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Multilinear Proofs for Convolution Estimates
for Degenerate Plane Curves
Jong-Guk Bak

Abstract. Suppose that γ ∈ C2
(

[0,∞)
)

is a real-valued function such that γ(0) = γ ′(0) = 0, and γ ′′(t) ≈
tm−2, for some integer m ≥ 2. Let Γ(t) =

(
t, γ(t)

)
, t > 0, be a curve in the plane, and let dλ = dt be a

measure on this curve. For a function f on R2, let

T f (x) = (λ ∗ f )(x) =

∫ ∞
0

f
(

x − Γ(t)
)

dt, x ∈ R2.

An elementary proof is given for the optimal Lp-Lq mapping properties of T.

Fix an integer m ≥ 2. Suppose that γ ∈ C2
(
[0,∞)

)
is a real-valued function such that

γ(0) = γ ′(0) = 0, and γ ′ ′(t) ≈ tm−2. That is, there exist constants c1, c2 > 0 such that
c1 ≤ γ ′ ′(t)/tm−2 ≤ c2 for t > 0. Let Γ be a curve in the plane given by Γ(t) =

(
t, γ(t)

)
,

t > 0, and let λ denote the measure dλ
(
Γ(t)
)
= dt on Γ. Define a singular convolution

operator T by

(T f )(x) = (λ ∗ f )(x) =

∫ ∞
0

f
(
x − Γ(t)

)
dt, x ∈ R2,

for suitably nice functions f , say continuous functions with compact support. The problem
is to determine all pairs (p, q) such that T is bounded from Lp(R2) to Lq(R2). Recently a lot
of work has been done on this type of problems (see e.g. [RS], [O1], [O3] and the references
given there).

Let A =
(
2/(m + 1), 1/(m + 1)

)
, B =

(
m/(m + 1), (m − 1)/(m + 1)

)
be points in the

plane. It is well known that for T to be bounded from Lp(R2) to Lq(R2), it is necessary that
(1/p, 1/q) is on the closed line segment AB. (In fact, this may be shown as follows. Assume
that T is bounded from Lp(R2) to Lq(R2). Taking f to be the characteristic function of the
square [0, δ] × [0, δ] for small δ > 0 shows that δ1+1/q ≤ Cδ2/p. Thus 1 + 1/q ≥ 2/p,
and so by duality (1/p, 1/q) is in the closed triangle with vertices (0, 0), (1, 1), (2/3, 1/3).
Now taking f to be the characteristic function of the rectangle [0, a]× [0, γ(a)] shows that
a1+(m+1)/q ≤ Ca(m+1)/p for a > 0, which implies that 1 + (m + 1)/q = (m + 1)/p. Therefore,
it follows that (1/p, 1/q) is on AB. See e.g. [RS], [BMO], [O3].)

It is possible to prove the converse statement—that T is bounded from Lp(R2) to Lq(R2),
if (1/p, 1/q) is on the closed segment AB—by using the methods in [C2] based on the
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Littlewood-Paley theory (see also [Se]). Thus the following theorem holds. The purpose of
this note is to give an elementary proof of this result.

Theorem 1 There exists a constant C = C(m, c1, c2), independent of f , such that

‖λ ∗ f ‖Lq(R2) ≤ C‖ f ‖Lp(R2)(1)

if and only if ( 1
p ,

1
q ) is on the closed line segment AB.

The proof is an adaptation of the multilinear proof of (1) given by Oberlin [O2] in the
case that λ is the arc length measure on the unit circle. (See [B] for a proof of (1) on the
open segment AB. The latter proof also applies to some curves and surfaces which contain
a point where the curvature vanishes to infinite order.) In what follows, the symbol C
denotes a positive constant which may not be the same at each occurrence.

Proof By duality and interpolation it is enough to prove (1) when (1/p, 1/q) = A =(
2/(m + 1), 1/(m + 1)

)
, or to prove the equivalent multilinear estimate

∣∣∣∣
∫

R2

m+1∏
j=1

T f j(x) dx

∣∣∣∣ ≤ C
m+1∏
j=1

‖ f j‖ m+1
2
.(2)

By the multilinear trick of Christ (see [C1], [D1]), (2) follows from

∣∣∣∣
∫

R2

m+1∏
j=1

T f j(x) dx

∣∣∣∣ ≤ C‖ f1‖1

m+1∏
j=2

‖ f j‖m,1,(3)

where ‖ · ‖p,q stands for the Lorentz space norm on R2. It is enough to show this when
f j ≥ 0 and f1 is the point mass at the origin, in which case (3) becomes

∫ ∞
0

m+1∏
j=2

T f j

(
Γ(t)
)

dt ≤ C
m+1∏
j=2

‖ f j‖m,1.(4)

(To see that (4) actually implies (3), replace each f j in (4) by its translate f j,x(y) = f j(x+ y),
and integrate in x after multiplying both sides by f1(x).)

The estimate (4), in turn, follows by the multiple Hölder inequality from

(∫ ∞
0

[
T f
(
Γ(t)
)]m

dt

)1/m

≤ C‖ f ‖m,1,

which is equivalent to the estimate

I ≡

∫ ∞
0

T f
(
Γ(t)
)

g(t) dt ≤ C‖ f ‖m,1‖g‖L
m

m−1 (P)
,

for nonnegative functions f on R2 and g on P = [0,∞).
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The transformation x1 = t − s, x2 = γ(t)− γ(s) of P2 into R2 is one-to-one off the line
s = t , and the absolute value J of the Jacobian is given by J = |γ ′(t)− γ ′(s)|. So

I =

∫ ∞
0

∫ ∞
0

f
(
Γ(t)− Γ(s)

)
g(t) ds dt =

∫
f (x)g̃(x) dx,

where g̃(x) = g(t) J−1. Hence, by Hölder’s inequality for Lorentz spaces,

I ≤ C‖ f ‖m,1‖g̃‖ m
m−1 ,∞

.

It remains to show that
‖g̃‖ m

m−1 ,∞
≤ C‖g‖

L
m

m−1 (P)
.

That is, we need to prove

|{x ∈ R2 : g̃(x) > α}| ≤ C

∫ ∞
0

(
g(t)

α

)m/(m−1)

dt.(5)

The left-hand side of (5) is equal to the integral
∫

G J ds dt , where

G = {(s, t) ∈ P2 : g(t) J−1 > α}.

We split the integral into the part with t > s and the part with s > t . Since

J =

∣∣∣∣
∫ t

s
γ ′ ′(u) du

∣∣∣∣ ≈ |tm−1 − sm−1|,

we have J ≈ tm−2(t − s) when t > s > 0, and J ≈ sm−2(s− t) when s > t > 0. So∫
G∩{t>s}

J ds dt ≤ C

∫
{(s,t)∈P2:0<tm−2(t−s)<Cg(t)/α}

tm−2(t − s) ds dt.

For each fixed t > s, the substitution u = tm−2(t−s) shows that the last integral is bounded
by

C

∫ ∞
0

∫ Cg(t)/α

0
u1/(m−1) du dt ≤ C

∫ ∞
0

(
g(t)

α

)m/(m−1)

dt,

because |∂u/∂s| = tm−2 ≥ u(m−2)/(m−1). The term
∫

G∩{s>t} J ds dt is estimated similarly.

Thus we have shown (5), and the proof is complete.

Next, fix a real number m ≥ 2, and let Γ(t) = (t, tm), t > 0. Then dµ = t(m−2)/3 dt is (a
constant multiple of) the affine arc length measure on this curve. Consider the convolution
operator

(µ ∗ f )(x) =

∫ ∞
0

f
(
x − Γ(t)

)
t(m−2)/3 dt, x ∈ R2.

A multilinear argument also gives an easy proof of the following result, which was proved
originally by using complex interpolation (see e.g. [D2]).

Theorem 2 There is a constant C such that

‖µ ∗ f ‖Lq(R2) ≤ C‖ f ‖Lp(R2)

if and only if ( 1
p ,

1
q ) = ( 2

3 ,
1
3 ).
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Proof The change of variables t = s3/(m+1) gives

(µ ∗ f )(x) = C

∫ ∞
0

f
(
x − (sb, s3−b)

)
ds,

where 0 < b = 3/(m + 1) ≤ 1. A reduction as above shows that the inequality ‖µ ∗ f ‖3 ≤
C‖ f ‖3/2 follows from

∫
G

J ds dt ≤ C

∫ ∞
0

(
g(t)

α

)2

dt,(6)

where J = C(st)b−1|s3−2b − t3−2b| and G = {(s, t) ∈ P2 : J < g(t)/α}. For each fixed t ,
put u = (st)b−1|s3−2b − t3−2b|. Since 0 < b ≤ 1, we have |∂u/∂s| ≥ c(t/s)2−b ≥ c > 0
when t > s > 0, and |∂u/∂s| ≥ c(s/t)1−b ≥ c > 0 when s > t > 0. Therefore, we obtain

∫
G

J ds dt ≤ C

∫ ∞
0

∫ Cg(t)/α

0
u du dt,

which implies (6).
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