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Abstract

We prove that, given a finitely generated subgroup H of a free group F, the following questions are
decidable: is H closed (dense) in F for the pro-(met)abelian topology? Is the closure of H in F for
the pro-(met)abelian topology finitely generated? We show also that if the latter question has a positive
answer, then we can effectively construct a basis for the closure, and the closure has decidable membership
problem in any case. Moreover, it is decidable whether H is closed for the pro-V topology when V is an
equational pseudovariety of finite groups, such as the pseudovariety Sk of all finite solvable groups with
derived length ≤ k. We also connect the pro-abelian topology with the topologies defined by abelian
groups of bounded exponent.
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pro-abelian topology, pro-metabelian topology.

1. Introduction

The classification of finite groups is usually interpreted as the classification of finite
simple groups, but universal algebra provides an alternative approach through the
concept of a pseudovariety (a class of finite algebras closed under taking subalgebras,
homomorphic images and finitary direct products). This is common practice with more
general classes of algebras such as semigroups or monoids, where the role played by
simple groups has no equivalent.
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One of the interesting features of pseudovarieties of finite groups is that they
induce a (metrizable) topology on any group G. Given such a pseudovariety V, the
pro-V topology on G is the initial topology with respect to all homomorphisms
G→ H ∈ V, where H is endowed with the discrete topology. If G denotes the
pseudovariety of all finite groups, the pro-G topology is known as the profinite
topology.

The profinite topology was introduced by Hall in [10] and he proved in [11, Theorem
5.1] that every finitely generated subgroup of a free group is closed for the profinite
topology. Over the years, other pseudovarieties V were considered [4, 14–17, 20], and
the following decidability questions became objects of study for an arbitrary finitely
generated subgroup H of a free group F.

• Can we decide whether H is closed for the pro-V topology?
• Can we decide whether H is dense for the pro-V topology?
• Does the pro-V closure ClV(H) of H have decidable membership problem?
• Can we decide whether ClV(H) is finitely generated and can we compute a basis in

the affirmative case?

To be precise, one should assume that a basis A of F is fixed and we are given as input
a finite generating set of H, expressed as reduced words over A ∪ A−1.

In [20], Ribes and Zalesskiı̌ answered all these questions positively for the
pseudovariety Gp of all finite p-groups, for an arbitrary prime p. In [14], Margolis
et al. dealt successfully with the pseudovariety N of all finite nilpotent groups (the
case of free groups of infinite rank follows from [16, Corollary 2.4]). In both cases, the
closure of a finitely generated subgroup is always finitely generated. It is understood
that the case of extension-closed pseudovarieties is in general more favourable. Indeed,
in this case, ClV(H) is always finitely generated and of rank at most that of H
[20, Proposition 3.4]. Moreover, all the decidability problems mentioned above are
equivalent. This is clearly implicit in [14], but we provide an explicit proof at the end of
Section 2.

Note that Gp is extension-closed but N is not. And the most famous open problems
concern the extension-closed pseudovariety S of finite solvable groups.

In this paper, we answer positively all the mentioned problems for the pseudovariety
Ab of finite abelian groups, the pseudovariety Ab(m) of finite abelian groups whose
exponent divides a given positive integer m and the pseudovariety M of finite
metabelian groups, for free groups of arbitrary rank. Obviously, Ab and Ab(m) are
not extension-closed, and neither is M: it is easy to check that S4 �M, but [S4, S4] =
A4 ∈M and S4/A4 � C2 ∈M. However, Ab, Ab(m) and M share another favourable
property: they are equational pseudovarieties of finite groups. In Section 3, we prove
some general results concerning such pseudovarieties. In particular, we show that if V
is a decidable equational pseudovariety, then it is decidable whether or not H ≤ f .g. F
is V-closed, where F is any free group.

In Section 4, we apply these results to the pseudovariety Sk of all finite solvable
groups with derived length ≤ k (that is finite k-solvable groups) for k ≥ 1. Combining
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these results with generalizations of theorems by Delgado [7] and Coulbois [6],
we perform in Sections 4.1 and 4.2 a complete study of the pro-abelian and the
pro-metabelian topologies on any free group. We note that Coulbois’ theorem was
only published in his Ph.D. thesis and was generalized later on by Alperin [3] and
Alibabaei [2].

We remark that Delgado’s results on the pro-Ab topology on free abelian groups
were extended by Steinberg in [23] to any decidable pseudovariety of abelian groups
residually containing the integers (namely computing closures of arbitrary rational
subsets).

In Section 5, we consider the pro-Ab(m) topology, obtaining similar results to those
in Section 4. We also relate the pro-abelian topology with the pro-Ab(pk) topologies,
where p is a prime and k a positive integer.

2. Preliminaries

In this paper, P denotes the set of all primes. Given a group G and g, h ∈ G, we use
the notation [g, h] = g−1h−1gh = g−1gh for the commutator of g and h, and denote the
derived subgroup of G by G′. The second derived subgroup (G′)′ of G is denoted by
G′′. For arbitrary k ≥ 1, we denote by G(k) the k th derived subgroup of G. A group G
is metabelian if G′′ = 1. If G(k) = 1, then G is k-solvable.

Given a subset X of G, we denote by 〈〈X〉〉G the normal closure of X in G, that is,
the smallest normal subgroup of G containing X.

If A is a set, we set FA to be the free group on A. Also if H is a finitely generated
subgroup of FA, we write H ≤ f .g. FA.

Let Fn denote the free group of rank n ∈ N and fix a basis A of Fn. Write
Ã = A ∪ A−1. We can associate to every finitely generated H ≤ Fn a finite automaton
A(H) known as the Stallings automaton of H [22]. For the basic properties of Stallings
automata, the reader is referred to [5, Section 3], but we remark that the construction
of A(H) from a finite generating set of H is algorithmically efficient and provides
excellent algorithms for the membership problem of H [5, Proposition 3.5] and for
computing a basis of H [5, Proposition 3.6].

If H ≤ Fn is an arbitrary subgroup, we can define the Schreier automaton S(H) as
follows:

• the vertices are the cosets Hu (u ∈ Fn);
• the edges are of the form Hu

a−→ Hua (u ∈ Fn, a ∈ Ã);
• the vertex 1 is the basepoint (that is both initial and terminal vertex).

Assume that V is the set of all vertices occurring in successful paths with reduced
labels. If H is finitely generated and we remove from S(H) all the vertices that are not
in V, we get the Stallings automaton A(H). If H is not finitely generated, then S(H)
keeps many of the interesting properties of Stallings automata, but the algorithmic part
is usually lost. However, we have the following proposition.
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PROPOSITION 2.1. Let H ≤ Fn have decidable membership problem. Then we can
construct a recursively enumerable basis B = {b1, b2, . . .} of H and express any h ∈ H
as a word on B.

PROOF. Let E+ denote the set of positive edges of S(H) (that is with labels in A).
Suppose that T ⊆ E+ is a spanning tree of S(H) (if we view it as an undirected graph).
For every u ∈ Fn, let αHu label the (unique) T-geodesic of the form 1

αHu−−→ Hu. Define

B = {αHuaα−1
Hua | (Hu, a, Hua) ∈ E+ \ T}.

The same proof used for Stallings automata [5, Proposition 3.6] shows that B is a basis
of H. We show next how we can use the decidability of the membership problem of H
to make the construction of B algorithmic.

Consider the geodesic distance in the Schreier automatonS(H) and let Dm(1) denote
the closed ball with centre 1 and radius m ∈ N. Let Sm(H) be the subautomaton
of S(H) induced by Dm(1). Clearly, Sm(H) has less than

∑m
i=0(2n)i vertices and∑m

i=0(2n)i+1 edges. Since H has decidable membership problem, we can effectively
construct Sm(H) for each m ∈ N.

Now we can construct a spanning tree Tm of Sm(H) for each m ∈ N with
T0 ⊂ T1 ⊂ T2 ⊂ · · ·. It is immediate that T =

⋃
m≥0 Tm is a spanning tree for S(H).

Let

Bm = {αHuaα−1
Hua | Hu, Hua ∈ Dm(1), (Hu, a, Hua) ∈ E+ \ Tm}.

Then B =
⋃

m≥0 Bm is a basis of H and we can enumerate the elements of B as
follows: we start by enumerating the elements of B0, then those of B1 \ B0, then those
of B2 \ B1 and so on. Since we can compute each Bm, we can write B as a sequence
(b1, b2, . . .) where each bk is effectively computable.

Since every h ∈ H of length m labels a closed path in Sm(H) at the basepoint, we
can now write it as a word on B. �

The following theorem of Karrass and Solitar proves to be useful for our purposes.

THEOREM 2.2 [13, Theorem 1]. Let H be a finitely generated subgroup of a free group
F. Suppose that H contains a nontrivial normal subgroup of F. Then H is of finite index
in F.

In particular, if F is of infinite rank and H ≤ F contains a nontrivial normal
subgroup of F, then H is not finitely generated. Also if F is of finite rank and H
contains a nontrivial normal subgroup of F, then H is finitely generated if and only
if H is of finite index.

A pseudovariety of finite groups is a class of finite groups closed under taking
subgroups, homomorphic images and finitary direct products. Since no other pseu-
dovarieties occur in the paper, we just write pseudovariety. We consider in this paper
the following pseudovarieties:

• G is the pseudovariety of all finite groups;
• Ab is the pseudovariety of all finite abelian groups;
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• M is the pseudovariety of all finite metabelian groups;
• Sk is the pseudovariety of all finite k-solvable groups (for k ≥ 1);
• Ab(m) is the pseudovariety of all finite abelian groups of exponent dividing m (for

m ≥ 1).

Given a finite group G, we denote by 〈G〉 the pseudovariety generated by G. It contains
all the homomorphic images of subgroups of direct powers of the form Gn(n ≥ 1). If
m is a positive integer, then Ab(m) = 〈Cm〉, where Cm denotes the cyclic group of
order m.

A pseudovariety is decidable if it has decidable membership problem. For the
general theory of pseudovarieties, the reader is referred to [19].

Given a pseudovariety V, where we consider finite groups endowed with the discrete
topology, the pro-V topology on a group G is defined as the coarsest topology that
makes all morphisms from G into elements of V continuous. Equivalently, G is a
topological group where the normal subgroups K of G such that G/K ∈ V form a basis
of neighbourhoods of the identity.

For a topological property P and a subset S of F, we say that S is V-P if S has
property P in the pro-V topology on F.

As mentioned in Section 1, Marshall Hall proved the following seminal result.

THEOREM 2.3 [9, Theorem 5.1]. Every finitely generated subgroup of a free group is
closed for the profinite topology.

The group G is said to be:

• residually finite if {1} is a G-closed subgroup of G;
• residually V if {1} is a V-closed subgroup of G;
• LERF (locally extended residually finite) if every finitely generated subgroup of G

is G-closed.

In particular, by Theorem 2.3, every free group is LERF.
Given a subgroup H of a group G, the core CoreG(H) of H in G is the largest normal

subgroup of G contained in H and is equal to
⋂

g∈G g−1Hg.
The next two fundamental results were proved in full generality by Margolis et al.

in [14]. Indeed, Hall’s results [10, Theorems 3.1 and 3.3] require G to be residually V.
However, Hall’s results cover topologies that do not arise from pseudovarieties, since
infinite index subgroups are allowed to be open.

THEOREM 2.4 [14, Proposition 1.2]. Let V be a pseudovariety of finite groups. Given
a group G and H ≤ G, the following conditions are equivalent:

(i) H is V-open;
(ii) H is V-clopen;
(iii) G/CoreG(H) ∈ V.
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THEOREM 2.5 [14, Proposition 1.3]. Let V be a pseudovariety of finite groups. Given
a group G and H ≤ G, the following conditions are equivalent:

(i) H is V-closed;
(ii) H is an intersection of V-open subgroups.

In the particular case of finite index subgroups, we have indeed the following
equivalences.

PROPOSITION 2.6. Let V be a pseudovariety of finite groups. Let G be a group and let
H ≤ G have finite index. Then the following conditions are equivalent:

(i) H is V-closed;
(ii) H is V-clopen;
(iii) G/CoreG(H) ∈ V.

PROOF. By Theorem 2.4, we have part (ii) ⇔ (iii), and part (ii) ⇒ (i) is trivial. It
remains to show that part (i)⇒ (ii).

Suppose that H is V-closed. By Theorem 2.5, H is an intersection of V-open
subgroups. However, [G : H] < ∞, so there exist only finitely many subgroups of G
containing H. It follows that H is an intersection of finitely many V-open subgroups
and is therefore V-open. �

We note that a subgroup H of G is V-closed if and only if, for every g ∈ G \ H,
there exists some V-clopen K ≤ G such that H ≤ K and g � K. However, a subgroup
H of G is V-dense if and only if HN = G for every normal subgroup N of G such that
G/N ∈ V.

The following example shows that Theorem 2.3 does not hold for arbitrary
subgroups.

EXAMPLE 2.7. Let A = {a, b} be a basis of F2 and let

H = 〈a, bkakbab−k (k ≥ 1)〉 ≤ F2.

Then H is not closed for the profinite topology.

Indeed, we start by remarking that H < F2. Suppose that b ∈ H. Then

b ∈ Hn = 〈a, bkakbab−k (k = 1, . . . , n)〉 ≤ F2

for some n ≥ 1. SinceA(Hn) is of the form

and A(Hn) does not accept the word b, this contradicts [5, Proposition 3.5]. Thus,
b � H and so H < F2. Therefore, it suffices to show that H is dense for the profinite
topology.
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Let N be a finite index normal subgroup of F2 with index n. Then a ∈ H ≤ HN and
bn ∈ N yields

b = a−nb−n(bnanbab−n)bna−1 ∈ 〈H ∪ N〉 = HN

(since N � F2). Thus, HN = F2 and so H is dense for the profinite topology. Since
H < F2, then H is not closed.

Given a group G and S ⊆ G, we denote by ClGV(S) the V-closure of S in G. If G is
free and no confusion is possible, we also use the simpler notation ClV(S).

We consider now the extension-closed case.

PROPOSITION 2.8. Let V be an extension-closed pseudovariety of finite groups. Then
the following conditions are equivalent:

(i) it is decidable whether an arbitrary H ≤ f .g. Fn is V-dense;
(ii) it is decidable whether an arbitrary H ≤ f .g. Fn is V-closed;
(iii) ClV(H) has a computable (finite) basis for every H ≤ f .g. Fn.

PROOF. We write F = Fn and fix a basis A of F. It is clear that condition (iii) implies
both conditions (ii) and (i). Indeed, a subgroup H of F is V-dense if and only if
ClV(H) = F and is V-closed if and only if ClV(H) = H.

Suppose that condition (ii) holds. We claim that condition (iii) holds. Let H ≤ f .g.
F. Since V is extension-closed, it follows from [14, Corollary 2.18] that ClV(H) is
an overgroup of H (that is its Stallings automaton is a quotient of A(H) – obtained
through identification of vertices and complete folding). Now H admits only finitely
many overgroups (with respect to A), which can be effectively computed. By condition
(ii), we can compute all the V-closed overgroups of H. The smallest such overgroup
(equivalently, their intersection) is ClV(H). Hence, condition (iii) holds.

Suppose finally that condition (i) holds. Let H ≤ f .g. F. Let H0, H1, . . . , Hm be the
overgroups of H, and choose a labelling so that Hi � Hj for all 0 ≤ i < j ≤ m. We show
by induction on i that ClV(Hi) ∈ {H0, H1, . . . , Hi} is computable for i = 0, . . . , m. Since
Hm = H, the theorem is proved.

We consider first the case i = 0. Let

B = {a ∈ A | a labels some edge inA(H)}.

Let FB be the free group over B. Since FB is the greatest overgroup of H, we
have necessarily H0 = FB. Hence, H0 is a free factor of F, and note F is trivially
V-closed. Since V is extension-closed, by [20, Corollary 3.3], H0 is V-closed and so
ClV(H0) = H0.

Assume now that 0 < i ≤ m and ClV(Hj) ∈ {H0, H1, . . . , Hj} is computable for
j = 0, . . . , i − 1. Let

J = {j ∈ {0, . . . , i − 1} | Hi ⊂ Hj and Hj is V-closed}.

Note that 0 ∈ J. By the Nielsen–Schreier theorem, each Hj is a free group of finite rank.
Thus, by condition (i), we can decide, for each j ∈ J, whether or not Hi is V-dense in
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Hj. Suppose that Hi is V-dense in Hj for some j ∈ J. Then Hj = Cl
Hj

V (Hi). However,
since V is extension-closed and Hj is V-closed, it follows from [20, Corollary 3.3]
that the pro-V topology on Hj is the subspace topology with respect to the pro-V
topology on F. Hence, Hj = ClV(Hi). It follows that Hi is V-dense in Hj for at most
one j ∈ J, and in that event, we can identify it and deduce that ClV(Hi) = Hj. Assume
now that there exists no such j. Since V is extension-closed, ClV(Hi) is an overgroup
of Hi and so ClV(Hi) = Hk for some k ∈ {0, . . . , m}. If k > i, then we contradict the
rule governing the enumeration of the overgroups considered. However, k < i and Hk

being V-closed imply that k ∈ J, which is again a contradiction. Thus, in this final
case, we have necessarily k = i and so ClV(Hi) = Hi. Therefore, our claim holds for i
as required. �

REMARK 2.9. Let V be an extension-closed pseudovariety of finite groups. If the
equivalent conditions of Proposition 2.8 hold for every n ≥ 1, then all conditions hold
for arbitrary H ≤ f .g. F, where F denotes a free group of arbitrary rank.

PROOF. Indeed, let A be a basis of F and let

B = {a ∈ A | a or a−1 occurs in the reduced form of some h ∈ H}.

Note that FB contains H. Since H is finitely generated, B is finite and FB is a retract of
FA (that is FB ≤ FA and there is a homomorphism θ : FA → FB such that θ|FB = 1FB ).
As noted in the proof of [14, Proposition 2.17], V being extension-closed implies that
FB is residually V and so it follows from [14, Corollary 1.8] that FB is a V-closed
subgroup of F.

It follows that if A is infinite, then H ≤ f .g. F cannot be V-dense. However, since FB

is V-closed in F and V is extension-closed, we know that the pro-V topology on FB

is the subspace topology with respect to the pro-V topology on F (see [20, Corollary
3.3]). Thus, ClFV(H) = ClFB

V (H) and H is V-closed in F if and only if it is V-closed in
FB. This proves our claim. �

3. Equational pseudovarieties

In this section, we study the pro-V topology on a free group FA for an arbitrary
equational pseudovariety V. We recall that G denotes the pseudovariety of all finite
groups.

A variety of groups is a class of groups closed under taking subgroups, homomor-
phic images and arbitrary direct products. By Birkhoff’s theorem, a class of groups
constitutes a variety if and only if it is the class of all groups satisfying a certain
set of group identities. If X denotes a countable alphabet, we say that u ∈ FX is a
group identity. A group G satisfies this identity if ϕ(u) = 1 for every homomorphism
ϕ : FX → G. For details on varieties of groups, the reader is referred to [18].
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Suppose that V is a variety of groups defined by the set of identities I ⊆ FX . We
writeV = [I]. Given an alphabet A, let

FVA = 〈〈ϕ(u) | u ∈ I, ϕ : FX → FA homomorphism〉〉FA � FA.

It follows easily from the definitions and the universal property that FA/FVA is the free
object ofV on A. We denote by πV : FA → FA/FVA the canonical homomorphism.

Now V f = V ∩G is clearly a pseudovariety, known as the finite trace of V. In
view of Birkhoff’s theorem, a pseudovariety V is of the form V = V f if and only if
it is equational, that is, there exists a set I of group identities such that V is the set
of all finite groups satisfying all the identities in I. Note that arbitrary pseudovarieties
require in general pseudoidentities (in view of Reiterman’s theorem). The reader is
referred to [19, Section 7.2] for further details.

THEOREM 3.1. LetV be a variety of groups and let H ≤ f .g. FA. Then:

(i) ClFA

V f (H) = π−1
V (Cl

FA/FVA
G (πV(H))) ≥ HFVA ;

(ii) if A is infinite, then ClFA

V f (H) is finitely generated if and only if V is the variety
of all groups;

(iii) if A is finite then ClFA

V f (H) is finitely generated if and only if V is the variety of
all groups or ClFA

V f (H) has finite index in FA;
(iv) if V f is a decidable pseudovariety, then it is decidable whether or not H is

V f -closed.

PROOF. Write V = V f , F = FA and π = πV.
(i) Let u ∈ ClFV(H). Assume that N � F/FV has finite index and let K = π−1(N) � F.

Since F/K � (F/FV)/N ∈ V and u ∈ ClFV(H), we get Ku ∩ H � ∅. Hence,
Nπ(u) ∩ π(H) � ∅ and so π(u) ∈ ClF/F

V

G (π(H)). Thus, u ∈ π−1(ClF/F
V

G (π(H))) and so

ClFV(H) ≤ π−1(ClF/F
V

G (π(H))).

Conversely, let u ∈ π−1(ClF/F
V

G (π(H))). Let N � F be such that F/N ∈ V. Let ϕ :
F → F/N be the canonical homomorphism. By the universal property, there exists a
homomorphism ψ : F/FV → F/N such that ψ ◦ π = ϕ. If v ∈ π−1(π(N)), then

ϕ(v) = ψ(π(v)) ∈ ψ(π(N)) = ϕ(N) = 1,

hence v ∈ N and so π−1(π(N)) = N. Now π(N) � F/FV and

(F/FV)/π(N) � F/π−1(π(N)) = F/N ∈ V.

Since π(u) ∈ ClF/F
V

G (π(H)), we get π(N)π(u) ∩ π(H) � ∅. Hence, there exist some
x ∈ N and h ∈ H such that π(xu) = π(h). It follows that hu−1 ∈ π−1(π(x)) ⊆ π−1(π(N)) =
N and so Nu ∩ H � ∅. Thus, u ∈ ClFV(H) and so π−1(ClF/F

V

G (π(H))) ≤ ClFV(H). This
establishes the equality in part (i).

Clearly, H ≤ ClFV(H). Since FV = π−1(1) ≤ π−1(ClF/F
V

G (π(H))), we now get
HFV ≤ ClFV(H).
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(ii) IfV is the variety of all groups, then FV = {1} and π is the identity, hence,

ClFV(H) = π−1(ClF/F
V

G (π(H))) = ClFG(H) = H

by part (i) and Theorem 2.3. Therefore, ClFV(H) is finitely generated.
Assume now that V is not the variety of all groups. By Birkhoff’s theorem, V

satisfies a nontrivial identity. Thus, FV is nontrivial and it follows from part (i) that
ClFV(H) contains a nontrivial normal subgroup of F. Assume for a contradiction that
ClFV(H) is finitely generated. By Theorem 2.2, ClFV(H) has finite index in F. Hence, F is
finitely generated, which is a contradiction. Therefore, ClFV(H) is not finitely generated.

(iii) If V is the variety of all groups, then ClFV(H) = H by Theorem 2.3, and is
therefore finitely generated. Suppose that V is not the variety of all groups. Then FV

is nontrivial. Since FV ≤ ClFV(H) by part (i), then ClFV(H) contains a nontrivial normal
subgroup of F. Since F has finite rank, then ClFV(H) is finitely generated if and only if
[F : ClFV(H)] is finite in view of Theorem 2.2.

(iv) Clearly, H is V-closed if and only if ClFV(H) = H, so ClFV(H) being finitely
generated is a necessary condition.

Suppose first that A is infinite. By part (ii), ClFV(H) being finitely generated can only
happen if V = G, and in that case, H is G-closed by Theorem 2.3.

Assume now that A is finite. In view of part (ii), this can only happen if [F : H] is
finite. This necessary condition can easily be checked with the help of the Stallings
automaton A(H) (which must be complete by [5, Proposition 3.8]). Thus, we may
assume that [F : H] is finite. Now, with the help of A(H), it is easy to compute the
Stallings automaton of C = CoreF(H): we consider the finitely many conjugates of H
and intersect them using the direct product of their Stallings automata. Since C � F,
then the underlying graph of A(C) is indeed the Cayley graph of F/C with respect to
the alphabet of F, hence, F/C is computable. Since V is a decidable pseudovariety,
then we can decide whether or not F/C ∈ V. By Proposition 2.6, this is equivalent to
H being V-closed and we are done. �

The last result of this section proves useful when considering free objects of
arbitrary rank.

PROPOSITION 3.2. Let V be a variety of groups with residually finite free objects. If
FA/FVA is LERF for every finite alphabet A, then it is LERF for every alphabet.

PROOF. Let A be an arbitrary alphabet and let α : FA → FA/FVA be the canonical
homomorphism. Let H ≤ f .g. FA. As in the discussion of Remark 2.9, let B be the
(finite) set of all letters of A occurring in the reduced form of some u ∈ H. We noted
then that FB is a retract of FA; now we claim that FB/FVB can be viewed as a retract of
FA/FVA .

Indeed, let θ : FA → FB be the homomorphism fixing each b ∈ B and sending each
a ∈ A \ B to 1. Let β : FB → FB/FVB be the canonical homomorphism. Considering
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the composition β ◦ θ : FA → FB/FVB ∈ V, it follows from the universal property that
there exists some homomorphism ϕ : FA/FVA → FB/FVB such that the diagram

commutes. Similarly, by considering the inclusion ι : FB → FA, we show that there
exists some homomorphism ψ : FB/FVB → FA/FVA such that the diagram

commutes.
Checking through letters, we get ϕ ◦ ψ = 1FB/FVB

, therefore, ψ is injective and so
FB/FVB � ψ(FB/FVB ). Moreover, they are homeomorphic when endowed with the
profinite topology.

Now β(H) is a finitely generated subgroup of FB/FVB . Since FB/FVB is
LERF by hypothesis, then β(H) is a G-closed subgroup of FB/FVB . Hence,
α(H) = α(ι(H)) = ψ(β(H)) is a G-closed subgroup of ψ(FB/FVB ).

However, it follows from ϕ ◦ ψ = 1FB/FVB
that ψ ◦ ϕ ◦ ψ = ψ; thus ψ(FB/FVB ) is a

retract of FA/FVA . By [14, Proposition 1.6], the profinite topology on ψ(FB/FVB ) is the
subspace topology with respect to the profinite topology on FA/FVA . Thus, α(H) = C ∩
ψ(FB/FVB ) for some G-closed subset C of FA/FVA . Since FA/FVA is residually finite by
hypothesis, it follows from [14, Corollary 1.8] that ψ(FB/FVB ) is a G-closed subgroup
of FA/FVA , so α(H) is itself a G-closed subgroup of FA/FVA .

Now every finitely generated subgroup of FA/FVA is of the form α(H) for some
finitely generated subgroup H of FA (we can lift through α a finite set of generators).
Therefore, FA/FVA is LERF. �

4. The pro-Sk topology

In this section, we study the pro-Sk topology. Let Ŝk denote the variety of all
k-solvable groups. The following lemma is folklore.
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LEMMA 4.1. For every alphabet A and every k ≥ 1:

(i) Sk = Ŝk
f

and is therefore an equational pseudovariety;
(ii) FŜk

A = F(k)
A .

In fact, each Ŝk can be defined by a single identity: [x1, y1] for k = 1,
[[x1, y1], [x2, y2]] for k = 2 and so on, and this yields item (ii). Moreover, Sk is a
decidable pseudovariety.

Now we can apply Theorem 3.1 to get the following theorem.

THEOREM 4.2. Let H ≤ f .g. FA and k ≥ 1. Then:

(i) ClSk (H) ≥ HF(k)
A ;

(ii) if A is infinite, then ClSk (H) is not finitely generated;
(iii) if A is finite, then ClSk (H) is finitely generated if and only if it has finite index

in FA;
(iv) it is decidable whether or not H is Sk-closed.

We can progress further in the abelian and metabelian cases. A crucial difference
is that free abelian and free metabelian groups of finite rank are LERF, and this fails
for the free k-solvable group Fn/F

(k)
n for n ≥ 2 and k ≥ 3 [1, 8]. Moreover, Umirbaev

proved that the membership problem for finitely generated subgroups is undecidable
for F2/F

(3)
2 , unlike the abelian and metabelian cases [24].

4.1. The pro-abelian topology. We establish next all the basic facts concerning
the pro-abelian topology. However, first we extend Delgado’s theorem to free abelian
groups of arbitrary rank.

LEMMA 4.3. Free abelian groups are LERF.

PROOF. The free abelian group of basis A can be described as the direct sum ⊕a∈AZ
(that is all mappings A→ Zwith finite support and componentwise sum). Since ⊕a∈AZ
is clearly residually finite, it follows from [7] and Proposition 3.2 that ⊕a∈AZ is LERF
for any alphabet A. �

THEOREM 4.4. Let H ≤ f .g. FA. Then:

(i) ClAb(H) = HF′A;
(ii) if A is infinite, then ClAb(H) is not finitely generated;
(iii) if A is finite, then ClAb(H) is finitely generated if and only if it has finite index

in FA;
(iv) it is decidable whether or not ClAb(H) is finitely generated;
(v) if ClAb(H) is finitely generated, we can compute a basis of ClAb(H);
(vi) it is decidable whether or not H is Ab-closed;
(vii) it is decidable whether or not H is Ab-dense;
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(viii) the membership problem for ClAb(H) is decidable;
(ix) if A is finite, then we can define a recursively enumerable basis B of ClAb(H) and

produce an algorithm that expresses any element of ClAb(H) as a word on B.

PROOF. Write F = FA and let π : F → F/F′ be the canonical homomorphism.
(i) By Lemma 4.1(ii), the free abelian group over A is F/F′. By Lemma 4.3, π(H) is

closed in F/F′ for the profinite topology. If we take V to be the variety of all abelian
groups, it follows from Theorem 3.1(i) that

ClAb(H) = ClFV f (H) = π−1(ClF/F
′

G (π(H))) = π−1(π(H)) = HF′ (4-1)

as claimed.
(ii) By Theorem 4.2(ii).
(iii) By Theorem 4.2(iii).
(iv) In view of part (ii), we may assume that A is finite. It follows from Equation

(4-1) and the homomorphism theorems that

F/ClAb(H) = F/π−1(π(H)) � (F/F′)/π(H). (4-2)

We may assume that F/F′ = Zn for n = |A|, so π(H) ≤ Zn. By [12, Ch. II, Theorem
1.6], there exist integers e1, . . . , en ≥ 0 such that e1 | e2 | · · · | en, and an automorphism
φ of Zn such that

φ(π(H)) =
n⊕

i=1

eiZ.

Moreover, one can explicitly produce e1, . . . , en and φ. It is immediate that Zn/π(H) is
finite if and only if en > 0, so we can decide whether or not Zn/π(H) is finite. It follows
from Equation (4-2) that we can decide whether or not ClAb(H) has finite index in Fn.
By part (iii), we can decide whether or not ClAb(H) is finitely generated.

(v) If ClAb(H) is finitely generated, then A is finite by part (ii). Write n = |A|.
Then ClAb(H) has finite index in F by part (iii) and it follows from its proof that we
can effectively compute the finite group Zn/π(H), which is isomorphic to F/ClAb(H)
by Equation (4-2). Hence, ClAb(H) is a normal subgroup of finite index of F. It
follows that the Stallings automaton A of ClAb(H) with respect to A is precisely the
(computable) Cayley graph of F/ClAb(H) � Zn/π(H) with respect to A, which can now
be used to produce a basis of ClAb(H).

(vi) By Theorem 4.2(iv).
(vii) Suppose first that A is infinite. Suppose that H is Ab-dense. Then

ClAb(H) = HF′ = F. Also HF′/F′ is finitely generated, since H is. It follows that F/F′

is finitely generated, which is a contradiction since F is of infinite rank. Hence, we may
assume that A is finite. We have that H is Ab-dense if and only if ClAb(H) = F, and
we may assume that ClAb(H) is finitely generated and the finite quotient F/ClAb(H)
is computable. Therefore, we only need to check whether or not this finite group is
trivial.
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(viii) Since ClAb(H) = π−1(π(H)) by Equation (4-1), it suffices to note that the
membership problem is decidable for every (finitely generated) subgroup of F/F′ �
⊕a∈AZ. This follows from a well-known fact: it is decidable whether or not a system of
finitely many linear diophantine equations admits a solution over the integers.

(ix) By part (viii) and Proposition 2.1. �

4.2. The pro-metabelian topology. We present next similar results for the
pro-metabelian topology.

We start with a useful lemma. Given subgroups H, K of a group G, we denote by
[H, K] the subgroup of G generated by all commutators of the form [h, k] with h ∈ H
and k ∈ K.

LEMMA 4.5. Let G be a group such that G = NH for some N � G and H ≤ G. Then
G′ = N′[N, H]H′.

PROOF. Let a, b ∈ G and write a = nh and b = mk for n, m ∈ N and h, k ∈ H. Then,

[a, b] = [nh, mk] = [n, mk]h[h, mk] = ([n, k][n, m]k)h([h, k][h, m]k),

using the commutator identities.
Now, [n, kh] = [n, h][n, k]h, so

[n, k]h = [n, h]−1[n, kh] ∈ [N, H]. (4-3)

Also, [n, m]kh ∈ N′ since N � G. Next, [h, k] ∈ H′. Finally, [h, m]k = ([m, h]k)−1 ∈
[N, H] by Equation (4-3).

Thus, G′ ≤ [N, H]N′H′[N, H]. The argument at Equation (4-3) shows that [N, H]
is normalized by H. It is also normalized by N, since [nm, h] = [n, h]m[m, h] yields
[n, h]m = [nm, h][m, h]−1.

Therefore, [N, H] � NH = G, so G′ ≤ [N, H]N′H′[N, H] = N′[N, H]H′.
Since the opposite containment is trivial, the claim follows. �

Next we extend Coulbois’s theorem to free metabelian groups of arbitrary rank.

LEMMA 4.6. Free metabelian groups are LERF.

PROOF. Let A be an arbitrary alphabet and let G = FA/FM̂
A be the free metabelian

group on A (that is the free object of M̂ on A). Let g ∈ G \ {1}. By [18, 36.35], G is
residually 2-generated, so there exists some N � G such that G/N is 2-generated and
g � N. Thus, G/N is a finitely generated metabelian group. By a theorem of Philip
Hall [11], G/N must be residually finite. Since gN � N, there exists some K � G/N
such that (G/N)/K is finite and gN � K.

Let π : G→ G/N denote the canonical homomorphism. Then π−1(K) � G and
G/π−1(K) � (G/N)/K is finite. Since gN � K yields g � π−1(K), this shows that G is
residually finite.
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Therefore, free metabelian groups are residually finite, and it follows from [6] and
Proposition 3.2 that all free metabelian groups are LERF. �

We can now prove our main result.

THEOREM 4.7. Let H ≤ f .g. FA. Then:

(i) ClM(H) = HF′′A ;
(ii) if A is infinite, then ClM(H) is not finitely generated;
(iii) if A is finite, then ClM(H) is finitely generated if and only if it has finite index

in FA;
(iv) it is decidable whether or not ClM(H) is finitely generated;
(v) if ClM(H) is finitely generated, we can compute a basis of ClM(H);
(vi) it is decidable whether or not H is M-closed;
(vii) it is decidable whether or not H is M-dense;
(viii) the membership problem for ClM(H) is decidable;
(ix) if A is finite, then we can define a recursively enumerable basis B of ClM(H)

and produce an algorithm that expresses any element of ClM(H) as a
word on B.

PROOF. Write F = FA. Let π : F → F/F′′ be the canonical homomorphism.
(i) By Lemma 4.6, π(H) is closed in F/F′′ for the profinite topology. If we take V

to be the variety of all metabelian groups, it follows from Theorem 3.1(i) that

ClM(H) = ClFVfin
(H) = π−1(ClF/F

′′

G (π(H))) = π−1(π(H)) = HF′′ (4-4)

as claimed.
(ii) By Theorem 4.2(ii).
(iii) By Theorem 4.2(iii).
(iv) In view of part (ii), we may assume that A is finite. Let G = HF′ = F′H ≤ F.

Since F′ � G and H ≤ G, it follows from Lemma 4.5 that

G′ = F′′[F′, H]H′. (4-5)

It is easy to check that

G/(HF′′) � F′/(F′ ∩ HF′′).

Indeed, the kernel of the canonical homomorphism ϕ : F′ → G/(HF′′) is F′ ∩ HF′′

and surjectivity follows from uhHF′′ = uHF′′ holding for all u ∈ F′ and h ∈ H.
Since F′′ ≤ F′ ∩ HF′′, then F′/(F′ ∩ HF′′) is abelian and so is G/(HF′′). Hence,

G′ ≤ HF′′ and so HG′ ≤ HF′′. Since F′′ ≤ G′ by Equation (4-5), it follows that
HG′ = HF′′.

By part (i), we have ClM(H) = HF′′ = HG′. Also, ClAb(H) = HF′ = G by Theorem
4.4(i). By part (ii), we want to decide whether or not [F : HG′] < ∞. Since
HG′ ≤ G ≤ F,
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[F : HG′] < ∞ if and only if both [F : G] < ∞ and [G : HG′] < ∞.

By Theorem 4.4, we can decide whether or not [F : G] < ∞ and, in the affirmative
case, we can compute a basis for G (which is a free group of finite rank in view of
Nielsen’s theorem). Thus, we may assume that this is the case, and we can write any
given element of H in terms of this basis. However, now HG′ = ClGAb(H) and once
again we can decide whether or not [G : HG′] < ∞. Therefore, we can decide whether
or not [F : HG′] < ∞ as required.

(vi) By Theorem 4.2(iv).
(v) If C = ClM(H) = HF′′ is finitely generated, then A is finite by part (ii). Write

n = |A|. Then C has finite index in F by part (iii). Using the notation G = HF′ from the
proof of part (iv), we have C = HG′ and

[F : C] = [F : G][G : HG′]. (4-6)

Moreover, F/G and G/HG′ are both finite abelian groups. Note that G = ClAb(H) and
G is finitely generated as a finite index subgroup of F. Hence, [F : G] is computable in
view of Theorem 4.4(v), with the help of Stallings automata: by [5, Proposition 3.8],
[F : G] is the number of vertices ofA(G).

Since G is finitely generated, using Theorem 4.4(ix), we can compute a basis
of G and can write any given element of H in terms of this basis. We can also
compute [G : HG′] = [G : ClGAb(H)]. By Equation (4-6), [F : C] is computable. Now
F has only finitely many subgroups K1, . . . , Ks of index m = [F : C], defined through
their Stallings automata, which must be complete and possess m vertices. Thus, it
suffices to decode whether each of these Ki equals C. We have two obvious necessary
conditions: H ≤ Ki and Ki being M-closed. The first is decidable through Stallings
automata and the second in view of part (vi). Since [F : C] = m = [F : Ki] for each
i, these two necessary conditions are also sufficient, so we can effectively compute a
basis of C.

(vii) If A is infinite, then we know by the proof of Theorem 4.4(vii) that H is
not Ab-dense. Since ClM(H) = HF′′ ≤ HF′ = ClAb(H), H cannot be M-dense either.
Hence, we may assume that A is finite. We have that H is M-dense if and only if
ClM(H) = F, so decidability follows from parts (iv) and (v).

(viii) Suppose first that A is finite. Since ClM(H) = π−1(π(H)) by Equation (4-4), it
suffices to note that the membership problem is decidable for every finitely generated
subgroup of the free metabelian group F/F′′, a theorem proved by Romanovskiı̌ [21].

Assume now that A is infinite. Let u ∈ FA/F′′A . In view of Lemma 4.6, free
metabelian groups are residually finite and the hypotheses of Proposition 3.2 are
satisfied. Adapting its proof, let B be the (finite) set of all letters of A occurring in
the reduced form of some h ∈ H or u. The proof shows that FB/F′′B can be viewed as a
retract of FA/F′′A , so membership of u can be tested within FB/F′′B , and we are done by
the previous case.

(ix) By part (viii) and Proposition 2.1. �
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5. The pro-Ab(m) topology

In this section, we adapt the proof of Theorem 4.4 to the pro-Ab(m) topology and
establish connections with the pro-abelian topology.

THEOREM 5.1. Let m ≥ 1 and H ≤ f .g. FA. Then:

(i) ClAb(m)(H) = HF′AFm
A ;

(ii) ClAb(m)(H) is finitely generated if and only if A is finite;
(iii) it is decidable whether or not ClAb(m)(H) is finitely generated;
(iv) if ClAb(m)(H) is finitely generated, we can compute a basis of ClAb(m)(H);
(v) it is decidable whether or not H is Ab(m)-closed;
(vi) H is Ab(m)-dense if and only if H is Ab(p)-dense for every prime p dividing m;
(vii) it is decidable whether or not H is Ab(m)-dense;
(viii) the membership problem for ClAb(m)(H) is decidable;
(ix) if A is finite, then we can define a recursively enumerable basis B of ClAb(m)(H)

and produce an algorithm that expresses any element of ClAb(m)(H) as a word
on B.

PROOF. Write F = FA.
(i) Let V = [x−1y−1xy, xm] denote the variety of all abelian groups of exponent

dividing m. Then,

FV = 〈〈ϕ([x, y]),ϕ(xm) | ϕ : FX → F homomorphism〉〉F = 〈〈[u, v], um | u, v ∈ F〉〉F.

Since F′ and Fm = 〈um | u ∈ F〉 are both normal subgroups of F, we get FV = F′Fm.
Hence, the free object of V over A is F/(F′Fm), and it is easy to see that
F/(F′Fm) � CA

m. Note that Ab(m) = V f .
If A is finite, then CA

m is finite and therefore LERF. Since CA
m is residually finite for

arbitrary A, it follows from Proposition 3.2 that CA
m is always LERF. Let π : F → CA

m
be the canonical homomorphism. It follows from Theorem 3.1(i) that

ClAb(m)(H) = ClFV f (H) = π−1(ClC
A
m

G (π(H))) = π−1(π(H)) = HF′F′m (5-1)

as claimed.
(ii) Suppose that ClAb(m)(H) is finitely generated. Then A is finite by Theorem 3.1(ii).
Conversely, assume that A is finite. By Theorem 3.1(iii), it suffices to show that

ClAb(m)(H) has finite index in F. It follows from Equation (5-1) and the homomorphism
theorems that

F/ClAb(m)(H) = F/π−1(π(H)) � (F/F′Fm)/π(H). (5-2)

Since F/F′Fm is finite, we are done.
(iii) It follows immediately from part (ii).
(iv) If ClAb(m)(H) is finitely generated, then A is finite by part (ii). Then ClAb(m)(H)

has finite index in F and we can effectively compute the finite group (F/F′Fm)/π(H),
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which is isomorphic to F/ClAb(m)(H) by Equation (5-2). Now we proceed as in the
proof of Theorem 4.4(v).

(v) By Theorem 3.1(iv).
(vi) Suppose that H is Ab(m)-dense. Let p be any prime dividing m. Since Ab(p) ⊆

Ab(m), then H is Ab(p)-dense.
Suppose now that H is not Ab(m)-dense. Then there exists a normal subgroup N

of F such that F/N ∈ Ab(m) and HN < F. Note that F/N is a finite abelian group
and HN is contained in a maximal subgroup M of F. Since F/N is abelian, we have
F′ ≤ N ≤ M and so M � F. Now M/N is a maximal subgroup of F/N ∈ Ab(m), so
[F/N : M/N] = p for some prime p dividing m. Thus, [F : M] = p and so F/M � Cp ∈
Ab(p). However, HM = M < F and therefore H is not Ab(p)-dense.

(vii) By the argument in the proof of Theorem 4.4(vii).
(viii) Since ClAb(m)(H) = π−1(π(H)) by Equation (5-1), it suffices to note that the

membership problem is decidable for every finitely generated subgroup of the group

F/(F′Fm) �
⊕
a∈A

Cm,

which is straightforward.
(ix) By part (viii) and Proposition 2.1. �

We can now relate the pro-Ab topology with the pro-Ab(pk) topologies, where p is
a prime and k is a positive integer.

PROPOSITION 5.2. Let H ≤ f .g. FA. Then:

(i) H is Ab-clopen if and only if there exist r ≥ 1, primes p1, . . . , pr, positive
integers k1, . . . , kr and Ab(pki

i )-clopen subgroups Hi of FA for 1 ≤ i ≤ r such
that H =

⋂r
i=1 Hi;

(ii) H is Ab-dense if and only if H is Ab(p)-dense for every prime p;
(iii)

ClAb(H) =
⋂
p∈P

⋂
k∈N

ClAb(pk)(H) =
⋂
p∈P

⋂
k∈N

HF′AFpk

A .

PROOF. Write F = FA.
(i) Suppose that there exist r ≥ 1, primes p1, . . . , pr, positive integers k1, . . . , kr and

Ab(pki
i )-clopen subgroups Hi of F for 1 ≤ i ≤ r such that H =

⋂r
i=1 Hi. Let 1 ≤ i ≤ r.

Then F/CoreF(Hi) ∈ Ab(pki
i ) ⊂ Ab and so Hi is Ab-clopen. Hence, H =

⋂r
i=1 Hi is

Ab-clopen.
Suppose now that H is Ab-clopen. If H = F, the result is trivial: take r = 1, H1 = H

and p1 any prime. Suppose H � F. Let M(H) = F/CoreF(H) and ϕ : F → M(H) be
the canonical surjective homomorphism. Note that H = ϕ−1(ϕ(H)).

Also, since H is Ab-clopen, M(H) is a (nontrivial) finite abelian group, hence,
F′ � CoreF(H) ≤ H and so H � F and CoreF(H) = H. In particular, ϕ(H) is trivial.
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Since M(H) is a nontrivial finite abelian group, there exist r ≥ 1, primes p1, . . . , pr

and positive integers k1, . . . , kr, a1, . . . , ar such that

M(H) = ×r
i=1Cai

p
ki
i

.

For 1 ≤ i ≤ r, let Gi = Cai

p
ki
i

and γi : M(H)→ Gi be the projection of M(H) onto its i th

component. Since
⋂r

i=1 γ
−1
i (1) = 1 = ϕ(H),

H = ϕ−1(ϕ(H)) = ϕ−1
( r⋂

i=1

γ−1
i (1)

)
=

r⋂
i=1

ϕ−1(γ−1
i (1)).

Since γ−1
i (1) = Ker γi �M(H), we get ϕ−1(γ−1

i (1)) � F. Finally, F/ϕ−1(γ−1
i (1)) � Gi ∈

Ab(pki
i ) and we obtain that ϕ−1(γ−1

i (1)) is Ab(pki
i )-clopen. Setting Hi = ϕ

−1(γ−1
i (1)),

we get the result.
(ii) Let p be a prime. Since Ab(p) ⊆ Ab, if H is Ab-dense, then H is Ab(p)-dense.
We now prove the other direction. Suppose that H is not Ab-dense. Then there is

a proper Ab-clopen subgroup K of F containing H. By part (i), there exist a positive
integer r, primes p1, . . . , pr, positive integers k1, . . . , kr and subgroups K1, . . . , Kr of
F such that for 1 ≤ i ≤ r, Ki is Ab(pki

i )-clopen and K =
⋂r

i=1 Ki. As K is proper,
there exists 1 ≤ i ≤ r such that Ki is proper. Since H is contained in Ki, H is not
Ab(pki

i )-dense. Therefore, H is not Ab(pi)-dense by Theorem 5.1(vi).
(iii) First note that as for every prime p and every positive integer k, we have

〈Cpk〉 ⊆ Ab, so we have

ClAb(H) ≤
⋂
p∈P

⋂
k∈N

ClAb(pk)(H).

We consider the reverse inclusion. By Theorem 2.5, ClAb(H) is the intersection of
all the Ab-(cl)open subgroups of F containing H. Let K be an Ab-clopen subgroup
of F containing H. By part (i), there exist r ≥ 1, primes p1, . . . , pr, positive integers
k1, . . . , kr and Ab(pki

i )-clopen subgroups Ki of F for 1 ≤ i ≤ r such that K =
⋂r

i=1 Ki.
In particular, for each 1 ≤ i ≤ r, ClAb(p

ki
i )

(H) ≤ Ki. Hence,
⋂
p∈P

⋂
k∈N

ClAb(pk)(H) ≤ K

for every Ab-clopen subgroup K of F containing H, yielding⋂
p∈P

⋂
k∈N

ClAb(pk)(H) ≤ ClAb(H).

The second equality follows from Theorem 5.1(i). �

Let N denote the pseudovariety of all finite nilpotent groups. For every prime p, let
Gp denote the pseudovariety of all finite p-groups. Using results from [14], we obtain
the following corollary.
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COROLLARY 5.3. Let H ≤ f .g. FA. Then the following conditions are equivalent:

(i) H is N-dense;
(ii) H is Gp-dense for every prime p;
(iii) H is Ab(p)-dense for every prime p;
(iv) H is Ab-dense.

PROOF. Suppose that A is infinite. By the proof of Theorem 4.4(vii) (which adapts
directly to prove Theorem 5.1(vii)), H is not Ab(p)-dense for any prime p. Since Ab(p)
is contained in N, Gp and Ab, it follows that H is neither N-dense nor Gp-dense nor
Ab-dense.

Thus, we may assume that A is finite. Now item (i) ⇔ (ii) follows from [14,
Corollary 4.2(1)], item (ii)⇔ (iii) follows from [14, Corollary 3.5] and item (iii)⇔ (iv)
follows from Proposition 5.2(ii). �
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