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Bregman distance regularization for
nonsmooth and nonconvex optimization
Zeinab Mashreghi and Mostafa Nasri

Abstract. Solving a nonsmooth and nonconvex minimization problem can be approached as finding
a zero of a set-valued operator. With this perspective, we propose a novel Majorizer–Minimizer tech-
nique to find a local minimizer of a nonsmooth and nonconvex function and establish its convergence.
Our approach leverages Bregman distances to generalize the classical quadratic regularization. By
doing so, we generate a family of regularized problems that encompasses quadratic regularization as a
special case. To further demonstrate the effectiveness of our method, we apply it on a lasso regression
model, showcasing its performance.

1 Introduction

Efficient methods for solving an optimization problem

min
x∈Rn

F(x),(1.1)

where F ∶ Rn → R is a nonsmooth and nonconvex function, plays a vital role in
various domains and are of paramount importance. Numerous studies have been
conducted to develop methods for solving the aforementioned optimization problem
under reasonable assumptions [3]. The focus of these studies mostly lies in developing
strategies to find the optimal solution denoted as x∗, which satisfies the first-order
optimality condition

0 ∈ ∂ f (x∗),

where ∂ f (x) is the Clarke subdifferential of f at x [1]. Note that solving 0 ∈ ∂ f (x∗)
is equivalent to finding a zero of the set-valued operator ∂ f (x∗). In addition to the
methods based on subdifferentials, penalty function methods offer an alternative
approach for solving optimization problems. These techniques involve introducing
a penalty term into the original objective function and then employing an iterative
method where, at each step, a subproblem is solved within a predefined region
[6, 14, 16].

Motivated by [14], the main objective of this paper is to propose a novel approach
for solving a class of nonsmooth and nonconvex optimization problems, in which we
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introduce the utilization of Bregman distance as a key component in constructing
a regularized method based on the majorization–minimization (MM) approach.
Specifically, we focus on solving the problem defined as (1.1) with

F(x) = 1
2
∣∣y − Ax∣∣2 + λ∣∣x∣∣1 − λ fα(x),(1.2)

in which y ∈ Rn is given, A ∈ Rm×n is an m × n matrix, λ > 0, and fα is the Moreau
envelope given by

fα(x) = inf
z∈Rn

{ f (z) + α
2
∣∣x − z∣∣2} .

The author in [14] proposes a regularization of the form

f m
α (x , w) = fα(x) − γm

2
∣∣x − w∣∣2(1.3)

to ensure that the subproblem generated at each step of her proposed method has
a unique solution. Then, the author uses the regularization to define a majorizer
function

F M(x , w) = 1
2
∣∣y − Ax∣∣2 + λ [∣∣x∣∣1 − f m

α (x , w)] .(1.4)

Then, the author presents an MM method that begins with the initialization of a point,
denoted by x0 ∈ Rn . Subsequent iterations are then defined by

xk+1 = argmin
x∈Bε/2k (x k)

F M(x , xk) for k = 0, 1, 2, . . . ,(1.5)

where Bε/2k(xk) represents a ball centered at the point xk , with a radius equal to ε/2k .
Note that (1.4) can be obtained when f m

α (x , w) replaces fα in (1.2).
The main idea behind the MM approach is to transform a challenging optimization

problem into a sequence of simpler and well-behaved subproblems. To solve the
subproblems (1.5), there exist various methods proposed in the literature, including
those described in [7, 15]. These subproblems are indeed well-behaved and easier to
solve because their objective functions are strictly convex and their feasible sets are
bounded and convex. By solving the generated subproblems iteratively, a sequence
of solutions is obtained that progressively approximates a solution to the original
problem. Under certain assumptions, this sequence converges to a point that satisfies
the optimality conditions of the original problem.

It is worth noting that the MM method has numerous applications across various
fields. Among them, we can mention signal and image processing, support vector
machines, nonnegative matrix factorization, and DNA sequence analysis. For a more
complete list of applications, the readers can consult [9, 17].

In this paper, we generalize the MM method presented in [14], where we substitute
a general Bregman distance for the quadratic regularization term given by (1.3), to be
defined in Section 2.

The rest of this paper is organized as follows. In Section 2, we present some basic
facts that will be used in this paper as well as our generalized MM method. In
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Section 3, we establish our convergence analysis. We present some numerical results
in Section 4.

2 Preliminaries and basic facts

In this section, we are going to describe Bregman distances and their properties, and
the generalized MM method.

2.1 Bregman functions and distances

Definition Let S be an open and convex subset of Rn , and let S̄ be its closure.
Consider a convex real-valued function ϕ defined on S̄, and let D ∶ S̄ × S → R be
defined as

D(x , w) = ϕ(x) − ϕ(w) − ∇ϕ(w)T(x − w).

We say that ϕ is a Bregman function and D is its distance induced by ϕ (see [2]) if the
following conditions hold.
H1: ϕ is continuously differentiable on S.
H2: ϕ is strictly convex and continuous on S̄.
H3: For every θ ∈ R, the partial level sets �1(w , θ) = {x ∈ S̄ ∶ D(x , w) ≤ θ} and

�2(x , θ) = {w ∈ S ∶ D(x , w) ≤ θ} are bounded for all w ∈ S and x ∈ S̄, respec-
tively.

H4: If {wk}∞k=0 ⊂ S converges to w∗, then D(w∗ , wk) converges to 0.
H5: If {xk}∞k=0 ⊂ S̄ and {wk}∞k=0 ⊂ S are sequences such that {xk}∞k=0 is bounded,

lim
k→∞

wk = w∗ and D(xk , wk) = 0, then lim
k→∞

xk = w∗.

Note that when {xk}∞k=0 and w∗ are in S, H4 − H5 automatically hold true due to
H1 − H3. Moreover, because ϕ is a strictly convex function, we have that D(x , w) ≥ 0
for all x ∈ S̄ and w ∈ S, and that D(x , w) = 0 if and only if x = w.

It is remarkable that, in addition to the Bregman distance, there exists another class
of distance defined on the positive orthant of Rn ,

R
n
++ = {(x1 ,⋯, xn) ∈ Rn ∶ x i > 0 (1 ≤ i ≤ n)},

which is formally stated next [11].

Definition Let ϕ ∶ R++ → R be a strictly convex function. A ϕ-divergence is a
function, denoted by dϕ ∶ Rn

++ ×R
n
++ → R, that is defined at (x , y) as

dϕ(x , y) =
n
∑
i=1

y i ϕ( x i

y i
) .

Some important examples that are known in the literature are given below. We
encourage interested reads to consult [4, 5, 10, 11] for further elaboration on Bregman
distances and ϕ-divergences as well as more examples.
• Let S = R

n and ϕ(x) = xT Mx, where M is an n × n symmetric and positive
definite matrix. In this case, define D(x , w) = (x − w)T M (x − w) = ∥x − w∥2

M .
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In particular, if M is the identity matrix, then D(x , w) = ∥x − w∥2 reduces to the
Euclidean distance squared.

• Let ϕ(t) = t log(t) − t + 1 and 0 log(0) = 0. In this case, the Kullback–Leiber diver-
gence is defined as

dϕ(x , y) =
n
∑
i=1

y i ϕ( x i

y i
) =

n
∑
i=1

[x i log( x i

y i
) + y i − x i] .

It is worth emphasizing that the Bergman distance may not always be a distance
in the usual sense of the term. In general, it lacks symmetry and fails to satisfy the
triangle inequality as discussed in [4].

Definition Let w ∈ Rn be given. The function g(⋅, w) ∶ Rn → R is called a local
majorizer of a function h ∶ Rn → R at w if

h(x) ≤ g(x , w), ∀x ∈ Rn

and
h(x) = g(x , w) ⇔ x = w .

We also say that g(⋅, w) ∶ Rn → Rminorizes f at w when −g(⋅, w) ∶ Rn → Rmajorizes
− f at w.

Geometrically, our objective is to ensure that the functions h and g are tangent to
each other at the point w. In addition, both h and g should have directional derivatives
at w. Moreover, we desire that for any small ∥d∥, the directional gradient of g at w
in the direction of d is equal to the gradient of h at w in the direction of d. That is,
∇g(w; d , w) = ∇h(w; d) for any small ∥d∥.

In the classical MM method, the majorizer gk−1 is defined as gk−1 = g(⋅, xk−1),
where g is a function that is tangent to the objective function at xk−1. This majorizer
is then minimized over a convex set Ω to obtain the next iterate xk [9]. That is,
xk = argmin

x∈Ω
g(x , xk−1), provided that xk exists. Then gk is defined as gk = g(⋅, xk).

When the sequence of minimizers {xk}∞k=0 exists, we have the descending property

h(xk) ≤ gk−1(xk) = g(xk , xk−1) ≤ gk−1(xk−1) = g(xk−1 , xk−1) = h(xk−1).

2.2 The generalized MM method

In our generalized majorizer–minimizer (GMM) method, which incorporates the
Bregman distance, we, respectively, introduce the concepts of the Moreau envelope,
regularization, and majorizer functions as

fα(x) = inf
z∈Rn

{ f (z) + αD(x , z)},(2.1)

f m
α (x , w) = fα(x) − γm D(x , w),(2.2)

F M(x , w) = 1
2
∣∣y − Ax∣∣2 + λ [∣∣x∣∣1 − f m

α (x , w)] .(2.3)
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It is worth noting that due to the nonnegativity property of D, as given in Defini-
tion 2.1, the Moreau envelope F M acts as a majorizer for the function F. With this in
mind, we can now formally present our method as outlined below.

GMM Method:
Initialize x0 ∈ Rn and set γm > α.
For k = 0, 1, 2, . . . , compute

xk+1 = argmin
x∈Bε/2k (x k)

F M(x , xk).

end

We emphasize that in our method, we impose the condition γm > α to ensure that

1
2

AT A+ λ(γm − α)∇2ϕ(xk) ≻ 0

holds, meaning that 1
2 AT A+ λ(γm − α)∇2ϕ(xk) is a positive definite matrix. We

will prove in Lemma 3 that this condition guarantees that F M(⋅, xk) has a unique
minimizer within Bε/2k(xk).

3 Convergence analysis of GMM method

This section commences by establishing the foundation for our convergence analysis.

Lemma Let x ∈ Rn , A ∈ Rm×n and λ > 0. The function F ∶ Rn → R defined in (1.2)
with fα given by (2.1) is convex if the condition

1
2

AT A− λα∇2ϕ(x) ⪰ 0

is satisfied, where ∇2ϕ is the Hessian of ϕ that defines the Bregman distance. Moreover,
F is strictly convex if

1
2

AT A− λα∇2ϕ(x) ≻ 0.

Proof We can write

F(x) = 1
2
∣∣y − Ax∣∣2 + λ∣∣x∣∣1 − λ fα(x)

= 1
2
∣∣y − Ax∣∣2 + λ∣∣x∣∣1 − min

z∈Rn
{λ f (z) + αλ D(x , z)}

= max
z∈Rn

{ 1
2
∣∣y − Ax∣∣2 + λ∣∣x∣∣1 − λ f (z) − αλ D(x , z)}

= 1
2

xT AT Ax − λ α ϕ(x) + λ∣∣x∣∣1 + max
z∈Rn

g(x , z),

where g(x , z) is affine in x defined as

g(x , z) = 1
2

yT y − λ f (z) + αλϕ(z) + αλ∇ϕ(z)(x − z) − 1
2
(yT Ax + xT AT y).
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Therefore, F is convex if 1
2 AT A− λα∇2ϕ(x) is positive semidefinite. Moreover, it is

obvious that F is strictly convex if 1
2 AT A− λα∇2ϕ(x) is positive definite. ∎

Lemma The function f m
α minorizes fα for any arbitrary w. Moreover, if ∥d∥ is small,

then it holds that ∇ fα(w , d) = ∇ f m
α (w , w , d).

Proof The fact that f m
α minorizes fα can be inferred from (2.3). However, to

establish the equality in terms of the directional derivative, a further proof is required.
We can write

∇ f m
α (w , w , d) = lim inf

θ→0+
1
θ
[ f m

α (w + θd , w) − f m
α (w , w)]

= lim inf
θ→0+

1
θ
[ f m

α (w + θd , w) − fα(w)]

= lim inf
θ→0+

1
θ
[ fα(w + θd) − γm D(w + θd , w) − fα(w)]

= lim inf
θ→0+

1
θ
[ fα(w + θd) − fα(w)] − lim inf

θ→0+
γm D(w + θd , w).

To finalize the proof, we only need to show that lim inf θ→0+ γm D(w + θd , w) = 0. This
can be established based on Definition 2.1 and the fact that ∥d∥ is small. ∎

The following theorem provides a sufficient condition that ensures the convexity
of F M(⋅, w) for every w.

Lemma F M is a local majorizer of F at w. Moreover, F M(⋅, w) is convex if
1
2

AT A+ λ(γm − α)∇2ϕ ⪰ 0

holds and that F M(⋅, w) is strictly convex if
1
2

AT A+ λ(γm − α)∇2ϕ ≻ 0

holds.

Proof Using (2.3), it is clear that the function F M(⋅, w) is a local majorizer for F.
To prove that F M(⋅, w) is convex, we expand F M and obtain

F M(x , w) = 1
2
∣∣y − Ax∣∣2 + λ∣∣x∣∣1 − λ f m

α (x , w)

= 1
2

xT AT Ax + λ(γm − α)ϕ(x) + λ∥x∥1 + max
z∈Rn

g(x , z, w),

where

g(x , z, w) = 1
2

yT y − λ f (z) − αλ(ϕ(z) + ∇ϕ(z)(x − z))

− γm λ(ϕ(w) + ∇ϕ(w)(x − w)) − 1
2
(yT Ax + xT AT y).(3.1)
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Since g is affine in x, Fm is convex if 1
2 AT A− λ(γm − α)∇2ϕ(x) is positive semidef-

inite. Moreover, Fm is strictly convex if 1
2 AT A− λ(γm − α)∇2ϕ(x) is positive defi-

nite. ∎

We remark that if γm > α and H2 hold, then 1
2 AT A+ λ(γm − α)∇2ϕ ≻ 0 holds,

implying that F M(⋅, w) is strictly convex.
The next result states that the GMM method is well-defined and converges.

Theorem The sequence {xk}∞k=0 generated by the GMM method converges.

Proof Since

xk+1 = argmin
x∈Bε/2k (x k)

F M(x , xk),

we must have

∣∣xk+1 − xk ∣∣ ≤ ε
2k ∀k = 0, 1, 2, . . . ,

which implies that the sequence is bounded. Therefore, by the Bolzano–Weierstrass
theorem, {xk}∞k=0 has an accumulation point x∗. Consider a subsequence {xkn} of
{xk}∞k=0 such that xkn → x∗. Fix k and let kn > k. We can write

∣∣xk − x∗∣∣ ≤ ∣∣xkn − x∗∣∣ +O( ε
2kn

) .

Therefore, {xk}∞k=0 converges to x∗. ∎

The following lemma presents a sufficient condition that ensures the strong con-
vexity of the majorizer function F M .

Lemma F M is a-strongly convex if it holds that
1
2

AT A+ λ(γm − α)∇2ϕ ⪰ aI.(3.2)

Proof Likewise Lemma 3, expand F M(x , w). Then, one can write F M(x , w) as

F M(x , w) = 1
2

xT AT Ax + λ (γm − α)ϕ(x) + λ∣∣x∣∣1 + max
z∈Rn

g(x , z, w),

where g(x , z, w) is the affine function in x given by (3.1). Therefore, F is a-strongly
convex in x if (3.2) holds. ∎

Next, we recall a technical lemma that plays a crucial role in the convergence result.
This lemma is well-established and applicable to a broad range of functions, provided
they possess a local minimizer.

Lemma If f is a-strongly convex in a set C and x̄ is a local minimizer of f, then

a∣∣x − x̄∣∣2 ≤ f (x) − f (x̄).
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Proof See Lemma B5 in [13]. ∎

We now proceed to establish our main result, which guarantees the convergence
of the GMM method.

Theorem Assume that (3.2) holds and the sequence {xk}∞k=0 converges to x̄. Then x̄ is
a stationary point for F and ∇F(x̄ , d) ≥ 0 for every small ∥d∥. In particular, if {xk}∞k=0
is generated by the GMM method and at each step the majorizer function Fm(⋅, xk) is
a-strongly convex, then {xk}∞k=0 converges to a stationary point of F.

Proof Fix x. Since f is continuous and xk → x̄, we can use (2.2) to conclude that

lim
k→∞

f m
α (x , xk) = fα(x) − γm D(x , x̄).

Therefore, it follows from (1.2) and (2.3) that

lim
k→∞

F M(x , xk) = F(x) + λγm D(x , x̄).

On the other hand, apply Lemma 3.6 and use the majorization property to obtain

a∣∣x − xk+1∣∣2 ≤ F M(x , xk) − F M(xk+1 , xk) ≤ F M(x , xk) − F(xk+1).

Note that the first inequality is a direct consequence of the definition of the GMM
method. Recall that xk+1 is always a local minimizer of F M . By taking the limit on
both sides of the aforementioned inequalities as k → ∞, we can express them as

a∣∣x − x̄∣∣2 ≤ F(x) + λγm D(x , x̄) − F(x̄)

or

F(x) − F(x̄) ≥ a∣∣x − x̄∣∣2 − λγm D(x , x̄).

For sufficiently small ∥d∥, we obtain

F(x̄ + θd) − F(x̄) ≥ aθ2∣∣d∣∣2 − λγm D(x̄ + θd , x̄).(3.3)

On the other hand, H3 implies that there exists β > 0 such that

D(x̄ + θd , x̄) ≤ β∣∣(x̄ + θd) − x̄∣∣2 = βθ2∣∣d∣∣2 .(3.4)

Therefore, inequalities (3.3) and (3.4) yield

F(x̄ + θd) − F(x̄) ≥ aθ2∣∣d∣∣2 − λγm D(x̄ + θd , x̄) ≥ aθ2∣∣d∣∣2 − λγm βθ2∣∣d∣∣2 .

As a result,

F(x̄ + θd) − F(x̄) ≥ (a − λγm β)θ2∣∣d∣∣2 .

Dividing both sides of the above inequality by θ yields

F(x̄ + θd) − F(x̄)
θ

≥ (a − λγm β)θ∣∣d∣∣2 .
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Taking the limit as θ → 0, we find that

∇F(x̄; d) = lim inf
θ→0+

F(x̄ + θd) − F(x̄)
θ

≥ (a − λγm β)∣∣d∣∣2 lim inf
θ→0+

θ = 0.

In particular, if {xk}∞k=0 is generated by the GMM method, then x̄ represents a
stationary point of F. Using the descending property, the stationary point is a local
minimum. ∎

4 Application

In this section, we assess the effectiveness of our proposed method by applying the
GMM method to a lasso regression model [8]. To evaluate the performance of our
approach, we utilize the widely recognized Credit dataset, available in the ISLR
package in R [12]. This dataset consists of 400 observations, where we consider
y = Balance (average credit card balance in $) as the dependent variable and
Rating (credit rating), Income (income in $10,000’s), and Limit (credit limit)
as the independent variables.

To estimate the lasso coefficients of the linear model y = Ax, we construct a matrix
A with dimensions 400 × 4. The first column of A contains only 1’s, whereas the
last three columns correspond to the observed variables Rating, Income, and
Limit, respectively. Our goal is to estimate the lasso coefficients for the linear
model y = Ax, where xT = [ x1 x2 x3 x4 ]. The lasso coefficients, denoted by
(x̂L)T = [ x̂1 x̂2 x̂3 x̂4 ], are obtained by solving the minimization problem

min
x∈R4

(∣∣y − Ax∣∣2 + λ∣∣x∣∣1) .

To determine the regularization parameter λ, we employ the glmnet package in R
and utilize cross-validation.

To present the numerical results, we examine the function F M defined in (1.4).
We evaluate F M using the MM method in [14], which utilizes the regularization form
given in (1.3), and the GMM method, which employs the Bregman distance

D(x , w) = (x − w)T M(x − w) = ∥x − w∥2
M ,

where M is a 4 × 4 diagonal matrix with diagonal entries of 10, 11, 12, and 13, respec-
tively. In iteration k, the function F M(⋅, xk) is minimized within the ball Bε/2k(xk).
Both the MM method and the GMM method are initialized with parameters γm = 2,
α = 0, an initial ball with radius of ε = 10100, and an initial point x0 which is obtained
using the ordinary least squares method by applying the lm function in R. We employ

Table 1: The lasso coefficients for the Credit dataset.
Method x̂1 x̂2 x̂3 x̂4

lm −342.197 −7.563 0.264 −0.802
glmnet −340.727 −7.446 0.261 −0.769
MM method −342.621 −7.566 0.263 −0.798
GMM method −342.370 −7.569 0.264 −0.801
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a stopping criterion tolerance of 10−4 to determine convergence. The least square
coefficients obtained from the lm function, the lasso coefficients obtained from the
glmnet function, as well as the MM method and the GMM method are presented in
Table 1. Remarkably, our proposed method yields estimators that closely align with the
usual regression coefficients obtained from the R software. Moreover, our numerical
findings indicate that our proposed method achieves convergence significantly faster
than the MM method.

Acknowledgment The work of Zeinab Mashreghi is funded by a grant from the
Natural Sciences and Engineering Research Council of Canada (NSERC).
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