeing on [0, b+ − b−]× R.

�
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By applying Λ∗(−; 1/(b+ − b−)) = Λ∗(−; 1/((b+)′ − (b−)′)) we obtain that, in a similar way,
μ̂b(w; t, c) and μ̂b(w′; t′, c′) agree on the vertical strip [0, 1]× R.

Note that the vertical strip [0, 1]× R is preserved by the homotopies κ−, κ+ and H� at all
times and the homotopies κ−, κ+ restrict even to the identity on [0, 1]× R. This, together with
Lemma 4.12, implies that μ̂�

∂̆�̆lrc := σ̃(wi; ti, ci) and c̃′ := μ̂�
∂̆�̆lr(w′

i; t
′
i, c

′
i) are both supported on

the set P̃ := H�
1(P ) ∪ ∂̆�̆lr. Let k̃ = |P̃ | and l̃ = |P \ ∂ � |.

Recall that c̃ = (P̃ , ψ̃, ϕ̃) and c̃′ = (P̃ , ψ̃′, ϕ̃′) are configurations in Hur(�̆lr, ∂̆)∂̆�̆lr (in
Hur(�, ∂)∂̆�̆lr). We can choose an lr-based admissible generating set f̃1, . . . , f̃k̃ of G(P̃ ) (see
[Bia23a, Definition 6.10]) with the following properties:

• two generators, denoted f̃ l and f̃ r, are represented by loops spinning clockwise around zl� and
zr�, respectively;

• the other generators are represented by loops contained in the strip [0, 1]× R; in particular,
we assume that f̃1, . . . , f̃l̃ correspond to points in P \ ∂�.

Since c̃ and c̃′ agree on [0, 1]× R, we have that ψ̃ and ψ̃′ agree on the admissible genera-
tors f̃1, . . . , f̃l̃, whereas ϕ̃ and ϕ̃′ agree on all admissible generators f̃1, . . . , f̃k̃ except, possibly,
the two generators f̃ l and f̃ r. It follows that c̃ and c̃′ have the same image in the quotient
Hur(�̆lr, ∂̆)G,Gop (respectively, Hur(�, ∂)G,Gop), i.e. σ̌(w; t, c) = σ̌(w′; t′, c′). This concludes the
proof that σ̌ descends to a map σ defined on BH̊M (on BH̆M).

For the second statement of the proposition, let (w; t, c) be as in Notation 4.2 and assume
(tj , cj) = (0, (∅,1,1)) for a fixed 0 ≤ j ≤ p; let (t′, c′) = dj(t, c), so that vice versa (t, c) = sj(t′, c′)
and let w′ be obtained from w by replacing the consecutive entries wj and wj+1 with their sum
wj + wj+1; present w′ as (w′

0, . . . , w
′
p−1), t

′ as (t′1, . . . , t′p−1) and c′ as (c′1, . . . , c′p−1). We want to
prove that σ̌(w; t, c) = σ̌(w′; t′, c′): this implies that σ̌ descends to a map σ defined on BH̊M (on
BH̆M).

For this it suffices to note that μ̂(w; t, c) = μ̂(w′; t′, c′) and also the barycentres b, b−, b+ are
equal when computed with respect to (w; t, c) or (w′; t′, c′). The formula for σ̌ only depends on
these parameters.
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