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We are concerned with a variant of the isoperimetric problem, which in our setting
arises in a geometrically nonlinear two-well problem in elasticity. More precisely, we
investigate the optimal scaling of the energy of an elastic inclusion of a fixed volume
for which the energy is determined by a surface and an (anisotropic) elastic
contribution. Following ideas from Conti and Schweizer (Commun. Pure Appl.
Math. 59 (2006), 830–868) and Knüpfer and Kohn (Proc. R. Soc. London Ser. A
Math. Phys. Eng. Sci. 467 (2011), 695–717), we derive the lower scaling bound by
invoking a two-well rigidity argument and a covering result. The upper bound
follows from a well-known construction for a lens-shaped elastic inclusion.
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1. Introduction

This article is concerned with a variant of the isoperimetric problem, for which we
investigate the optimal energy of an elastic inclusion of a fixed volume. Here the
energy consists of an interfacial and a geometrically nonlinear elastic contribution.
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The latter is defined by an integral of the stored-energy density function over a
domain. As usual, the stored-energy density depends on the strain and describes
properties of the material. Physically, the problem is motivated by nucleation
phenomena which arise, for instance, in shape-memory materials [9].

The set-up considered in this work is the geometrically nonlinear analogue of
[42] where the isoperimetric problem for a geometrically linear elastic two-phase
inclusion problem had been investigated. Our main aim is to deduce quantitative
information on the nucleation problem by studying its scaling properties. The prob-
lem of determining the sharp form of the inclusion seems to be more complicated
[60]. In addition to the presence of non-quasiconvexity as in [42], in the geomet-
rically nonlinear setting under investigation, an additional difficulty is present in
the form of the nonlinear gauge group SO(2). We emphasize that nonlinear models
are more general than linear ones and, therefore, should be considered primarily.
Linearized elasticity correctly describes only very particular deformations that are
close to elastic equilibria (cf. [8] for a comparison of the two theories). In order to
deal with the nonlinear structure of the model, we hence rely on the geometrically
nonlinear rigidity result from [28] in combination with the ideas from [42].

1.1. Model and statement of results

We consider the interior nucleation of a new phase in an elastic material in two
space dimensions. More specifically, we consider a material for which two differ-
ent phases (lattice structures) are energetically preferred. These are represented by
the SO(2) orbit of the identity matrix Id ∈ R

2×2 and the SO(2) orbit of another
matrix F ∈ R

2×2\SO(2). The deformation of the material is described by a func-
tion v : R

2 → R
2. By the Cauchy–Born rule the energy of an elastic material can

be represented in terms of the gradient of the deformation function v. Following
the phenomenological theory of martensite and assuming Hooke’s law, we study
(volume-constrained) minimizers of the energy

E [χ, v] =
∫

R2
|∇χ| +

∫
R2

(1 − χ)dist2(∇v,SO(2)) + χdist2(∇v,SO(2)F ). (1.1)

Here χ : R
2 → {0, 1} encodes the location of the new, minority phase. Its variation

i.e. the first integral in (1.1) is the interfacial energy, while the second integral is the
elastic energy. Hence, our model includes penalizations of transitions between the
phases and deviations from the corresponding material phase. We introduce μ > 0
to denote the volume of the inclusion

μ =
∫

R2
χ (1.2)

for the region M := {x ∈ R
2 : χ(x) = 1} associated with the minority phase. In

what follows, we will consider minimizers of the energy (1.1) for a prescribed volume
of the minority phase. In order to rule out self-intersections, as the set Am of
admissible functions we consider

Am :=
{
(χ, v) ∈ BV (R2, {0, 1}) × H1

loc(R
2, R2) :

v is bi-Lipschitz with constant m � 1} .
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Here bi-Lipschitz with constant m � 1 means that v is a homeomorphism and v and
v−1 are Lipschitz continuous functions with Lipschitz constants m � 1. Seeking to
model nucleation phenomena, we assume that the strain F is compatible with the
identity matrix. In two dimensions this is equivalent to the condition detF = 1. Our
main result is the scaling of the minimal energy for prescribed inclusion volume:

Theorem 1.1 (Scaling of ground-state energy). Suppose that F ∈ R
2×2\SO(2) sat-

isfies det F = 1. Let μ be as in (1.2). Let m � max{‖F‖, ‖F−1‖} + C for some
sufficiently large constant C > 0. Then for any μ > 0 we have

inf
(χ,v)∈Am satisfies (1.2)

E [χ, v] ∼
{

μ1/2 for μ � 1,
μ2/3 for μ � 1.

Here, we write A ∼ B by which we mean that cA � B � CB for two constants
c, C > 0 which are independent of μ but may depend on F . The first bound in
Theorem 1.1 corresponds to the usual isoperimetric regime in which the surface
energy dominates while the second estimate for μ � 1 captures the effect of the
interaction of the surface and elastic energies. In particular, the role of anisotropy
in the elastic contribution in the form of the two physical phenomena of compatibility
and self-accommodation are captured in it. We do not track the dependence on ‖F‖
in the energy scaling behaviour.

The result of theorem 1.1 confirms the similar scalings which had been obtained
in the framework of piecewise linear elasticity in [42]. In particular, the result
shows that in the framework of geometrically nonlinear elasticity, the model imposes
enough rigidity to ensure the same lower bound on the energy as in the geomet-
rically linear model. This is in line with the fact that the only solution for the
two-gradient problem for two compatible strains are twins in nonlinear elasticity
theory [3, proposition 2] as well as in linear elasticity theory. If we allow for more
variants of martensite, the situation is expected to become more intricate since
in this case the corresponding many gradient problems possibly allow for a large
number of non-trivial solutions and complicated microstructure [9, 60].

1.2. Ideas of the proof

The proof of our main result can be split into two parts: an ansatz-free lower-
bound estimate and an upper-bound construction.

On the one hand, in order to verify the lower bound, we observe that with-
out loss of generality, we may assume the deformation F to be symmetric and
positive-definite after using the polar decomposition theorem. By a suitable choice
of coordinates, F hence takes the form

F =
(

λ 0
0 1

λ

)
for some 0 < λ < 1.

With these normalization results on hand, in the small volume regime, the lower
bound follows by the standard isoperimetric inequality. In the large volume setting,
we deduce the lower bound by a combination of a segment rigidity argument from
[28] (§ 2) and the localization argument from [42] (§ 4.1). Working with phase
indicator energies as in [42] or [13], see (1.1), contrary to the energies in [28], we
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do not directly control the full second derivatives of the deformation v. This addi-
tional degeneracy results in a number of small adaptations becoming necessary.
For settings with full second-derivative control the key localized energy estimate
in proposition 3.1 would directly follow from corollary 2.5 in [28]. Moreover, in
this case also the higher-dimensional problem could be treated directly in paral-
lel by invoking the results from [19] or [37]. With our energies this would require
adaptations of these strategies, e.g. in the associated rigidity results, which we do
not pursue in the present article. The slightly stronger degeneracy of our energy
which does not immediately yield the full second-derivative control, also accounts
for one of the technical reasons for our bi-Lipschitz assumptions in the minimiza-
tion problem; another reason being the use of approximation theory for bi-Lipschitz
functions in § 3. Although more general deformations might be possibly considered
at the expense of various technical difficulties, we would like to emphasize that
bi-Lipschitz deformations automatically guarantee injectivity everywhere, that is
essential in mathematical elasticity. Results ensuring almost everywhere injectiv-
ity rely on Hölder continuous deformations and orientation-preserving maps [23].
Additional control of the distortion is needed if we want to achieve injectivity
everywhere [36].

On the other hand, the upper bound is derived by constructing a deformation
v corresponding to a well-known construction for a lens-shaped elastic inclusion
(see e.g. [42]) which in our geometrically nonlinear setting leads to an orientation-
preserving deformation.

1.3. Relation to the literature

Due to their physical significance and the intrinsic mathematical interest in
‘non-isotropic’ isoperimetric inequalities, nucleation problems for shape-memory
materials have been studied in various settings: in a geometrically linearized frame-
work the compatible and incompatible two-well problems (one variant of martensite
and one variant of austenite) have been considered in [42], where a localization
strategy was introduced. This also forms one of the two core ingredients of our
result. Moreover, the nucleation behaviour for the geometrically linearized cubic-
to-tetragonal phase transformation was studied in [43] in which Fourier theoretic
arguments in the spirit of [12, 13] were exploited. Fourier theoretic arguments also
underlie the study of the nucleation of multiple phases without gauge invariance
in [65]. Using related ideas, the nucleation behaviour at corners of martensite in
an austenite matrix was investigated in [6]. We also refer to [4, 5, 53] for the
study of quasiconvexity at the boundary. Further, highly symmetric, low-energy
nucleation mechanisms have been explored in [16, 27] both in the geometrically
linear and nonlinear theories in two dimensions. In the geometrically nonlinear
settings substantially less is known in terms of nucleation properties due to the
presence of the nonlinear gauge group. In this context, the incompatible two-well
problem was studied in [18] in which an incompatible two-well analogue of the
Friesecke–James–Müller rigidity result [35] was used. Moreover, the study of model
singular perturbation problems for the analysis of austenite–martensite interfaces
in terms of a surface energy parameter [49, 50] laid the basis for an intensive,
closely related research on singular perturbation problems for shape-memory alloys
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[17, 20, 21, 24, 28, 29, 31, 56, 63, 64, 66, 68]. Contrary to the full nucleation
problems, in these settings the phenomenon of compatibility plays the main role,
while nucleation phenomena in addition require the analysis of the phenomenon of
self-accommodation. Moreover, dynamic nucleation results have been considered in
[32, 33, 54]. We refer to [55, 60] for further references on these and related results.

Nonlocal isoperimetric inequalities have also been investigated for the
Ohta–Kawasaki energy and related models with Riesz interaction. For example,
we refer to [1, 10, 11, 34, 38, 39, 45, 46, 57]. In these models, above a critical
volume minimizers do not exist anymore and the scaling of the energy in terms
of the mass is linear. Other related vectorial models where the energy includes
both interface type energies as well as a (dipolar) nonlocal interaction are fer-
romagnetic systems. The nucleation of magnetic domains during magnetization
reversal and corresponding optimal magnetization patterns have been investigated
in [44, 47, 48], see also [61]. The competition between a nonlocal repulsive poten-
tial and an attractive confining term is found also in other problems, for example
in models studying the interaction of dislocations [41, 67] or [14, 15, 59]. Another
anisotropic and nonlocal repulsive energy that has been treated variationally using
ansatz-free analysis is discussed in [15] (based on [14, 59]). We finally briefly men-
tion investigations of other physical settings where related nonlocal isoperimetric
inequalities have been studied. This includes the works [51, 52, 62] on compliance
minimization, on epitaxial growth (e.g. [7]), on dislocations (e.g. [25]) and super-
conductors (e.g. [22, 26]). We emphasize that the above list of references is far from
exhaustive.

1.4. Notation

We write A � B if A � CB for some constant C which is independent of μ,
but may, for instance, depend on F . The Frobenius norm of a matrix A ∈ R

d×l

is denoted by ‖A‖ =
√

tr(AtA). For two matrices A,B we write dist(A,B) :=
‖A − B‖, where ‖ · ‖ is the Frobenius norm, analogously, we define dist(A,K) :=
distK∈K(A,K) for any K ⊂ R

2×2.
By BR(x) we denote the ball of radius R > 0 centred at x ∈ R

2 and we write
BR := BR(0). We write M := sptχ ⊂ R

2 to denote the support of the minority
phase. For E ⊂ R

2 and v ∈ BV (E), the total variation of v is denoted by ‖∇v‖E .

2. Rigidity

The aim of this section is to find a ‘good’ set in the shape of a rhombus which fulfils
a variant of the rigidity estimate from [28]. We first introduce some notation for
the elastic energies for the deformation v. We set

eelast(χ, v) := (1 − χ)dist2(∇v,SO(2)) + χdist2(∇v,SO(2)F ).

Then the elastic energy for a one-dimensional (1D) or two-dimensional subset E ⊂
R

2 is defined as

Eelast[χ, v,E] :=
∫

E

eelast(χ, v) (2.1)
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and the total elastic energy is Eelast[χ, v] := Eelast[χ, v, R2]. Similarly, we introduce

E ′
elast[χ, v,E] :=

∫
E

(1 − χ)dist2(∇v,SO(2)) + χdist2(∇v,SO(2)F−1),

which we will use in order to deal with estimates for the inverse of v. If the subset
is 1D we integrate over the 1D Hausdorff measure instead of the Lebesgue measure.

Before stating the central rigidity estimate, we formulate two auxiliary lemmas.
First, we note that there is a large set of non-singular points:

Lemma 2.1 (Non-singular points). Let f ∈ L1(BR) and R > 0. Then for any θ > 0
there is U ⊂ BR with |BR\U | < θ and a constant C = C(θ) > 0 such that for any
x0 ∈ U we have ∫

BR

|f(x)| 1
dist(x, x0)

dx � C

R
‖f‖L1(BR).

Proof. This follows by an application of Fubini’s theorem and since dist−1(·, x0) ∈
L1

loc. �

By our bi-Lipschitz assumption, bounds on v can be translated into analogous
bounds for its inverse:

Lemma 2.2. Let R > 0, m � 1 and let (χ, v) ∈ Am with v(0) = 0 and v ∈ C1(BmR).
Assume that

‖χ‖L1(BmR) � ηR2 and ‖∇χ‖BmR
� ηR.

Then for χ1 := χ ◦ (v−1) we have

(i) ‖χ1‖L1(BR) � m2ηR2;

(ii) ‖∇(χ1)‖BR
� mηR;

(iii) E ′
elast[χ1, v

−1, BR] � CEelast[χ, v,BmR] for some constant C = C(m,F ) > 0.

Proof. By the transformation formula and since v ∈ Am, (i) follows from

‖χ1‖L1(BR) �
∫

BmR

χ(y)|det∇v(y)|dy � m2‖χ‖L1(BmR) � m2ηR2.

By the chain rule for BV functions (cf. theorem 3.16 in [2]) this implies∫
BR

|∇χ1| � m

∫
BmR

|∇χ| = mηR.

The claim of (iii) follows by an application of the linear algebra fact from
lemma A.2(ii). Indeed, using the pointwise identity

dist2((∇v)−1,SO(2)A−1) � Cdist2(∇v,SO(2)A) for A ∈ {Id, F} (2.2)
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together with the inverse function theorem, the transformation theorem and with
the notation ṽ := v−1, we arrive at

E ′
elast[χ1, ṽ, BR] =

∫
BR

(1 − χ1(y))dist2((∇v)−1
|ṽ(y),SO(2))

+ χ1(y)dist2((∇v)−1
|ṽ(y),SO(2)F−1) dy

(2.2)

� C

∫
BmR

(1 − χ(x))dist2(∇v(x),SO(2))

+ χ(x)dist2(∇v(x),SO(2)F ) dx

= CEelast[χ, v,BmR]

for some constant C = C(m,F ) > 0. This completes the proof. �

We are now ready to give the key rigidity estimate. It is a variant of the two-well
rigidity estimate from [28] and shows that we can find a sufficiently large rhombus
such that we control the energy and the change of length on all six connecting
lines between the corner points of this rhombus both for the transformation and its
inverse:

Lemma 2.3. (Rigidity estimate): Let R > 0, m � 1, δ ∈ (0, R/m). Then there are
constants η = η(δ) > 0 and C = C(δ,m, F ) > 0 such that the following holds:
assume (χ, v) ∈ Am satisfies v ∈ C1(BR, R2),

‖χ‖L1(BR) � ηR2 and ‖∇χ‖BR
� ηR. (2.3)

Then there exist four points C := {a, b, c, d} ⊂ BR/m ⊂ R
2 with |a − b| ∼ R/m and

|c − d| ∼ δR/m, which form the end-points of a symmetric rhombus T such that for
all x, y ∈ C and with the notation M = spt χ we have the following properties:

(i) [x, y] ∩ M = ∅;

(ii) Eelast[χ, v, [x, y]] � C

R
Eelast[χ, v,BR];

(iii)
∫

BR

eelast(χ, v)
dz

dist(z, x)
� C

R
Eelast[χ, v,BR].

Furthermore, for χ1 := χ ◦ (v−1) we have

(iv) [v(x), v(y)] ∩ v(M) = ∅;

(v) E ′
elast[χ1, v

−1, [v(x), v(y)]] � C

R
E ′
elast[χ1, v

−1, BR];

(vi) there exist Q ∈ SO(2) and p ∈ R
2 such that

|v(x) − Qx − p| � C(Eelast[χ, v,BR]1/2 + η1/2).
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Finally, we have rigidity on all six segments

(vii)
∣∣∣∣1 − |v(x) − v(y)|

|x − y|
∣∣∣∣ � C

R
Eelast[χ, v,BR]1/2.

Proof. Without loss of generality, by scaling, we may assume that R = m and
v(0) = 0. We further choose θ ∈ (0, 1) sufficiently small to be determined below.
We argue in several steps based on averaging-type arguments.

Step 1: Identification of a symmetric cross satisfying (i) and (ii). We first
construct horizontal and vertical segments forming a ‘cross’ satisfying (i) and
(ii). For δ ∈ (0, 1/2) and r ∈ (−δ, δ) we define the horizontal line segment by
Lhor(r) = [p−(r), p+(r)] ⊂ B1 where p±(r) := (±1/2, r). We first show that if η > 0
is sufficiently small, there exists a subset E ⊂ (−δ, δ) of volume fraction 1 − θ such
that

Lhor(r) ∩ M = ∅ and Eelast[χ, v, Lhor(r)] � CEelast[χ, v,B1] for all r ∈ E.

Indeed, for some C = C(δ, θ) > 0, we define

E :=
{

r ∈ (−δ, δ) : ‖χ‖L1(Lhor(r)) + ‖∇χ‖Lhor(r) � θ and
Eelast[χ, v, Lhor(r)]
Eelast[χ, v,B1]

� C

}
.

By Chebyshev’s inequality and in view of (2.3) we have

|(−δ, δ)\E| � η

θ
+

1
C

� (2δ)θ

by choosing η = η(δ, θ) sufficiently small and C = C(δ, θ) sufficiently large. In par-
ticular, |E| � 2δ(1 − θ). Now, since for each r ∈ E, ∇χ|Lhor(r) is a discrete measure
and since θ ∈ (0, 1), this implies ∇χ|Lhor(r) = 0 for all r ∈ E. By definition of E
we then have χ|Lhor(r) = 0 for r ∈ E (cf. [42, p. 701]). This shows that outside of
volume fraction θ, the horizontal segments Lhor(r) have properties (i)–(ii).

Next, we repeat this argument along the vertical lines of the form Lver(s) =
[q−(s), q+(s)] with q±(s) = (s,±δ) for s ∈ [−1/2, 1/2]. Also for this set, we analo-
gously find a volume fraction Ẽ ⊂ [−1/2, 1/2] of size 1 − θ such that these vertical
line segments satisfy (i)–(ii).

Consider now the sets {Lhor(r)}r∈E and {Lver(s)}s∈Ẽ of all horizontal and ver-
tical segments with properties (i)–(ii), respectively (see figure 1). Let o(s, r) =
Lhor(r) ∩ Lver(s) be the intersection point of the corresponding horizontal and ver-
tical line. The point o(s, r) divides both Lhor(r) and Lver(s) into two segments
denoted by L+

hor(r) and L−
hor(r) (also L+

ver(s) and L−
ver(s)). Since E and Ẽ are sets

of positive (close to one) volume fractions, there exist r0 ∈ E and s0 ∈ Ẽ such that
|L+

hor(r0)| ∼ |L−
hor(r0)| and |L+

ver(s0)| ∼ |L−
ver(s0)|. Consequently, we choose L′

hor and
L′

ver such that o = Lhor(r0) ∩ Lver(s0) is the midpoint of L′
hor as well as the mid-

point of L′
ver. This can be done by (if necessary) cutting exceeding parts of Lhor(r0)

and Lver(s0); we note that such a modification preserves the conditions |L′
hor| ∼ 1

and |L′
ver| ∼ δ.

Step 2: Identification of a ‘good’ rhombus. Let L′
hor and L′

ver be the segments
forming a symmetric cross and satisfying (i)–(ii) as in the previous step. Let T̂
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Figure 1. Grey rectangles represent sets of horizontal and vertical segments with
properties (i)–(ii).

Figure 2. Sketch of a set of rhombi T̂ (ρ), ρ ∈ (1/4, 3/4).

be the symmetric rhombus given by the convex hull of this cross. We denote by
T̂ρ the homothetically shrunken rhombus with the self-similarity factor ρ ∈ (0, 1]
and the same centre point. For ρ ∈ (1/4, 3/4) =: I, the diagonals (given by the
corresponding shortened line segments of the originally constructed cross) of the
resulting symmetric rhombi T̂ρ also satisfy (i)–(ii) by construction, see figure 2.
After using a Fubini argument as in step 1, we obtain a subset I1 of I on which all
sides of the rhombus fulfil properties (i)–(ii).

Next, we seek to ensure that properties (iii)–(v) are also satisfied on the edges of
some of these rhombi. Invoking lemma 2.1 together with another averaging argu-
ment, we obtain another set I2 ⊂ I of positive volume fraction satisfying (iii). In
addition to this, since v is bi-Lipschitz and by lemma 2.2(i)–(ii), we can repeat step
1 with the functions v−1 and χ1, the energy E ′

elast[χ1, v
−1, Bm] and for the line seg-

ments [v(x), v(y)], where x, y form the endpoints of the rhombi T̂ρ for ρ ∈ I. Thus,
noting that by the bi-Lipschitz property of v, the length of the lines [v(x), v(y)] is
(up to a factor m,m−1) comparable to that of [x, y] and after possibly enlarging the
constant C > 0, we obtain a subset I3 of I with properties (iv)–(v). By choosing
the intersection of these subsets of I, we arrive at a subset of I with positive volume
fraction such that all sides of T̂ρ fulfil (i)–(v) for ρ in this subset, provided η > 0 is
sufficiently small.

By the Friesecke–James–Müller rigidity theorem [35] and Poincaré’s inequality,
there exist Q ∈ SO(2) and p ∈ R

2 such that for constants Cδ, CF > 0, we have

‖v(x) − Qx − p‖2
L2(T̂ρ)

� Cδ‖∇v − Q‖2
L2(T̂ρ)

� Cδ‖dist(∇v,SO(2))‖2
L2(T̂ρ)

� Cδ(Eelast[χ, v,Bm] + dist(SO(2)F,SO(2))|T̂ρ ∩ M |)
� Cδ(Eelast[χ, v,Bm] + CF η).

Again, the use of a Fubini argument implies that there are many values of ρ such
that the resulting rhombi T̂ρ are ‘good’, in the sense that all lines connecting the
corner points of the rhombus satisfy properties (i)–(v) and that for some constant
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Figure 3. Sketch of the rhombus T constructed in lemma 2.3.

C = C(F, δ) > 0 we have

‖v(x) − (Qx + p)‖2
L2(∂T̂ρ)

+ ‖∇v − Q‖2
L2(∂T̂ρ)

� C(Eelast[χ, v,Bm] + η).

Then by Sobolev’s embedding theorem, we obtain

‖v(x) − (Qx + p)‖2
L∞(∂T̂ρ)

� C(Eelast[χ, v,Bm] + η). (2.4)

We choose one such ‘good’ rhombus and denote it by T and define its endpoints as
the points C := {a, b, c, d} (see figure 3). Since v is a continuous function, we obtain
from inequality (2.4)

|v(x) − (Qx + p)|2 � C(Eelast[χ, v,Bm] + η) for x ∈ C.

As a consequence, by construction properties (i)–(vi) are satisfied for these
endpoints.

Step 3: Proof of (vii). By the fundamental theorem of calculus, for any x, y ∈ C
we have

|v(x) − v(y)| �
∫

[x,y]

|∇v| � |x − y| +
∫

[x,y]

dist(∇v,SO(2))

(ii)

� |x − y| + CEelast[χ, v,B1]1/2. (2.5)

Now, we apply the same argument to v−1(v(x)) − v−1(v(y)) with x, y ∈ C. Thus,
in view of lemma 2.2, for a constant C = C(δ,m, F ) > 0 we obtain

|x − y| �
∫

[v(x),v(y)]

|∇v−1(z)|

� |v(x) − v(y)| +
∫

[v(x),v(y)]

dist(∇(v−1),SO(2))

(iv),(v)

� |v(x) − v(y)| + CE ′
elast[χ1, v

−1, B1]1/2

� |v(x) − v(y)| + CEelast[χ, v,Bm]1/2. (2.6)

Combining inequalities (2.5) and (2.6), we obtain the desired estimate (vii). This
completes the proof of the lemma. �
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3. A lower bound for the elastic energy

In this section, we prove a local lower bound by exploiting the rigidity argument
from lemma 2.3 and the ideas from the proof of lemma 2.3 in [28]. This local lower
bound provides a geometrically nonlinear variant of the central lower bound from
proposition 3.1 in [42]. In § 4.1 we will combine it with a covering argument as in
[42] which will imply the lower bound of theorem 1.1.

Proposition 3.1 (Lower bound on elastic energy). There is η > 0 such that for
any R > 0 the following holds: suppose that (χ, v) ∈ Am satisfies

‖χ‖L1(BR) � ηR2 and ‖∇χ‖BR
� ηR.

Then there are constants α = α(m) ∈ (0, 1) and C = C(F, α,m) > 0 such that

Eelast[χ, v,BR] � C

R2
‖χ‖2

L1(BαR). (3.1)

Proof. This result essentially follows from an application of a variant of the two-well
rigidity result from [28]. Here there are slight adaptations in steps 1 and 2 in the
proof due to the choice of our energies (full gradient control in [28] vs. our phase-
indicator energies), while steps 3 and 4 then follow essentially without changes as
in [28]. For self-containedness, we repeat the argument for proposition 3.1.

By scaling we can assume R = m and by the approximation results in [30] for
bi-Lipschitz functions we can further assume that v ∈ C1(Bm).

Following the argument in [28] in our proof we will construct a rhombus T with
Bα ⊂ T ⊂ B1 and show that the corresponding estimate (3.1) holds for T replaced
by Bα for some α > 0. We write μ := ‖χ‖L1(Bα) and ε := Eelast[χ, v,Bm]. Moreover,
we note that, without loss of generality, we can assume

ε1/2 < η. (3.2)

Indeed, if ε is large e.g. ε1/2 � η, then by assumption we have ‖χ‖L1(B1) � η � ε1/2.
Then inequality (3.1) follows immediately.

Step 1: Construction of a ‘good’ rhombus. Since F �= Id and detF = 1 after a
rotation of coordinates, we may assume that |Fe1| < 1. Hence, there exists δ > 0
such that

|Fξ| < 1 − 2δ for all ξ ∈ R
2 with |ξ| = 1 such that |ξ − e1| < 2δ.

Without loss of generality we can assume that δ ∈ (0, 1) so that the conditions of
lemma 2.3 with R = m are satisfied. We then consider a rhombus T with corner
points C := {a, b, c, d} as obtained in lemma 2.3, see figure 3. Since |c − d| ∼ δ and
|a − b| ∼ 1, in particular,

|F (p − t)| < |p − t|(1 − δ) for all p ∈ {a, b}, t ∈ [c, d]. (3.3)

By lemma 2.3 we further have properties (i)–(vii) for this rhombus.
Step 2: We claim that there exist Q ∈ SO(2) and p ∈ R

2 such that v(x) is close to
Qx + p for any point x ∈ C up to an error of order ε1/2. Indeed, by lemma 2.3(vii)
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the six lengths |x − y| for x, y ∈ C are preserved by v up to errors of order ε1/2.
This implies that there are two isometries x → Qjx + pj with Qj ∈ O(2), pj ∈ R

2

and j ∈ {1, 2} such that for the constant C = C(δ,m, F ) > 0 from lemma 2.3 we
have

|v(x) − (Q1x + p1)| � Cε1/2 for x ∈ {b, c, d} and

|v(x) − (Q2x + p2)| � Cε1/2 for x ∈ {a, c, d}.

It remains to argue that Q1, Q2 ∈ SO(2) and p1, p2 ∈ R
2 can be chosen to be equal,

respectively.
We first argue that Qj ∈ SO(2). In [28] this follows from the second-gradient con-

trol and the pointwise estimates in the endpoints of the rhombus. Lacking the con-
trol of the full gradient, we here vary the argument slightly. The use of lemma 2.3(vi)
and the triangle inequality implies that for some constant C = C(F, δ,m) > 0
and for Q ∈ SO(2), p ∈ R

2 we have

|Qx + p − (Q1x + p1)| � C(ε1/2 + η1/2) for x ∈ {b, c, d}.

For η ∈ (0, 1) (depending on δ > 0) and ε > 0 sufficiently small, this yields a contra-
diction, if Q1 ∈ O(2) \ SO(2). Similarly, we also obtain that Q2 ∈ SO(2). Moreover,
since the triangles Δcbd with vertices c, b, d and Δacd with vertices a, c, d share a
common line, we have that Q1 can be chosen equal to Q2 and that p1 = p2. A
normalization further allows us to suppose that p1 = p2 = 0 and Q1 = Q2 = Id. As
a consequence, we may assume that

|v(x) − x| � Cε1/2 for x ∈ {a, b, c, d} and for some constant C = C(F, δ,m).
(3.4)

Step 3: Smallness estimate for N : As in [28], we claim that

|N ∩ T | � Cε1/2 for some constant C = C(F, δ,m), (3.5)

where the set N denotes the region where the gradient is closer to the well SO(2)F
than to the parent gradient, i.e.

N := {x ∈ B1 : dist(∇v(x),SO(2)F ) < dist(∇v(x),SO(2))} . (3.6)

To this end, we use the upper length bounds on v(t), i.e. the fact that v is essentially
not length increasing. Let t be any point of [c, d]. By the fundamental theorem of
calculus and lemma 2.3(ii) we then get for some constant C = C(δ) > 0

|v(c) − v(t)| � |c − t| +
∫

[c,t]

dist(∇v,SO(2)) � |c − t| + Cε1/2.

Combining this with the triangle inequality and bound (3.4) applied to x = c, we
obtain

|c − v(t)|
(3.4)

� |c − t| + Cε1/2 for all t ∈ [c, d] (3.7)
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and for some constant C = C(F, δ,m) > 0. We note that in view of (3.2) and for
η = η(δ) sufficiently small we can assume that

Cε1/2 <
1
2
|c − d|. (3.8)

Next, we seek to use this to deduce lower bounds on |a − v(t)| + |b − v(t)| for t ∈
[c, d] as above. To this end, we observe that in view of (3.8), the minimization
problem

min
{|a − t′| + |b − t′| : t′ ∈ Brc,t

(c) with rc,t := |c − v(t)|}
is attained on the line [c, d] and is solved by t∗ := t − r((c − d)/(|c − d|)) for some
r with 0 < r < Cε1/2. Here, the error bound for r is a consequence of (3.7). Using
v(t) as a competitor and inserting the bound for rc,t implies

|a − v(t)| + |b − v(t)| � |a − t∗| + |b − t∗| � |a − t| + |b − t| − Cε1/2

for all t ∈ [c, d]. Using again (3.4) now for x = a and x = b, we infer the following
lower bound on the length deformation for points t ∈ [c, d]:

|v(a) − v(t)| + |v(b) − v(t)| � |a − t| + |b − t| − Cε1/2. (3.9)

We complement this with an upper bound on the length deformation along the
segments [a, t] and [t, b], obtained by means of the fundamental theorem. In view
of (3.3) and using

|∂ξv| � 1 + (|Fξ| − 1)χN + dist(∇v,K) for ξ ∈
{

a − t

|a − t| ,
b − t

|b − t|
}

and for any t ∈ [c, d], where K := SO(2) ∪ SO(2)F and χN denotes the character-
istic function of the set N (cf. (3.6)) we get

|v(p) − v(t)| � |p − t| +
∫

[p,t]

dist(∇v,K) − δ

∫
[p,t]

χN for p ∈ {a, b}.

Subtracting these estimates from (3.9) we arrive at∫
[a,t]∪[t,b]

χN � δ−1

∫
[a,t]∪[t,b]

dist(∇v,K) + Cδ−1ε1/2 for any t ∈ [c, d].

We integrate all t ∈ [c, d] and change variables from (x1, t2) to (x1, x2) by the
transformation Ψ(x1, t2) = (x1, t2(1 − x1/a1)) (where t = (0, t2), a = (a1, 0)) and
Φ = Ψ−1 to obtain an integration over the rhombus T . More precisely, denoting by
JΦ(x) as the Jacobian determinant of the transformation Φ, we infer∫

T

χNJΦ � Cδ

∫
T

dist(∇v,K)JΦ + Cε1/2.

Since |JΦ| ∼ dist(x, {a, b})−1, and thus, in particular, JΦ � 1, on the left-hand side
we can simply drop JΦ. For the right-hand side we invoke lemma 2.3(iii) which
concludes the argument for (3.5).
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Step 4: Conclusion. Last but not least, it remains to estimate |Bα ∩ M |. For
α := δ/4 we have Bα ⊂ T . By definition of N and the triangle inequality we then
have ∫

Bα

dist2(∇v,SO(2)) � 2Eelast[χ, v,Bα] + 2
∫

Bα∩N

‖ Id−F‖2

(2.1)

� 2ε + 2‖ Id−F‖2|N ∩ T |
(3.5)

� Cε1/2. (3.10)

By [35, theorem 3.1], we have for some W,Q ∈ L∞(Bα,SO(2)),

‖dist(∇v,SO(2))‖L2(Bα) �
(∫

Bα

χ‖∇v − W‖2

)1/2

�
(∫

Bα

χ‖QF − W‖2

)1/2

−
(∫

Bα

χ‖∇v − QF‖2

)1/2

� dist(SO(2)F, Id)|M ∩ Bα|1/2 −
(∫

Bα

χdist2(∇v,SO(2)F )
)1/2

. (3.11)

Here Q ∈ L∞(Bα,SO(2)) is such that dist(∇v,SO(2)F ) = ‖∇v − QF‖ for almost
every x ∈ Bα. Hence, we obtain

|M ∩ Bα|
(3.11)

� C

∫
Bα

dist2(∇v,SO(2)) + C

∫
Bα

χdist2(∇v,SO(2)F )

(3.10)

� Cε1/2

for some constant C = C(F, δ,m) > 0. This is the assertion of the theorem. �

4. Proof of theorem 1.1

We are ready to give the proof of theorem 1.1. We split it into two parts and first
discuss the lower bound and then provide a matching upper-bound construction.

4.1. Proof of the lower bound in theorem 1.1

In this section, we provide the proof of the lower bound. To this end, we first
observe that in the small volume regime this directly follows from the isoperimetric
inequality. It thus suffices to consider the large volume regime μ � 1. Although the
proof follows the localization argument as in [42], for the convenience of the reader,
we briefly recall its proof.

Proof of theorem 1.1, lower bound. Step 1: Strategy. We argue by a localization and
covering argument, seeking to invoke proposition 3.1. We consider a suitably chosen
countable family of balls {BRi

(xi)}∞i=1 covering M := spt χ (see step 2 below). By a
Vitali covering argument, we may assume that {BRi/5(xi)}∞i=1 are pairwise disjoint.
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Then, we can localize the energy as follows:

E [χ, v] �
∞∑

i=1

ERi/5(xi),

where ERi
(xi) := E [χ, v,BRi

(xi)]. Now, if we could bound ERi/5(xi) from below in
terms of |M ∩ BRi

(xi)|2/3 we could conclude the argument

E [χ, v] �
∞∑

i=1

ERi/5(xi) �
∞∑

i=1

|M ∩ BRi
(xi)|2/3 � μ2/3.

It thus remains to argue that

ERi/5(xi) � |M ∩ BRi
(xi)|2/3.

We split this into two steps: following [42], we prove that

|M ∩ BαRi/5(xi)| � |M ∩ BRi
(xi)|; (4.1)

ERi/5(xi) � |M ∩ BαRi/5(xi)|2/3, (4.2)

where α > 0 is the constant from proposition 3.1 and for suitably chosen balls
BRi

(xi). We note that all the estimates in this proof may depend on the
constant α.

Step 2: Choice of radii and centre points xi. To this end, without loss of generality,
we may assume that all x ∈ M are points of density one of M . Now for any x ∈ M
we set

R(x) := inf
{

r : r−2|M ∩ Br(x)| � η0 min{1, |M ∩ Br(x)|−(1/3)}
}

, (4.3)

where η0 is sufficiently small constant, which will be fixed later on. By continuity in
r and by considering the limit r → ∞, we infer that R(x) � μ2/3/

√
η0. Therefore,

R(x) is uniformly bounded in terms of μ and the defining infimum actually is a
minimum. Similarly as in [42], we note that R = R(x) satisfies one of the following
conditions: either

|M ∩ BR(x)| � 1 and |M ∩ BR(x)| = η0R
2 (4.4)

or

|M ∩ BR(x)| > 1 and |M ∩ BR(x)| = η0|M ∩ BR(x)|−(1/3)R2. (4.5)

Obviously, M is covered by ∪x∈MBR(x). Since the radii R(x) are uniformly bounded,
by Vitali’s covering lemma, there is an at most countable subset of points xi ∈ R

2

such that the balls {BRi/5(xi)}∞i=1 are pairwise disjoint while M is still covered by
the balls {BRi

(xi)}∞i=1. This yields the balls and radii from step 1.
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Step 3: Proof of estimate (4.1). By the definition of R, we obtain the following
statements: if |M ∩ BRi

(xi)| � 1 and |M ∩ BαRi/5(xi)| � 1, then

|M ∩ BαRi/5(xi)|
(αRi/5)2

(4.3)

� |M ∩ BRi
(xi)|

R2
i

(4.4)
= η0.

Analogously, if |M ∩ BRi
(xi)| > 1 and |M ∩ BαRi/5(xi)| > 1, then

|M ∩ BαRi/5(xi)|4/3

(αRi/5)2
(4.3)

� |M ∩ BRi
(xi)|4/3

R2
i

(4.5)
= η0.

Finally, if |M ∩ BαRi/5(xi)| � 1 < |M ∩ BRi
(xi)|, then

|M ∩ BαRi/5(xi)|
(αRi/5)2

> η0
(4.5)
=

|M ∩ BRi
(xi)|4/3

R2
i

>
|M ∩ BRi

(xi)|
R2

i

.

The last three obtained estimates together yield bound (4.1).
Step 4: Proof of estimate (4.2). Here, we distinguish three cases: firstly, we assume

that case (4.4) holds. Since the density of the minority phase is much smaller than
one in BRi/5(xi), the use of the isoperimetric inequality implies

∫
BRi/5(xi)

|∇χ| � |M ∩ BRi/5(xi)|1/2 (4.1)∼ |M ∩ BRi
(xi)|1/2

(4.4)

� |M ∩ BRi
(xi)|2/3.

Secondly, we suppose that case (4.5) and∫
BRi/5(xi)

|∇χ| � Ri hold. (4.6)

Since Ri ∼ |M ∩ BRi
(xi)|2/3, we derive

ERi/5(xi) �
∫

BRi/5(xi)

|∇χ|
(4.6)

� |M ∩ BRi
(xi)|2/3.

Lastly, we assume that case (4.5) and∫
BRi/5(xi)

|∇χ| � Ri hold,

where � means that this estimate requires a small universal constant.
Here, choosing η0 small enough, the assumptions of proposition 3.1 are fulfilled

on BRi/5(xi). The use of this proposition results in

ERi/5(xi) �
|M ∩ BαRi/5(xi)|2

(αRi/5)2
(4.1)∼ |M ∩ BRi

(xi)|2
R2

i

∼ |M ∩ BRi
(xi)|2/3,

as Ri ∼ |M ∩ BRi
(xi)|2/3. Then, inequality (4.2) follows from the above estimates,

which concludes a proof of the lower bound in theorem 1.1. �
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4.2. Proof of the upper bound of theorem 1.1

We next give the proof of the upper bound in theorem 1.1. For this, we give
an explicit construction for an optimal configuration. It suffices to consider the
case μ � 1, since the case μ � 1 follows by simply considering v(x) = x and χ = χB

where B is a ball with |B| = μ. The estimate then follows by using the isoperimetric
inequality and noting that 0 < μ � μ1/2 if μ � 1. We note that similar constructions
are well established (e.g. [40]). An upper bound in the setting of geometrically linear
elasticity has also been given in [42] for the geometrically linearized theory. We
provide an analogous construction for the geometrically nonlinear case and check
that the solutions are within our class of admissible functions. We first note that,
by a rotation (see lemma A.1 for more details), we can assume that

F = Id +ν ⊗ e2 for some ν =
(

ν1

0

)
∈ R

2.

In particular e2 is one of the twinning directions for stress-free laminates between
Fx and x.

As in [42] we consider an inclusion which approximately has the shape of a thin
disc QT,R with diameter R and thickness T where T � R. The disc is oriented such
that the two large surfaces are aligned with the e2 twinning direction. To be more
precise, let x(1), x(2) ∈ R

2 such that x(1) = −x(2) on the axis x1 = 0 with distance
d := |x(1) − x(2)|. We define χ by

χ := χQT,R
, where QT,R := Bρ(x(1)) ∩ Bρ(x(2)),

where QT,R is the lens with thickness of order T and diameter of order R given by
the intersection Bρ(x(1)) ∩ Bρ(x(2)) for some suitable ρ = ρ(R, T ) > 0. We choose
T such that it fulfils the volume constraint (1.2), i.e. |QT,R| = μ and in particular,
RT ∼ μ.

We next define u0 : R
2 → R

2 such that u0(x) = (F − Id)x in QT,R. Furthermore,
outside QT,R, u0 is constant on all lines which are normal to the surface ∂QT,R.
Finally, u0 = 0 in the remaining area which is neither in QT,R nor reached by
any of these lines. The function is sketched in figure 4. Furthermore, let ωR ∈
C∞(R, [0,∞]) be a cut-off function with ωR(ξ) = 1 for |ξ| � R and ωR(ξ) = 0 for
|ξ| � 2R with |∇ωR| � C/R for fixed C > 0. We then define v : R

2 → R
2 by

v(x) := (ωRu0)(x) + x.

Estimates: By construction we have

‖∇u0(x)‖ �
{

1 for x ∈ QT,R,

TR−1 for x /∈ QT,R

(4.7)

and ‖u0‖L∞(R2) � T . Since ∇v = F in QT,R and ∇v = Id in Bc
2R we get

Eelast[χ, v] �
∫

B2R\QT,R

dist2(∇v,SO(2)) �
∫

B2R\QT,R

‖∇v − Id ‖2

�
∫

B2R\QT,R

‖∇ωR ⊗ u0‖2 +
∫

B2R\QT,R

‖ωR∇u0‖2.
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Figure 4. Sketch of the construction of u0 and v = ωRu0 + x.

By (4.7), since RT ∼ μ and also including the interfacial part of the energy we
obtain

E [χ, v] �
∫

R2
|∇χ| +

∫
B2R\QT,R

T 2

R2
� R + T 2 � R +

μ2

R2
.

The asserted upper bound then follows with the choice R ∼ μ2/3.
Admissibility: We need to check that our construction satisfies (χ, v) ∈ Am. In

fact, it is enough to check this condition for μ = μ(F ) and correspondingly R ∼ μ2/3

sufficiently large. We first note that χ ∈ BV (R2, {0, 1}) and ‖∇v‖L∞ � C‖F‖. We
next consider v locally in the different regions defining it. We show that v is locally
invertible and that ‖(∇v)−1‖L∞ � m. To this end, we recall that

∇v = ∇ωR ⊗ u0 + ωR∇u0 + Id .

For x �∈ B2R we have ∇v = Id. Hence, the restriction of v to the exterior of
B2R is invertible on its image and ‖(∇v)−1‖ =

√
2 � ‖F‖. By a similar argu-

ment, for x ∈ QT,R we have ∇v = F which implies that v is locally invertible and
‖(∇v)−1‖ � ‖F−1‖. It hence remains to estimate (∇v)−1(x) for x ∈ B2R\QT,R.
Let (b1(x), b2(x)) for x ∈ B2R\QT,R be the mathematical positive-oriented basis
where b2(x) is the direction of the lines in B2R\QT,R where u0 is constant and with
sign convention b2(x) · e2 > 0. By construction we then have |bi(x) − ei| � O(T/R)
for i = 1, 2. Since ∇u0(x)b2(x) = 0 we hence get |∇u0e2| � (C‖F‖T )/R. Since
(F − Id)e1 = 0 we also have |∇u0(x)b1(x)| � (C‖F‖T )/R. Together, this yields
‖∇u0‖ � (C‖F‖T )/R. Since |ωR| � 1 and |∇ωR| � 1/R, this yields

‖∇ωR ⊗ u0 + ωR∇u0‖ � C‖F‖(1 + T )
R

.
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In particular,

‖∇v − Id ‖ � C‖F‖(1 + T )
R

� C‖F‖μ−(1/3)

as R ∼ μ2/3, T ∼ μ1/3 and μ � 1. As a consequence, a Neumann series argument
then implies that the restriction of v to B2R \ QT,R is invertible on its image and

‖(∇v)−1(x)‖ � C(1 + ‖∇v(x) − Id ‖) � C‖F‖
for R = R(‖F‖) sufficiently large.

Last but not least, we argue that with the observations for ∇v from above, we
obtain that v is globally invertible. To this end, it suffices to prove that v is injec-
tive. Assuming that for some x, y ∈ R

2 we have that v(x) = v(y), the fundamental
theorem yields that

0 =
(∫ 1

0

∇v(tx + (1 − t)y) dt

)
(x − y).

Since the arguments from above show that ∇v always is a perturbation of an upper
triangular matrix, this can only be the case if x = y which hence implies the desired
injectivity.
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Appendix A. Some auxiliary linear algebra facts

We collect some linear algebra facts which are used in the proofs of the main part
of our text.

Lemma A.1 (Representation formula). Let F ∈ GL(2) be positive-definite, symmet-
ric with det F = 1. Then the following results hold:

(i) There exist R ∈ SO(2) and a, b ∈ R
2 such that

F = R + a ⊗ b. (A.1)

(ii) There exists F ′ = Id +ν ⊗ e2 with ν = (ν1, 0) ∈ R
2 such that

dist(∇v,SO(2)F ) = dist(∇v,SO(2)F ′).
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Proof. (i) Since decomposition (A.1) does not change under the transformation
QtFQ with Q ∈ SO(2) and detF = 1, we can assume that

F =
(

λ 0
0 λ−1

)
and R =

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
.

Since F is positive-definite, we have λ > 0. In view of 0 = det(a ⊗ b) = det(R − F ),
a short calculation then yields cos ϕ = 2/(λ + λ−1) � 1. It has a solution if and
only if λ > 0. It proves the claimed decomposition (i).

(ii) By using (i), we have

F = R + a ⊗ b for some a, b ∈ R
2 and R ∈ SO(2). (A.2)

We multiply equation (A.2) by R−1

R−1F = Id +R−1a ⊗ b =: Id +c ⊗ b.

Since det R−1F = det F = 1, we have

1 = det(Id +c ⊗ b) = 1 + c1b1 + c2b2.

Therefore, we have c ⊥ b. So there exist a rotation S ∈ SO(2) such that

SR−1FS−1 = Id +Sc ⊗ bS−1 = Id +ν ⊗ e2.

It completes the proof of (ii). �

For any F ∈ GL+(2) by polar decomposition there is R ∈ SO(2) and U = U t ∈
R

2×2 positive-definite with F = RU . We give two formulas related to the distance
to SO(2):

Lemma A.2 (Identities for distance to SO(2)).

(i) For R ∈ SO(2) and U = U t ∈ R
2×2 positive definite we have

dist(RU,SO(2)) = ‖U − Id‖.

(ii) Let U ∈ GL(2) with max{‖U‖, ‖U−1‖} � m for some m � 1. Assume A ∈
R

2×2 is symmetric and positive-definite, then there exists a constant C =
C(A,m) > 0 such that

dist(U−1,SO(2)A−1) � Cdist(U,SO(2)A).

Proof. (i) This follows e.g. from [58] which states that ‖RU − Q‖ � ‖RU − R‖ for
all Q ∈ SO(2).
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(ii) Without loss of generality, we can assume U ∈ GL+(2), otherwise all dis-
tances are of order 1 up to a constant depending on m and A. Since A ∈ R

2×2 is
symmetric, positive-definite and by (i), there exists S ∈ SO(2) such that

dist(U,SO(2)A) = ‖U − SA‖,

where U :=
√

U tU . Moreover, we have tr(StGS) = trG, ‖A‖ = ‖At‖ and

‖BU
−1‖ � m‖B‖. (A.3)

Using the above last expressions and ‖SA‖ = ‖A‖, we hence obtain

dist(U−1,SO(2)A−1) � ‖U−1 − SA−1‖ = ‖U−1
(A − US)A−1‖

(A.3)

� m

min λj(A)
‖A − US‖ =

m

min λj(A)
‖AS−1 − U‖

=
m

min λj(A)
‖SA − U‖ = Cdist(U,SO(2)A)

for some constant C = C(A,m) > 0. Here we used (AS−1 − U)t = SA − U . �
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