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Abstract For −1 ≤ B < A ≤ 1, let C(A,B) denote the class of normalized Janowski convex functions
defined in the unit disk D := {z ∈ C : |z| < 1} that satisfy the subordination relation 1+ zf ′′(z)/f ′(z) ≺
(1 + Az)/(1 + Bz). In the present article, we determine the sharp estimate of the Schwarzian norm for
functions in the class C(A,B). The Dieudonné’s lemma which gives the exact region of variability for
derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma
to construct the extremal functions for the sharpness by a new method.
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1. Introduction

Let H denote the class of analytic functions in the unit disk D := {z ∈ C : |z| < 1} and
LU denote the subclass of H consisting of all locally univalent functions, i.e., LU = {f ∈
H : f ′(z) 6= 0, for all z ∈ D}. For a locally univalent function f ∈ LU , the Schwarzian
derivative is defined by:

Sf (z) =

[
f ′′(z)

f ′(z)

]′
− 1

2

[
f ′′(z)

f ′(z)

]2
,

and the Schwarzian norm (the hyperbolic sup-norm) is defined by:

||Sf || = sup
z∈D

(1− |z|2)2|Sf (z)|.

In 1949, Nehari [21] proved that for a locally univalent function f ∈ LU with ||Sf || ≤ 2,
the function f is univalent in D. Moreover, for a univalent function f, it is well known
that ||Sf || ≤ 6 (see [16, 21]). Both of the constants 2 and 6 are best possible.
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In the theory of quasiconformal mappings and Teichmüller spaces, the Schwarzian norm
has a significant meaning (see [19]). A mapping f : Ĉ → Ĉ of the Riemann sphere Ĉ =
C ∪ {∞} is said to be a k -quasiconformal (0 ≤ k < 1) mapping if f is a sense preserving

homeomorphism of Ĉ and has locally integrable partial derivatives on C\{f−1(∞)} with
|fz̄| ≤ k|fz| a.e. A set of Schwarzian derivatives of analytic and univalent functions on

D with quasiconformal extensions to Ĉ can be used to identify the theory of Teichmüler
space T . In the Banach space H, of all analytic functions in D, it is known that T is
a bounded domain with respect to finite hyperbolic sup-norm (see [19]). The following
theorem establishes a connection between the Schwarzian norm and the quasiconformal
mapping.

Theorem A. [1, 17] If f extends to a k-quasiconformal (0 ≤ k < 1) mapping of

the Riemann sphere Ĉ then ||Sf || ≤ 6k. Conversely, if ||Sf || ≤ 2k then f extends to a

k-quasiconformal mapping of the Riemann sphere Ĉ.

Although the fundamental work on the Schwarzian derivative in connection with the
theory of geometric functions has been done in [1, 17, 21]), limited work has been done
on the Schwarzian derivative for various subclasses of univalent functions. Estimating the
Schwarzian norm for typical subclasses of univalent functions in relation to Teichmüller
spaces is an interesting problem.
Let A denote the class of functions f in H normalized by f(0) = 0, f ′(0) = 1. Thus, a

function f in A has the Taylor series expansion of the form:

f(z) = z +
∞∑

n=2

anz
n. (1.1)

Let S be the set of all functions f ∈ A that are univalent in D. A function f ∈
A is called starlike (respectively, convex) if the image f(D) is a starlike domain with
respect to the origin (respectively, convex domain). The classes of all univalent starlike
and convex functions are denoted by S∗ and C, respectively. It is well known that a
function f ∈ A is starlike (respectively, convex) if and only if Re [zf ′(z)/f(z)] > 0
(respectively, Re [1 + zf ′′(z)/f ′(z)] > 0) for z ∈ D. A function f ∈ A is said to be
starlike (respectively, convex) of order α, 0 ≤ α < 1 if Re [zf ′(z)/f(z)] > α (respectively,
Re [1 + zf ′′(z)/f ′(z)] > α) for z ∈ D. The sets of all starlike and convex functions of
order α are denoted by S∗(α) and C(α), respectively. See [6, 8] for further information
on these classes.
For the class of convex functions C, the Schwarzian norm satisfies ||Sf || ≤ 2 and the esti-

mate is sharp. This result was proved repeatedly by many researchers (see [18, 22, 25]).
In 1996, Suita [28] studied the class C(α), 0 ≤ α ≤ 1 and using integral representa-
tion for functions in C(α) proved that the Schwarzian norm satisfies the following sharp
inequality:

||Sf || ≤

2 if 0 ≤ α ≤ 1/2,

8α(1− α) if 1/2 ≤ α ≤ 1.
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A function f ∈ A is called strongly starlike (respectively, strongly convex) of order α,
0 < α < 1 if | arg{zf ′(z)/f(z)}| < πα/2 (respectively, | arg{1 + zf ′′(z)/f ′(z)}| < πα/2)
for z ∈ D. The classes of strongly starlike and strongly convex functions of order α are
denoted by S∗

α and Cα, respectively. For geometric properties on S∗
α, we refer to [12, 13].

For 0 < α < 1, Fait et al. [7] studied the class S∗
α and proved that a function f ∈ S∗

α

extends to an sin(πα/2)-quasiconformal mapping of Ĉ. It is obvious from Theorem A
that the norm satisfies ||Sf || ≤ 6 sin(πα/2) which was pointed out by Chiang [4]. Kanas
and Sugawa [14] studied the Schwarzian norm for functions in the class Cα, 0 < α < 1 and
proved the sharp inequality ||Sf || ≤ 2α and therefore, f extends to an α-quasiconformal

mapping of Ĉ.
A function f ∈ A is said to be uniformly convex (see [9, 20, 26]) if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
>

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ for z ∈ D.

The set of all uniformly convex functions is denoted by UCV. Kanas and Sugawa [14]
proved the sharp inequality ||Sf || ≤ 8/π2 for f ∈ UCV. They also proved that f can

be extended to a 4/π2-quasiconformal mapping of Ĉ. In 2012, Bhowmik and Wirths [3]
studied the class of concave functions f ∈ A, with opening angle at infinity less than or
equal to πα, α ∈ [1, 2], and obtained the sharp estimate ||Sf || ≤ 2(α2−1) and f extends to

an (α2 − 1)-quasiconformal mapping of Ĉ for 1 ≤ α <
√
2. Recently, the present authors

[2] considered two classes of functions G(β) with β > 0 and F(α) with −1
2 ≤ α ≤ 0,

consisting of functions in A that satisfy the relations Re
(
1 + zf ′′(z)

f ′(z)

)
< 1+ β

2 for z ∈ D,

and Re
(
1 + zf ′′(z)

f ′(z)

)
> α for z ∈ D, respectively, and obtained the sharp estimates

||Sf || ≤ 2β(β + 2) for f ∈ G(β) and ||Sf || ≤ 2(1 − α)/(1 + α) for f ∈ F(α). Moreover,

a function f ∈ G(β) can be extended to a β(β + 2)-quasiconformal mapping of Ĉ for
0 < β <

√
2− 1.

Let f and g be two analytic functions in D. The function f is said to be subordinate to
g if there exists an analytic function ω : D → D with ω(0) = 0 such that f(z) = g(ω(z))
and it is denoted by f ≺ g. Moreover, when g is univalent, f ≺ g if and only if f(0) = g(0)
and f(D) ⊂ g(D). In this article, we consider the class of Janowski convex functions f ∈ A
satisfying

1 +
zf ′′(z)

f ′(z)
≺ 1 +Az

1 +Bz
,

where −1 ≤ B < A ≤ 1. The class of all Janowski convex functions was first introduced
and studied by Janowski [10, 11] and is denoted by C(A,B). It is easy to see that functions
in C(A,B) are also convex functions. Silverman and Silvia [27] proved a necessary and
sufficient conditions for the class C(A,B). Kim and Sugawa [15], and Ponnusamy and
Sahoo [23] also studied the class C(A,B) and obtained the sharp bound of pre-Schwarzian
norm. For particular values of A and B, the class reduces to many well-known classes. For
example, the class C(1,−1) =: C is the family of convex functions; for 0 ≤ α < 1, C(1 −
2α,−1) =: C(α) is the family of convex functions of order α, introduced by Robertson [24].
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For −1 ≤ B < A ≤ 1, define the function:

KA,B(z) =


(1/A){(1 +Bz)A/B − 1} if A 6= 0, B 6= 0,

(1/B) log(1 +Bz) if A = 0,

(1/A)(eAz − 1) if B = 0.

(1.2)

It is easy to show that KA,B(z) belongs to the class C(A,B). The function KA,B(z)
plays the role of extremal function for many extremal problems in the class C(A,B).
In the present article, our main aim is to find the sharp estimates of the absolute value

of Schwarzian derivative and Schwarzian norm for functions in the class C(A,B).

2. Main results

Let B be the class of analytic functions ω : D → D and B0 be the class of Schwarz
functions ω ∈ B with ω(0) = 0. According to the Schwarz’s lemma if a function ω ∈ B0,
then |ω(z)| ≤ |z| and |ω′(0)| ≤ 1. In each of these inequalities, the equality occurs if and
only if ω(z) = eiαz, α ∈ R. The Schwarz-Pick lemma, a natural extension of the Schwarz
lemma, yields the estimate |ω′(z)| ≤ (1− |ω(z)|2)/(1− |z|2), z ∈ D when ω ∈ B. In 1931,
Dieudonné [5] was the first to determine the precise range of variability of ω′(z0) for a
fixed z0 ∈ D over the class B0.

Lemma 2.1. (Dieudonné’s lemma) [5, 6] Let ω ∈ B0 and z0 6= 0 be a fixed point
in D. The region of variability of ω′(z0) is given by:

∣∣∣∣ω′(z0)−
ω(z0)

z0

∣∣∣∣ ≤ |z0|2 − |ω(z0)|2

|z0|(1− |z0|2)
. (2.1)

Moreover, the equality occurs in (2.1) if and only if ω ∈ B0 is a Blaschke product of
degree 2.

Dieudonné’s lemma is an extension of the Schwarz’s lemma as well as Schwarz-Pick
lemma. Here, we note that a Blaschke product of degree n ∈ N is of the form

B(z) = eiθ
n∏

j=1

z − zj
1− z̄jz

, z, zj ∈ D, θ ∈ R.

Dieudonné’s lemma will be the key in proving our main results.
Before we state our main results, we introduce some sets which we will use throughout

our next discussion. Let E := {(A,B) : −1 ≤ B < A ≤ 1} and we consider following
subsets of E.
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E1 := {(A,B) ∈ E : 1−
√
1−B2 < |A+B| < 1 +

√
1−B2},

E2 := {(A,B) ∈ E ∩ Ec
1 : |A+B| ≤ |B|}

= {(A,B) ∈ E : |A+B| ≤ 1−
√
1−B2, |A+B| ≤ |B|},

E3 := {(A,B) ∈ E ∩ Ec
1 : |A+B| > |B|}

= {(A,B) ∈ E : |A+B| ≥ 1 +
√
1−B2, |A+B| > |B|}.

(2.2)

It evident that E1, E2 and E 3 are mutually disjoint and E = E1 ∪ E2 ∪ E3.

Theorem 2.1. For −1 ≤ B < A ≤ 1, let f ∈ C(A,B) be of the form (1.1) and E1,
E2, E3 are given by (2.2). Then, the Schwarzian derivative Sf (z) satisfies the inequality:

|Sf (z)| ≤
(A−B)(2− |A+B|(1− |z|2))

(1− |z|2)(2− |A+B|(1− |z|2)− 2B2|z|2))
, z ∈ D, (2.3)

for (A,B) ∈ E1 ∪ E2 and,

|Sf (z)| ≤


(A−B)(2− |A+B|(1− |z|2))

(1− |z|2)(2− |A+B|(1− |z|2)− 2B2|z|2))
if z ∈ S ∩ D,

|A2 −B2|
2(1− |B||z|)2

if z ∈ Sc ∩ D

(2.4)

for (A,B) ∈ E3, where S = {z ∈ C : |z| < δ1 or, |z| > δ2} with:

δ1 =
|B| −

√
B2 − |A+B|(2− |A+B|)

|A+B|
,

and

δ2 =
|B|+

√
B2 − |A+B|(2− |A+B|)

|A+B|
.

Proof. For −1 ≤ B < A ≤ 1, let f ∈ C(A,B) be of the form (1.1). Then, we have

1 +
zf ′′(z)

f ′(z)
≺ 1 +Az

1 +Bz
.

Thus, there exists an analytic function ω : D → D with ω(0) = 0 such that:

1 +
zf ′′(z)

f ′(z)
=

1 +Aω(z)

1 +Bω(z)
.
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A simple computation gives:

f ′′(z)

f ′(z)
=

(A−B)ω(z)

z(1 +Bω(z))
,

and consequently,

Sf (z) =

[
f ′′(z)

f ′(z)

]′
− 1

2

[
f ′′(z)

f ′(z)

]2
(2.5)

= (A−B)

[
ω′(z)

z(1 +Bω(z))2
− 2ω(z) + (A+B)ω2(z)

2z2(1 +Bω(z))2

]
.

Let us consider the transformation ζ(z) = ω′(z) − ω(z)

z
. By Dieudonné’s lemma, the

function ζ varies over the closed disk:

|ζ(z)| ≤ |z|2 − |ω(z)|2

|z|(1− |z|2)
,

for fixed |z| < 1 and z 6= 0. Using the transformation of ζ in (2.5), we obtain

Sf (z) = (A−B)

[
− (A+B)ω2(z)

2z2(1 +Bω(z))2
+

ζ(z)

z(1 +Bω(z))2

]
.

Thus,

|Sf (z)| ≤ (A−B)

[
|A+B||ω(z)|2

2|z|2|1 +Bω(z)|2
+

|ζ(z)|
|z||1 +Bω(z)|2

]
≤ (A−B)

[
|A+B||ω(z)|2

2|z|2(1− |B||ω(z)|)2
+

|z|2 − |ω2(z)|
|z|2(1− |z|2)(1− |B||ω(z)|)2

]
.

For 0 ≤ s := |ω(z)| ≤ |z| < 1, we have

|Sf (z)| ≤ (A−B)

[
|A+B|s2

2|z|2(1− |B|s)2
+

|z|2 − s2

|z|2(1− |z|2)(1− |B|s)2

]
(2.6)

= (A−B)
2|z|2 − s2(2− |A+B|(1− |z|2))

2|z|2(1− |z|2)(1− |B|s)2

= (A−B)g(s),

where

g(s) =
2|z|2 − s2(2− |A+B|(1− |z|2))

2|z|2(1− |z|2)(1− |B|s)2
, 0 ≤ s ≤ |z| < 1. (2.7)
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Now, we wish to find the maximum value of g(s) over the closed interval [0, |z|]. To do
this, we first find the critical points of g(s) in (0, |z|). A simple computation gives:

g′(s) =
2|B||z|2 − s(2− |A+B|(1− |z|2))

|z|2(1− |z|2)(1− |B|s)3
,

and so g′(s) = 0 yields:

s =
2|B||z|2

2− |A+B|(1− |z|2)
=: s0(|z|). (2.8)

Now, we have to check for which values of A and B, the point s = s0(|z|) lies in (0, |z|).
We first note that the inequality:

s0(|z|) =
2|B||z|2

2− |A+B|(1− |z|2)
< |z|, (2.9)

holds true if and only if k(|z|) > 0, where

k(|z|) = 2− |A+B| − 2|B||z|+ |A+B||z|2. (2.10)

We also note that k(0) = 2− |A+B| > 0 and the discriminant of k(|z|) is given by:

∆ = 4((|A+B| − 1)2 +B2 − 1).

Let (A,B) ∈ E1. If B =0 then g′(s) < 0 in (0, |z|) and so, g(s) is a decreasing function
in (0, |z|). Thus, the maximum of g(s) is attained at s =0. Thus, for B =0, the desired
result (2.3) follows from (2.6) and (2.7). If B 6= 0 then s0(|z|) > 0 and ∆ < 0. Hence, in
this case k(|z|) has no real zero and so k(|z|) > 0. Consequently, s0(|z|) lies in (0, |z|).
Let (A,B) ∈ E2. Then clearly B 6= 0, s0(|z|) > 0 and ∆ ≥ 0. If A+B = 0, then clearly

k(|z|) > 0 and consequently, s0(|z|) lies in (0, |z|). If A + B 6= 0 then the zeros of k(|z|)
in the real line are given by:

δ1 =
|B| −

√
B2 − |A+B|(2− |A+B|)

|A+B|
, (2.11)

and

δ2 =
|B|+

√
B2 − |A+B|(2− |A+B|)

|A+B|
. (2.12)

For (A,B) ∈ E2 with A+B 6= 0, we have |B|/|A+B| ≥ 1 and so δ2 6∈ (0, 1). Further,
k(0) > 0 and k(1) = 2(1 − |B|) > 0 for B 6= −1. Therefore, if B 6= −1 then k(|z|) has
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either two zeros or no zero in (0, 1). Consequently, for B 6= −1, k(|z|) has no zero in (0, 1)
and so, s0(|z|) lies in (0, |z|). Again, if B = −1 then δ1 = 1 6∈ (0, 1) and

δ2 =
2

|A− 1|
− 1 ≥ 1.

Hence, for B = −1, k(|z|) has no zero in (0, 1) and so, s0(|z|) lies in (0, |z|).
Therefore, s0(|z|) lies in (0, |z|) if (A,B) ∈ E1 ∪ E2 \ {(A, 0)}. Since the numerator of

g′(s) is a linear function of s, and g′(0) = 2|B|/(1 − |z|2) > 0, g′(s0(|z|)) = 0, it follows
that g′(|z|) < 0. Hence the function g(s) is increasing in (0, s0(|z|)) and decreasing in
(s0(|z|), |z|) and consequently, the maximum of g(s) is attained at s0(|z|). Thus, the
desired result (2.3) follows from (2.6) and (2.7).
Let (A,B) ∈ E3. Again, if B = −1 then k(|z|) have two zeros δ1 = 2

|A−1| − 1 ∈ (0, 1)

and δ2 = 1 6∈ (0, 1). If B 6= −1 then the function k(|z|) have two zeros δ1 and δ2 in
(0, 1) which are given by (2.11) and (2.12), respectively. In any case, by Rolle’s theorem,
the function k′(|z|) has exactly one zero, say α, in (δ1, δ2). Since, k

′(0) = −2|B| < 0
and k′(1) = 2(|A + B| − |B|) > 0, the function k(|z|) is strictly decreasing in (0, α)
and strictly increasing in (α, 1). Thus, we conclude that k(|z|) > 0 if z ∈ S ∩ D, where
S = {z ∈ C : |z| < δ1 or, |z| > δ2}; and k(|z|) < 0 if δ1 < |z| < δ2. Therefore, s0(|z|) lies
in (0, |z|) if z ∈ S ∩ D, and s0(|z|) does not lie in (0, |z|) if z ∈ Sc ∩ D.
Therefore, for z ∈ S ∩ D, following the same argument as before, the function g(s) is

increasing in (0, s0(|z|)) and decreasing in (s0(|z|), |z|) and consequently, the maximum
of g(s) is attained at s0(|z|). Thus, the desired result (2.4) follows from (2.6) and (2.7).
Again, for z ∈ Sc ∩ D, from (2.7), we have

g(|z|) = |A+B|
2(1− |B||z|)2

=
|A+B|(1− |z|2)
2(1− |B||z|)2

g(0) ≥ g(0),

as k(|z|) ≤ 0 for z ∈ Sc ∩ D. Thus, the desired result (2.4) follows immediately. This
completes the proof. �

Before we proceed further, let us discuss the sharpness of the estimate of |Sf (z)|
obtained in Theorem 2.1.
Let (A,B) ∈ E3. We consider the function KA,B(z) ∈ C(A,B) defined by (1.2). The

Schwarzian derivative of KA,B is given by:

SKA,B
(z) = − A2 −B2

2(1 +Bz)2
.

For B > 0 and any z0 ∈ Sc ∩ D with −1 < z0 ≤ 0, we have |SKA,B
(z0)| = |A2 −

B2|/2(1 − |B||z0|)2. Again, for B < 0 and any z0 ∈ Sc ∩ D with 0 ≤ z0 < 1, we have
|SKA,B

(z0)| = |A2 − B2|/2(1 − |B||z0|)2. This shows that the second inequality in (2.4)

is sharp in such cases.
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Next, suppose that A,B and z 0 satisfy either of the following two conditions:

(C1) (A,B) ∈ E1 ∪ E2 and −1 < z0 < 1,
(C2) (A,B) ∈ E3 and −1 < z0 < 1 with z0 ∈ S ∩ D.

Depending on A and B, we choose a pair of unimodular real numbers (p, q) as follows:
(p, q) = (1, 1) when A+B ≤ 0,

(p, q) = (−1, 1) when A+B > 0, B ≥ 0,

(p, q) = (−1,−1) when A+B > 0, B < 0.

(2.13)

For given A,B and z 0 satisfying (C1) or (C2), we choose (p, q) as above and consider
the function fz0,p,q defined by:

1 +
zf ′′z0,p,q(z)

f ′z0,p,q(z)
=

1 +Aφ(z)

1 +Bφ(z)
, (2.14)

where

φ(z) =
pz(z − b)

1− bz
,

and b is a solution of the equation:

z0(z0 − b)

1− bz0
= qs0(|z0|) =

2q|B|z20
2− |A+B|(1− z20)

,

i.e., b =
z0(2− 2q|B| − |A+B|(1− z20))

2− 2q|B|z20 − |A+B|(1− z20)
. (2.15)

We know that whenever A,B and z 0 satisfy (C1) or (C2), the point s0(|z0|) lies in
[0, |z0|), where s0(|z|) is given by (2.8). This ensures that b ∈ (−1, 1) and φ is a Blaschke
product of degree 2 with φ(0) = 0. Hence, the function fz0,p,q belong to the class C(A,B).
For the function fz0,p,q, the Schwarzian derivative is given by:

Sfz0,p,q
(z) =

[
f ′′z0,p,q(z)

f ′z0,p,q(z)

]′

− 1

2

[
f ′′z0,p,q(z)

f ′z0,p,q(z)

]2

= (A−B)

[
− (A+B)φ2(z)

2z2(1 +Bφ(z))2
+

φ′(z)− φ(z)
z

z(1 +Bφ(z))2

]

= (A−B)
−(A+B)(z − b)2 + 2p(1− b2)

2(1− bz +Bpz(z − b))2
.
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Substituting the value of b, given in (2.15), and then evaluating the Schwarzian
derivative Sfz0,p,q

(z) at z 0, we obtain:

Sfz0,p,q
(z0) = −(A−B)

2q2|B|2z20(2p+ (A+B)(1− z20))− p(2− |A+B|(1− z20))
2

(1− z20)(2− |A+B|(1− z20) + 2pqB|B|z20)2
.

Therefore, for any pair of (p, q), given in (2.13), we have

|Sfz0,p,q
(z0)| =

(A−B)(2− |A+B|(1− |z0|2))
(1− |z0|2)(2− |A+B|(1− |z0|2)− 2B2|z0|2)

. (2.16)

This shows that the inequality (2.3) and the first inequality in (2.4) are sharp for real z.
The above discussion shows that the estimate of the Schwarzian derivative |Sf (z)|

obtained in Theorem 2.1 is sharp for certain real values of z. This also helps us to obtain
the sharp estimate of the Schwarzian norm ||Sf (z)|| for functions in C(A,B) which is
given below.

Theorem 2.2. For −1 ≤ B < A ≤ 1, let f ∈ C(A,B) be of the form (1.1) and E1,
E2, E3 are given by (2.2).

(i) If (A,B) ∈ E1 ∪ E2, then

||Sf || ≤


2, for B = −1,

A−B, for B 6= −1, |A+B| ≤ 2(1−B2),

(A−B)γ(α), for B 6= −1, |A+B| > 2(1−B2),

(2.17)

where γ is given by:

γ(t) =
(1− t2)(2− |A+B|(1− t2))

2− |A+B|(1− t2)− 2B2t2
, (2.18)

and α is the unique root in (0, 1) of the equation h(t) = 0 with:

h(t) =(2− |A+B|)(|A+B|+ 2B2 − 2)− 2|A+B|(2− |A+B|)t2 (2.19)

+ |A+B|(2B2 − |A+B|)t4.

(ii) If (A,B) ∈ E3, then

||Sf || ≤
2|A2 −B2|(1−

√
1−B2)2

B4
. (2.20)

Moreover, all the estimates are sharp.

Proof. For −1 ≤ B < A ≤ 1, let f ∈ C(A,B) be of the form (1.1). We prove the
theorem by considering two different cases.
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Case-1: Let (A,B) ∈ E1 ∪ E2. From (2.3), we obtain,

|Sf (z)| ≤ (A−B)
2− |A+B|(1− |z|2)

(1− |z|2)(2− |A+B|(1− |z|2)− 2B2|z|2)
,

and hence,

||Sf || = sup
z∈D

(1− |z|2)2|Sf (z)| (2.21)

≤ (A−B) sup
0≤|z|<1

(1− |z|2)(2− |A+B|(1− |z|2))
2− |A+B|(1− |z|2)− 2B2|z|2

= (A−B) sup
0≤t<1

γ(t),

where γ(t) be given by (2.18). To find the supremum of γ(t) on [0, 1), we consider two
different subcases.
Subcase-1a: Let B = −1. Clearly, A ≥ 0. Then γ reduces to

γ(t) =
1 +A+ (1−A)t2

1 +A
.

It is easy to show that γ is a strictly increasing function in (0, 1). Hence, from (2.21),
we have ||Sf || ≤ 2.
To show that the estimate is best possible, we consider the function fz0,1,1 ∈ C(A,B)

defined by (2.14) where −1 < z0 < 1. From (2.16), we have

(1− z20)
2|Sfz0,1,1

(z0)| = 1 +A+ (1−A)z20 → 2 as z0 → 1−.

Subcase-1b: Let B 6= −1. If A+B = 0, then γ reduces to:

γ(t) =
1− t2

1−B2t2
.

Then, γ is a strictly decreasing function in (0, 1). Hence, from (2.21), we have ||Sf || ≤
A−B.
If A+B 6= 0, a simple computation gives:

γ′(t) =
2th(t)

(2− |A+B|(1− t2)− 2B2t2)
2 ,

where h(t) is given by (2.19). Moreover,

h′(t) = −4|A+B|(2− |A+B|)t+ 4|A+B|(2B2 − |A+B|)t3 (2.22)

= −4t|A+B|
(
2(1−B2t2)− |A+B|(1− t2)

)
.
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Note that

2(1−B2t2)− |A+B|(1− t2) ≥ (1− t2)(2− |A+B|) > 0.

Thus, the function h is strictly decreasing in (0, 1). Since the polynomial h(t) is sym-
metric about the origin and of degree 4, it follows that h(t) have at most two positive
real roots. Further, h(0) = (2−|A+B|)(|A+B|−2(1−B2)) and h(1) = −4(1−B2) < 0.
This shows that h has the unique zero, say α, in (0, 1) if |A+B| > 2(1−B2) and has no
zero in (0, 1) if |A+B| ≤ 2(1−B2). This further yields that γ(t) has its maximum at α if
|A+B| > 2(1−B2) and γ(t) has its maximum at 0 if |A+B| ≤ 2(1−B2). Consequently,
the required result (2.17) follows from (2.21).
To show that the estimate A−B is sharp when B 6= −1 and |A+B| ≤ 2(1−B2), we

consider the function f0(z) defined by:

1 +
zf ′′0 (z)

f ′0(z)
=

1 +Az2

1 +Bz2
. (2.23)

Then, f0 ∈ C(A,B) and the Schwarzian derivative of f 0 is given by:

Sf0
(z) =

(A−B)(2− (A+B)z2)

2(1 +Bz2)2
.

Moreover, Sf0
(0) = A−B and therefore, ||Sf0

|| = A−B.
To show that the estimate (A−B)γ(α) is sharp when B 6= −1 and |A+B| > 2(1−B2),

we consider the function fα,p,q defined by (2.14), where α is the unique root in (0, 1) of
the equation h(t) = 0, where h(t) is given by (2.19). From (2.16), we have:

(1− α2)2|Sfα,p,q (α)| =
(A−B)(1− α2)(2− |A+B|(1− α2))

2− |A+B|(1− α2)− 2B2α2
= (A−B)γ(α),

where γ is given by (2.18). Consequently, ||Sfα,p,q (z)|| = (A−B)γ(α).
Case-2: Let (A,B) ∈ E3. From (2.4), we obtain

|Sf (z)| ≤


(A−B)(2− |A+B|(1− |z|2))

(1− |z|2)(2− |A+B|(1− |z|2)− 2B2|z|2))
if z ∈ S ∩ D

|A2 −B2|
2(1− |B||z|)2

if z ∈ Sc ∩ D,

where S, δ1 and δ2 are same as in Theorem 2.1. Therefore,

||Sf || = sup
z∈D

(1− |z|2)2|Sf (z)| ≤ max{M1,M2}, (2.24)

with

M1 = (A−B) sup
z∈S∩D

(1− |z|2)(2− |A+B|(1− |z|2))
2− |A+B|(1− |z|2)− 2B2|z|2)

= (A−B) sup
t∈S∩(0,1)

γ(t),
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and

M2 = (A−B) sup
z∈Sc∩D

|A+B|(1− |z|2)2

2(1− |B||z|)2
= (A−B) sup

t∈Sc∩(0,1)

γ1(t),

where γ(t) is given by (2.18) and γ1(t) is given by:

γ1(t) =
|A+B|(1− t2)2

2(1− |B|t)2
.

Now, we consider two different subcases.
Subcase-2a: Let B = −1. Clearly, A< 0. Thus, δ1 = 2

1−A − 1 ∈ (0, 1) and δ2 = 1.
Therefore,

M1 = sup
0≤t<δ1

(1 +A+ (1−A)t2) = 1 +A+ (1−A)δ21 =
2(1 +A)

1−A
,

and

M2 = (A+ 1) sup
δ1≤t<1

(1−A)(1 + t)2

2
= 2(1−A2).

A simple calculation gives M1 < M2. Therefore, ||Sf || ≤ 2(1−A2).
Subcase-2b: Let B 6= −1. Then δ1 and δ2 lie in (0, 1). First we find the value of M 1. A
simple calculation gives:

γ′(t) =
2th(t)

(2− |A+B|(1− t2)− 2B2t2)2
,

where h(t) is a polynomial of degree 4 given by (2.19) and is symmetric about the origin.
Since (A,B) ∈ E3, it follows that:

h(0) = (2− |A+B|)(−2 + |A+B|+ 2B2)

≥ (2− |A+B|)(B2 − (1−B2) +
√
1−B2)

> 0, [ ∵ 1−B2 ∈ (0, 1)]

and h(1) = −4(1− B2) < 0. Thus, h has exactly one zero in (0, 1). Since, δ1 and δ2 are
the zeros of (2.10), it follows that:

γ(δ1) =
(1− δ21)(2− |A+B|(1− δ21))

2− |A+B|(1− δ21)− 2B2δ21
=

2|B|δ1(1− δ21)

2|B|δ1(1− |B|δ1)
=

(1− δ21)

1− |B|δ1

=
2

|A+B|
.
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Similarly,

γ(δ2) =
2

|A+B|
= γ(δ1).

By Rolle’s theorem, γ′(t) has at least one zero, say δ, in (δ1, δ2). Since h has exactly one
zero in (0, 1), γ′(t) has exactly one zero δ in (δ1, δ2). Consequently, γ is strictly increasing
in (0, δ) and strictly decreasing in (δ, 1). Therefore,

M1 = (A−B) sup
t∈S∩(0,1)

γ(t) = (A−B)γ(δ1) = (A−B)γ(δ2) =
2(A−B)

|A+B|
.

Next, we will find the value of M 2. Clearly,

γ′1(t) =
|A+B|(1− t2)ψ(t)

(1− |B|t)3
,

where ψ(t) = |B|t2 − 2t+ |B|. Therefore, ψ(0) = |B| > 0 and ψ(1) = −2(1− |B|) < 0.
Thus, ψ has an unique zero, say β, in (0, 1) and β is given by:

β =
1−

√
1−B2

|B|
.

A simple calculation yields that:

γ1(δ1) = γ1(δ2) =
2

|A+B|
= γ(δ1) = γ(δ2). (2.25)

By Rolle’s theorem, γ′1(t) has at least one zero in (δ1, δ2). Since, ψ has exactly one zero
β in (0, 1), γ′1(t) has exactly one zero β in (δ1, δ2). Consequently, γ1 is strictly increasing
in (0, β) and strictly decreasing in (β, 1). Therefore, γ1 has its maximum at β. That is,

M2 = (A−B) sup
δ1≤t≤δ2

γ1(t) = (A−B)γ1(β) =
2|A2 −B2|(1−

√
1−B2)2

B4
.

From (2.25), we note that:

M2 = (A−B)γ1(β) ≥ (A−B)γ1(δ1) = (A−B)γ(δ1) =M1.

Therefore, from (2.24), we get the desired result.
To show that the estimate is sharp, let us consider the function KA,B(z) defined by

(1.2). The Schwarzian derivative of KA,B is given by:

SKA,B
(z) = − A2 −B2

2(1 +Bz)2
,
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and so

||SKA,B
|| = sup

z∈D
(1− |z|2)2|SKA,B

(z)| = |A2 −B2|
2

sup
z∈D

(1− |z|2)2

|1 +Bz|2
.

If B > 0, then

|A2 −B2|
2

sup
0<t<1

(1− t2)2|SKA,B
(−t)| = (A−B) sup

t∈(0,1)

γ1(t)

=M2 =
2|A2 −B2|(1−

√
1−B2)2

B4
.

If B < 0, then

|A2 −B2|
2

sup
0<t<1

(1− t2)2|SKA,B
(t)| = (A−B) sup

t∈(0,1)

γ1(t)

=M2 =
2|A2 −B2|(1−

√
1−B2)2

B4
.

Therefore,

||SKA,B
|| = 2|A2 −B2|(1−

√
1−B2)2

B4
.

This completes the proof. �

For particular values of A and B with −1 ≤ B < A ≤ 1, one can obtain sharp
estimates for the Schwarzian norm of functions belonging to several subclasses of S. If
we choose A=1 and B = −1 in Theorem 2.2, then the first inequality in (2.17) provides
the Schwarzian norm estimate for the class of convex functions, which was first proved
by Robertson [25].

Corollary 2.1. Let f ∈ C(1,−1) =: C be of the form (1.1). Then, the Schwarzian
norm satisfies the sharp inequality

||Sf || ≤ 2.

If we choose A = 1 − 2α, 0 ≤ α ≤ 1 and B = −1 in Theorem 2.2 then the first
inequality in (2.17) and (2.20) provides the Schwarzian norm estimate for the class of
convex functions of order α, which was obtained by Suita [28]. Also, the inequality (2.20)
in Theorem 2.2 in conjunction with Theorem A gives the quasiconformal extension.
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Corollary 2.2. Let f ∈ C(1− 2α,−1) =: C(α), 0 ≤ α ≤ 1 be of the form (1.1). Then
the Schwarzian norm satisfies the sharp inequality:

||Sf || ≤

2, for 0 ≤ α ≤ 1/2,

8α(1− α), for 1/2 ≤ α ≤ 1.

Further, f can be extended to a 4α(1 − α)-quasiconformal mapping of the Riemann

sphere Ĉ when 1/2 < α ≤ 1.

If we choose A = α, 0 < α ≤ 1 and B =0 in Theorem 2.2 then the second inequality
in (2.17) in conjunction with Theorem A gives the following result.

Corollary 2.3. Let f ∈ C(α, 0), 0 < α ≤ 1 be of the form (1.1). Then the Schwarzian
norm satisfies the sharp inequality ||Sf || ≤ α and equality occurs for the function f0 which
is given by (2.23). Further, f can be extended to a α/2-quasiconformal mapping of the

Riemann sphere Ĉ.

If we choose A = α and B = −α, 0 < α ≤ 1 in Theorem 2.2 then the second inequality
in (2.17) in conjunction with Theorem A gives the following result.

Corollary 2.4. Let f ∈ C(α,−α), 0 < α ≤ 1 be of the form (1.1). Then the
Schwarzian norm satisfies the sharp inequality ||Sf || ≤ 2α and equality occurs for the
function f0 which is given by (2.23). Further, f can be extended to a α-quasiconformal

mapping of the Riemann sphere Ĉ when 0 < α < 1.
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(16) W. Kraus, Über den Zusamenhang einiger Charakteristiken eines einfach zusam-
menhängenden Bereiches mit der Kreisabbildung, Mitt. Math. Sem., Giessen 21 (1932),
1–28.
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