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Separation of Variables for Uq(sln+1)+

Samuel A. Lopes

Abstract. Let Uq(sln+1)+ be the positive part of the quantized enveloping algebra Uq(sln+1). Using

results of Alev–Dumas and Caldero related to the center of Uq(sln+1)+, we show that this algebra is

free over its center. This is reminiscent of Kostant’s separation of variables for the enveloping algebra

U (g) of a complex semisimple Lie algebra g, and also of an analogous result of Joseph–Letzter for the

quantum algebra Ǔq(g). Of greater importance to its representation theory is the fact that Uq(sln+1)+

is free over a larger polynomial subalgebra N in n variables. Induction from N to Uq(sln+1)+ provides

infinite-dimensional modules with good properties, including a grading that is inherited by submod-

ules.

1 Introduction

We work over a field K of characteristic 0 and assume q ∈ K
× is not a root of unity. In

this paper we show that the algebra Uq(sln+1)+, the quantized version of the envelop-

ing algebra of the nilpotent Lie algebra of strictly upper triangular (n + 1) × (n + 1)
matrices, is free when viewed as a module over its center. This has consequences for
the representation theory of Uq(sln+1)+, one of which being the existence of simple
modules with arbitrary central character. In fact, we show first that Uq(sln+1)+ is

free over a polynomial subalgebra N in variables ∆1, . . . ,∆n that commute with the
Chevalley generators e1, . . . , en up to a power of the parameter q.

Our motivation is the study of infinite-dimensional Uq(sln+1)+-modules. We use
the latter result to construct modules by inducing from one-dimensional N-modules.

Given an N-character χ ∈ N̂ = Alg(N,K) with corresponding simple module Vχ =

Kvχ, the induced Uq(sln+1)+-module Mχ = Uq(sln+1)+ ⊗N Vχ has a weight space

decomposition with respect to N ,

Mχ =

⊕

η∈N̂

M(η)
χ ,

where M(η)
χ = {m ∈ Mχ | x.m = η(x)m for all x ∈ N}, and it is easy to see that every

subquotient of Mχ inherits this grading.
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588 S. A. Lopes

For the case n = 2, the algebra Uq(sl3)+ is isomorphic to the down-up algebra
A(q + q−1,−1, 0) with generators d, u and defining relations

d2u − (q + q−1)dud + ud2
= 0,

du2 − (q + q−1)udu + u2d = 0.

In this case, the polynomial algebra N is just K[du, ud], and the modules we
discuss are universal amongst cyclic weight modules for the down-up algebra

A(q + q−1,−1, 0). The case n = 3 is more intricate, but we obtain two distinct
two-parameter families of representations.

We begin with the basic definitions, including the description of a PBW (Poincaré–

Birkhoff–Witt) basis and a filtration for which the associated graded algebra is a
quantum affine space. After briefly reviewing results of Caldero [5, 6] and of Alev–
Dumas [1] on the center Z of Uq(sln+1)+, we show that Uq(sln+1)+ is free over N and
also over Z, by working in the graded algebra first. We can then exploit this result to

develop the representation theory of Uq(sln+1)+.

The techniques of [7] can be used instead to show the freeness of Uq(sln+1)+ over

its center. Our approach is perhaps more pedestrian. But the same methods as we
use here apply to the enveloping algebra of the Lie algebra sl

+
n+1, using Dixmier’s de-

scription of the center in [9]. We therefore see that U (sl
+
n+1) is also free over its center,

a result that suggests that the class of algebras for which the separation of variables

is true goes well beyond the universal enveloping algebras of the finite-dimensional
complex semisimple Lie algebras and their quantum analogues. Further evidence of
this comes from the theory of down-up algebras, which are known to behave sim-
ilarly to enveloping algebras. In [2], the authors prove separation and annihilation

theorems for the down-up algebra A(α, β, γ) for all choices of parameters α, β, γ.
See also the remarks at the end of Section 5.

2 Definitions and Notation

2.1 Let K be a field of characteristic 0 and assume q ∈ K
× is not a root of unity. The

algebra we are concerned with is the unital, associative K-algebra having generators
e1, . . . , en, which satisfy the relations

eie j − e jei =0 if |i − j| 6= 1,(1)

e2
i e j − (q + q−1)eie jei + e je

2
i =0 if |i − j| = 1.(2)

We will denote this algebra by Uq(sln+1)+; it is the positive part of the quantized

enveloping algebra Uq(sln+1) with respect to the usual triangular decomposition (see
[8, 10, 12, 13], for example).

2.2 Let sln+1 be the Lie algebra of traceless (n + 1) × (n + 1) matrices over the complex
field C; R the set of roots with respect to a Cartan subalgebra h; α1, . . . , αn a base
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of R; ̟1, . . . , ̟n the fundamental weights; Q =
⊕n

k=1 Zαk the root lattice; Q+
=⊕n

k=1 Nαk the positive root lattice; P =
⊕n

k=1 Z̟k the weight lattice; and R+
=

R ∩ Q+ the set of positive roots. There is a nondegenerate bilinear form on Q × Q

given by (αi , α j) = 2δi, j − δi, j±1 for all i, j = 1, . . . , n.
The algebra Uq(sln+1)+ can be graded by the positive root lattice Q+ by assigning to

ei the degree αi , as the defining relations are homogeneous. We use the terminology

weight instead of degree for this gradation and write wt(u) = β if u ∈ Uq(sln+1)+ has
weight β ∈ Q+.

3 PBW Basis and a Filtration

Many authors have studied PBW-bases of Uq(sln+1)+ (e.g., [16–19]); here we follow
Ringel [17]. The filtration in 3.2 below is similar to the one in [8] and yields the same
graded algebra.

3.1 For each 1 ≤ i < j ≤ n + 1, we can define weight elements Xi j recursively by
setting Xi,i+1 = ei for all i ∈ {1, . . . , n} and Xi j = XikXk j − q−1Xk jXik for 1 ≤
i < k < j ≤ n + 1. It can be shown that this definition does not depend on k

(see [17, App. 2]). These elements correspond bijectively to the positive roots of

sln+1, as wt(Xi j) = αi + · · · + α j−1 for all i < j. The set {Xi j}1≤i< j≤n+1 can be
linearly ordered using the rule

Xi j < Xkl ⇔ (k < i) or (k = i and l < j).

We use the alternative notation Xk for the k-th element in this increasing chain, so
that {Xi j}1≤i< j≤n+1 = {Xk}1≤k≤m, where m = |R+| =

1
2
n(n + 1).

Let b ∈ N
m and write Xb := Xb1

1 · · ·Xbm
m . By [17, Thm. 2], the monomials Xb

(b ∈ N
m) form a basis of Uq(sln+1)+. Furthermore, for all i < j we have

(3) X jXi = q(wt(Xi ),wt(X j ))XiX j +
∑

cai+1,...,a j−1
Xai+1

i+1 · · ·X
a j−1

j−1 ,

where cai+1,...,a j−1
∈ K, and the sum is over all sequences (ai+1, . . . , a j−1) of natural

numbers such that the homogeneity of (3) is preserved.

3.2 We order N
m by setting b < c ⇔ there is l ∈ {1, . . . ,m} such that bl < cl and bt = ct

for all t > l. Naturally, b ≤ c means b < c or b = c. This is easily seen to be a
well-ordered relation on N

m. Define

U +
q (a) =

⊕

b≤a

KXb and U +
q (< a) =

⋃

b<a

U +
q (b).

The family {U +
q (a)}a∈Nm is an increasing filtration of Uq(sln+1)+ by N

m with re-
spect to the order defined above. In particular, U +

q (b) ⊆ U +
q (a) if b ≤ a,

⋃

a∈Nm

U +
q (a) = Uq(sln+1)+ and U +

q (a) ·U +
q (b) ⊆ U +

q (a + b).

The latter property is essentially a consequence of (3).
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590 S. A. Lopes

3.3 By 3.2 we can define the associated graded algebra as

S
def
= gr

(
Uq(sln+1)+

)
=

⊕

a∈Nm

U +
q (a)/U +

q (< a),
(
U +

q (< 0) = (0)
)
,

where multiplication is defined by linearity in the following way: Given u ∈ U +
q (a) \

U +
q (< a), we say u has degree a (by convention, deg(0) = (−∞, . . . ,−∞)). Write

gr(u) = u + U +
q (< a). If v ∈ U +

q (b) \U +
q (< b), then

gr(u) · gr(v) = uv + U +
q (< (a + b)).

This is well defined by 3.2, and we have the relations

gr(X j)gr(Xi) = q(wt(Xi ),wt(X j ))gr(Xi)gr(X j) if i < j.

Therefore deg(uv) = deg(u) + deg(v), and the associated graded algebra S is an

integral domain. Also, gr(u)gr(v) = gr(uv). In fact, S is the quantum affine space

given by generators θ1, . . . , θm and relations θ jθi = ti jθiθ j , where θi = gr(Xi), and

(4) ti j =






q(wt(Xi ),wt(X j )) if i < j,

1 if i = j,

t−1
ji if j < i.

4 Central and q-Central Elements of Uq(sln+1)+

Alev and Dumas [1] as well as Caldero [4,5] have determined the center of Uq(sln+1)+.

According to their work, there exist algebraically independent elements ∆1, . . . ,∆n

of Uq(sln+1)+ that commute with the generators e1, . . . , en up to a power of q. They
generate a (commutative) polynomial subalgebra that contains the center. We sum-
marize results of [5] regarding the ∆i , and then determine gr(∆i) (1 ≤ i ≤ n)

explicitly in the graded algebra S of 3.3.

4.1 Consider the matrix

X =





ξ X1,2 X1,3 · · · X1,n+1

ξ X2,3 · · · X2,n+1

. . .
...

...

0 ξ Xn,n+1

ξ





with ξ = q(q − q−1)−1. For every i = 1, . . . , n, define ∆i = Detq(Xi), where Xi

is the i × i matrix obtained from the top i rows and rightmost i columns of X, and
Detq is a quantum determinant that associates to any matrix M = (mkl)1≤k,l≤p with
entries in a K-algebra C the element

(5) Detq M =

∑

σ∈Σp

(−q−1)l(σ)mσ(p),p · · ·mσ(1),1,

l(σ) being the length of the permutation σ in the symmetric group Σp.

https://doi.org/10.4153/CMB-2005-054-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-054-8


Separation of Variables for Uq(sln+1)+ 591

4.2 Let Ǔ 0
q be the group algebra of the weight lattice P. Then Ǔ 0

q is the algebra of Lau-

rent polynomials K[K±
̟1
, . . . ,K±

̟n
], where each K̟i

corresponds to the fundamental

weight ̟i . The “positive Borel” Ǔq(sln+1)>0 is defined so that Uq(sln+1)+ and Ǔ 0
q are

subalgebras and Ǔq(sln+1)>0 ≃ Uq(sln+1)+ ⊗K Ǔ 0
q as a vector space, with the addi-

tional relations:

(6) K̟i
e jK

−1
̟i

= qδi j e j , for all 1 ≤ i, j ≤ n.

There exists a Hopf algebra structure on Ǔq(sln+1)>0, endowing this algebra with
a (left) adjoint action denoted by ad. For each 1 ≤ i ≤ n let Lq(̟i) be the fi-
nite-dimensional simple module of highest weight ̟i for the quantized enveloping
algebra Uq(sln+1) (see [12], for example). The submodule ad Uq(sln+1)+(K−2

̟i
) of

Ǔq(sln+1)>0 is isomorphic to Lq(̟i) as a Uq(sln+1)+-module [5, 6, 14], and the ele-
ment es(̟i ) ∈ Uq(sln+1)+ is defined in [5,6] so that K−2

̟i
es(̟i ) corresponds to a highest

weight vector of Lq(̟i) under that isomorphism. In other words, ad e j(K−2
̟i

es(̟i )) =

0 for all 1 ≤ i, j ≤ n.

4.3 The following theorem describes the center of Uq(sln+1)+ and the nature of the ∆i ,
1 ≤ i ≤ n. Part (c) is the quantum analogue of [9, Thm. 1].

Theorem 1 ( [5, 6]) For 1 ≤ i, j ≤ n, the following hold:

(a) ei∆ j = qδi j−δi,n+1− j ∆ jei .

(b) The subalgebra N of Uq(sln+1)+ generated by ∆1, . . . ,∆n is a polynomial algebra

K[∆1, . . . ,∆n] in n variables.

(c) The center Z of Uq(sln+1)+ is the polynomial algebra in the variables {∆k∆n+1−k |
1 ≤ k ≤ n/2} if n is even and {∆k∆n+1−k | 1 ≤ k ≤ (n − 1)/2} ∪ {∆(n+1)/2} if

n is odd.

Proof Let ζ : Uq(sln+1)+ → Uq(sln+1)+ be the antiautomorphism with ζ(ei) = ei for
all i. Using [5, Thm. 4.1], it is not hard to see that es(̟i ) = ζ(∆i) for all 1 ≤ i ≤ n.
Then, part (a) follows from the proof of [5, Thm. 3.2], part (c) from [5, Thm. 4.1]

and part (b) from [5, Prop. 3.2] and [6, Rem. 2.2].

In the case of the algebra Uq(sl3)+, for example, ∆1 = X1,3 = e1e2 − q−1e2e1 and
∆2 = X2,3X1,2 − q−1X13ξ = ξ(e2e1 − q−1e1e2). Hence the center of Uq(sl3)+ is the
polynomial subalgebra K[z], where z = ∆1∆2.

The ∆i are said to be q-central, because they commute with the Chevalley gen-
erators of Uq(sln+1)+, up to a power of q. The set of q-central elements is a proper
subset of N which is closed under multiplication, but is not a subspace. For example,
∆1 + ∆n is not q-central. See [6, Thm. 2.2] for details.

4.4 It is easy to see that the term of highest order of ∆i , 1 ≤ i ≤ n, when expressed in
terms of the PBW-basis of 3.1 is obtained by taking the identity permutation in (5).
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Therefore,

∆i = Xi,n+1Xi−1,n · · ·X2,n+3−iX1,n+2−i + (lower order terms)

and consequently, in S = gr
(
Uq(sln+1)+

)
,

(7) gr(∆i) = gr(Xi,n+1) gr(Xi−1,n) · · · gr(X2,n+3−i) gr(X1,n+2−i).

Hence, each of the elements gr(Xi, j), 1 ≤ i < j ≤ n + 1, occurs exactly once in
precisely one of the monomials gr(∆k), 1 ≤ k ≤ n.

5 Uq(sln+1)+ as a Module Over Its Center

Recall that the algebraically independent elements ∆1, . . . ,∆n generate a polynomial
algebra denoted by N . We show that Uq(sln+1)+ is free as a module over N , acting via
(right or left) multiplication, and as a consequence, we see that it is also free over its

center, Z. When we write A ∼=K B ⊗K C for a K-algebra A, we mean that B and C are
subspaces of A and that the map m : B ⊗K C → A that sends b ⊗ c to bc is a vector
space isomorphism.

5.1 Let T = (ti j)1≤i, j≤r be a matrix with nonzero scalar entries satisfying tii = 1 and

ti j = t−1
ji for all i, j. The quantum affine space associated with T is the unital, as-

sociative K-algebra with generators z1, . . . , zr , and relations z jzi = ti jziz j for all i, j.
We denote it by KT[z1, . . . , zr]. The subalgebra generated by the monomial z1 · · · zr

is a polynomial algebra in one variable that we naturally denote by K[z1 · · · zr]. The

following technical lemma is straightforward to prove:

Lemma 1 KT[z1, . . . , zr] is free over K[z1 · · · zr] (acting by multiplication). Indeed,

there is a set of linearly independent monomials Br ⊆ KT[z1, . . . , zr] such that if Hr is

the vector space spanned by Br , then

KT[z1, . . . , zr] ∼=K Hr ⊗K K[z1 · · · zr].

The set Br can be defined recursively (and independently of T) by

Br = Br−1 ·
(
{(z1 · · · zr−1)a | a ∈ N}∪̇{zc

r | c ∈ N \ {0}}
)
, B1 = {1}.

5.2 Let S be the graded algebra introduced in 3.3. As noted earlier, it is the quantum
affine space KT[θ1, . . . , θm] where θi = gr(Xi) and ti j is given by (4). As in 3.1, we
also use the notation θi j = gr(Xi j). For each 1 ≤ i ≤ n, let Si be the subalgebra of S

generated by {θk,k+n+1−i | 1 ≤ k ≤ i}. Set

yi := gr(∆i) = θi,n+1 · · · θ1,n+2−i ∈ Si

and Ji = K[yi] ⊆ Si . Denote by J the subalgebra of S generated by y1, . . . , yn.
Since yi = gr(∆i) for all 1 ≤ i ≤ n, by (7), we conclude that the y j commute with
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each other, and hence that J is the polynomial algebra in the variables y1, . . . , yn.
Therefore,

S ∼=K S1 ⊗K · · · ⊗K Sn, and J ∼=K J1 ⊗K · · · ⊗K Jn.

It is clear that Si is the quantum affine space KTi
[θ1,n+2−i, . . . , θi,n+1], Ti being ob-

tained from T in the obvious way. Thus Si
∼=K Hi ⊗K Ji by Lemma 1, where Hi is

the linear span of the monomial basis given in this lemma. Since the spaces H j are
homogeneous, (in the sense that they have a basis consisting of certain monomials in
the variables θk) it follows that Ji ⊗K H j

∼=K H j ⊗K Ji for all i, j and so

(8) S ∼=K (H1 ⊗K J1) ⊗K · · · ⊗K (Hn ⊗K Jn)

∼=K (H1 ⊗K · · · ⊗K Hn) ⊗K ( J1 ⊗K · · · ⊗K Jn)

∼=K H ⊗K J

with H = H1 ⊗K · · · ⊗K Hn. This shows that S is free over J: if B is a K-basis for H,
then S ∼=

⊕
b∈B

b J as (right) J-modules.

5.3 Consider the linear isomorphism β : Uq(sln+1)+ → S defined by

∑

a∈Nm

caXa 7→
∑

a∈Nm

caθ
a,

and let K = β−1(H).

Proposition 1 Uq(sln+1)+ is free over the polynomial algebra N. Specifically,

Uq(sln+1)+ ∼=K K ⊗K N.

Proof Let ψ : K ⊗K N −→ U +
q be the multiplication map.

ψ is surjective: We will show that Xa ∈ Imψ by induction on a ∈ N
m. If a =

(0, . . . , 0), then 1 = Xa ∈ ψ(K ⊗K N), as 1 ∈ K. Suppose the result is true for all

d < a. By (8), gr(Xa) = θa
=

∑k
i=1 hi pi with hi ∈ H and pi = pi(y1, . . . , yn) ∈ J.

It can be assumed that the hi are monomials in the θ j , and the pi are monomials

in the y j (and hence in the θi also) up to a nonzero scalar multiple. Since θa is
itself a monomial, we can further assume k = 1 and θa

= hp, say h = θb and
p = λyc. Notice that Xb

= β−1(h) ∈ K and grψ(Xb ⊗ λ∆
c) = gr(Xa). Therefore

Xa − ψ(Xb ⊗ λ∆
c) ∈ U +

q (d) for some d < a, and the induction hypothesis implies

that Xa ∈ Imψ.

ψ is injective: Suppose β−1(h1)p1 + · · · + β−1(hk)pk = 0 with hi ∈ H and pi ∈
N . We can assume the hi are (distinct) monomials in the θ j and that the elements
β−1(hi)pi all have the same degree, say d ∈ N

m. Then we have

(9) 0 = gr
(
β−1(h1)p1 + · · · + β−1(hk)pk

)

= h1gr(p1) + · · · + hkgr(pk).
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Since the hi ∈ H are linearly independent over K and gr(pi) ∈ J, equations (8)
and (9) force gr(pi) = 0 for all 1 ≤ i ≤ k, and hence p1 = · · · = pk = 0.

Therefore ψ is a linear isomorphism and the proposition is proved.

This brings us to an analogue of Kostant’s separation of variables [15] (see also [14]
for a version for Ǔq(g), g semisimple). Since the center Z of Uq(sln+1)+ is a polyno-
mial algebra in the variables ∆1∆n, ∆2∆n−1, . . . (see Theorem 1(c)), we see that

N is free over Z. Combining this with Proposition 1 yields the following separation
theorem for Uq(sln+1)+:

Theorem 2 Uq(sln+1)+ is free over its center.

Remarks 1. Recently, Futorny and Ovsienko [11] have proved a similar result for

what they call special PBW algebras over algebraically closed fields of characteristic 0.
These are algebras R with a PBW-type basis and with an increasing filtration over N,
such that the associated graded algebra is a (commutative) polynomial ring. Their
hypothesis is that there are mutually commuting regular elements x1, . . . , xt , that

generate a polynomial subalgebra Γ ⊆ R. They prove that R is free as a left or right
Γ-module. A major difference between their work and ours is that our associated
graded algebra is not commutative, and K is not assumed to be algebraically closed.
Consequently, the algebraic geometry methods of [11] do not apply here.

2. Uq(sln+1)+ is not finite over Z, as the proof shows and as is also apparent from
the fact that there are infinite-dimensional simple modules.

6 Applications to Representations

6.1 As before, Z denotes the center and N = K[∆1, . . . ,∆n]. If K is algebraically closed,

the irreducible N-modules are parametrized by the characters of N , i.e., algebra ho-
momorphisms in Alg(N,K), which in turn can be identified with the elements of K

n.
Following this idea, we think of χ = (χ1, . . . , χn) ∈ K

n as the character N −→ K,
∆i 7→ χi .

Let Vχ = Kvχ be the simple N-module corresponding to χ, and define the in-
duced Uq(sln+1)+-module Mχ = Uq(sln+1)+ ⊗N Vχ. By Proposition 1,

Mχ = K ⊗K Vχ =

⊕

η∈Kn

M(η)
χ

as vector spaces, where each M(η)
χ is a semisimple N-module with simple summands

isomorphic to Vη . The space M(χ)
χ is nonzero and generates Mχ as a Uq(sln+1)+-mod-

ule. Any maximal submodule of Mχ inherits this grading by K
n, and the correspond-

ing factor module is an irreducible Uq(sln+1)+-module, which is semisimple as an
N-module and has a common eigenvector for N with eigenvalue χ.

Thus, we see that any character χ of N can be “lifted” to a simple Uq(sln+1)+-mod-
ule L =

⊕
η∈Kn L(η), with L(χ) 6= (0) and L(η) a direct sum of copies of the simple

N-module Vη , for all η ∈ K
n. An analogous statement is true if we use Z instead of

N , but in such a case, L = L(θ) for θ a given character of Z.
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6.2 Throughout this subsection we consider the algebra Uq(sl3)+, so that n = 2. We
will construct a family of modules for Uq(sl3)+, each universal with respect to the

property that they are generated by a common eigenvector for the q-central elements
∆1 and ∆2 with a given eigenvalue. These turn out to be closely related to the weight
modules for the down-up algebra A(q + q−1,−1, 0), defined in [3].

The generators of the PBW basis of Uq(sl3)+ described in 3.1 are:

X1 = e2, X2 = e1e2 − q−1e2e1, X3 = e1,

and the q-central elements ∆1 and ∆2 can be taken to be

∆1 = X2 and ∆2 = e1e2 − qe2e1.

A basis for Uq(sl3)+ over K[∆1,∆2] is B = {Xa
1 | a ≥ 1} ∪ {Xb

3 | b ≥ 0}. Let
(α, β) ∈ K

2 be a character of K[∆1,∆2]. The induced module M(α,β) = Uq(sl3)+⊗N

V(α,β) has a K-basis indexed by B. Computing in Uq(sl3)+, we see that M(α,β) is the

Uq(sl3)+-module K[x±1] with action:

e1.x
a
=

{
α[a]

β
xa−1 if a ≥ 1,

xa−1 if a ≤ 0,

e2.x
a
=

{
xa+1 if a ≥ 0,

α
[a + 1]

β
xa+1 if a ≤ −1,

where we have identified xa with Xa
1 if a ≥ 1 and with X−a

3 if a ≤ 0. The quantity

λ
[k]

µ
, with λ, µ ∈ K and k ∈ Z is given by

(10)
λ
[k]µ =

λqk − µq−k

q − q−1
.

In the particular case where λ = 1 = µ we recover the q-integer [k] =
1
[k]

1
.

Notice that

∆1.x
a
= qaαxa and ∆2.x

a
= q−aβxa, for all a ∈ Z

and hence, if (α, β) 6= (0, 0), this module is graded by Z, with deg xa
= a. Every

submodule inherits this grading. This implies that M(α,β) has a unique maximal sub-
module when (α, β) 6= (0, 0), as the graded components have dimension 1. Let us
examine this in more detail. We have two cases:

(A) αβ−1
= q−2m, for some m ∈ Z. Then

α
[a]

β
= 0 ⇔ a = m. The unique

maximal submodule is span
K
{xr | r ≥ m} in case m ≥ 1, or span

K
{xr | r ≤

m − 1} in case m ≤ 0;
(B) If we are not in the situation of case (A), then (0) is the unique maximal sub-

module, and M(α,β) is simple.
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If (α, β) = (0, 0), there is no longer a unique maximal submodule. For example, if
γ ∈ K

× then the following are all maximal submodules of M(0,0) of codimension 1:

Uq(sl3)+(x − γ1), Uq(sl3)+(γ1 − x−1), Uq(sl3)+(x, x−1).

In fact, if the field K is algebraically closed, then as γ runs through all nonzero scalars,
these are all its maximal submodules, and the corresponding simple quotients ac-
count for all isomorphism classes of finite-dimensional simple Uq(sl3)+-modules.
There is a nonzero vector v0 such that the simple quotient is isomorphic to Kv0 with

action given by e1.v0 = 0, e2.v0 = γv0; e1.v0 = γv0, e2.v0 = 0; or e1.v0 = 0 = e2.v0,
respectively.

The class of modules M(α,β) is, by construction, universal in the sense that if V

is any Uq(sl3)+-module generated by an element v0 ∈ V with ∆1.v0 = αv0 and

∆2.v0 = βv0, then V is a homomorphic image of M(α,β).
We are now ready to make the connection with the down-up algebra A =

A(q + q−1,−1, 0). The reader is referred to [3] for all the definitions concerning

this algebra, which we shall not review here. After identifying d and u in A with e1

and e2 in Uq(sl3)+ respectively, we see that these algebras coincide.
According to [3], a weight module for A is one for which the operators du and ud

are simultaneously diagonalizable. Since a common eigenvector for du and ud is also

a common eigenvector for du − q−1ud and du − qud, and vice versa, it follows that
such modules are the ones having a basis of common eigenvectors for ∆1 and ∆2.
Furthermore, as ∆1 and ∆2 are q-central, it suffices that the module be generated by
such eigenvectors in order for it to be a weight module. Given the universal property

of the modules M(α,β), we see that any cyclic weight module is a homomorphic image
of M(α,β), for some (α, β) ∈ K

2. In particular, the following proposition is easy to
prove:

Proposition 2 Let κ, λ ∈ K and define the highest weight module V (λ), lowest weight

module W (κ) and doubly infinite module V (κ, λ) as in [3]. Then,

(a) Span
K
{xi | i ≤ −1} is a submodule of M(λ,λ), and the corresponding factor module

is isomorphic to V (λ);

(b) Span
K
{xi | i ≥ 1} is a submodule of M(−q−1κ,−qκ), and the corresponding factor

module is isomorphic to W (κ);

(c) If (κ, λ) = (0, 0), then V (0, 0) is not a Noetherian module, and therefore is not

isomorphic to a subquotient of M(α,β), for any (α, β) ∈ K
2;

(d) If λ − qκ = q2(m+1)(λ − q−1κ), for some m ∈ Z, then V (κ, λ) is isomorphic to

M(α,β), where α = −q−1(λ[m] − κ[m − 1]) and β = q2α;

(e) If (κ, λ) satisfies neither of the conditions from (c) or (d), then V (κ, λ) is isomorphic

to M(λ−q−1κ,λ−qκ), and is therefore simple.

6.3 Now we want to study the next simplest case, Uq(sl4)+. A PBW basis is given by:

X1 = e3, X2 = e2e3 − q−1e3e2, X3 = e2,

X4 = e1X2 − q−1X2e1, X5 = e1e2 − q−1e2e1, and X6 = e1,
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and we can take

∆1 = X4, ∆2 = X2X5 − q−1X3X4,

∆3 = q−2
(

(q − q−1)2X1X3X6 − (q − q−1)X1X5 − (q − q−1)X2X6 + X4

)
,

z1 = ∆1∆3, z2 = ∆2.

The center is Z = K[z1, z2], and a basis for Uq(sl4)+ over N = K[∆1,∆2,∆3] is

{Xa
1Xb

2Xc
3 | (a, b, c) ∈ N

3} ∪ {Xa
1Xb

3Xc
5 | (a, b, c) ∈ N

3}

∪ {Xa
1Xb

2Xc
6 | (a, b, c) ∈ N

3} ∪ {Xa
1Xb

5Xc
6 | (a, b, c) ∈ N

3}

∪ {Xa
2Xb

3Xc
6 | (a, b, c) ∈ N

3} ∪ {Xa
3Xb

5Xc
6 | (a, b, c) ∈ N

3},

which is already a considerably large set. Instead of inducing modules from N , we

would like to find a bigger subalgebra to induce from, so that Uq(sl4)+ is still free
over this larger subalgebra, but with a free basis that is somewhat easier to manage.

Since Xa
1Xb

6 , (a, b) ∈ N
2, are among the basis elements listed above, it is clear that

the q-commuting elements X1,X6,∆1 and ∆2 are algebraically independent, hence

generate the quantum affine subalgebra

Γ = K[X1,X6,∆1,∆2],

with relations X1X6 = X6X1, X1∆2 = ∆2X1, X1∆1 = q−1
∆1X1, X6∆2 = ∆2X6,

X6∆1 = q∆1X6, ∆1∆2 = ∆2∆1. It is easily seen by our discussion in Section 5 that
Uq(sl4)+ is free over Γ, with basis B = {Xa

2Xb
3 | (a, b) ∈ N

2} ∪ {Xa
3Xb

5 | (a, b) ∈ N
2}.

Given (α, β) ∈ K
2, there is a Γ-character determined by

X1 7→ 0, X6 7→ 0, ∆1 7→ α, ∆2 7→ β.

Let V(α,β) be the corresponding one-dimensional module, and set

M(α,β) = Uq(sl4)+ ⊗Γ V(α,β).

This is a cyclic Uq(sl4)+-module with a K-basis indexed by B, and if we make the

identifications

Xb
2Xa

3 ↔ xa yb, Xa
3Xc

5 ↔ xa y−c, a, b, c ∈ N,

we see that this corresponds to the Uq(sl4)+-module K[x, y±1], with action given by:

e1.x
a yb

=

{
αq−a[a + b]xa yb−1 + β[a]q−a−b+1xa−1 yb−1 if b ≥ 1,

[a]xa−1 yb−1 if b ≤ 0,

e2.x
a yb

=

{
qbxa+1 yb if b ≥ 0,

xa+1 yb if b < 0,

e3.x
a yb

=

{
−qa−b[a]xa−1 yb+1 if b ≥ 0

αq[b − a]xa yb+1 − βq[a]xa−1 yb+1 if b ≤ −1.
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Similarly, we could have used the Γ-character determined by

X1 7→ α, X6 7→ β, ∆1 7→ 0, ∆2 7→ γ,

for (α, β, γ) ∈ K
3, and the result would have been a Uq(sl4)+-module P(α,β,γ), iso-

morphic to K[x, y±1] with action:

e1.x
a yb

=

{
βq−a−bxa yb + γ[a]q−a−b+1xa−1 yb−1 if b ≥ 1,

βq−a−bxa yb + [a]xa−1 yb−1 if b ≤ 0,

e2.x
a yb

=

{
qbxa+1 yb if b ≥ 0,

xa+1 yb if b < 0,

e3.x
a yb

=

{
αqa−bxa yb − qa−b[a]xa−1 yb+1 if b ≥ 0,

αqa−bxa yb − γq[a]xa−1 yb+1 if b ≤ −1.

Let us look at the module M(α,β) more carefully. We have,

∆1.x
a yb

= qbαxa yb, ∆2.x
a yb

= βxa yb, and ∆3.x
a yb

= q−bαxa yb,

for all a ∈ N and b ∈ Z. Assume α 6= 0. Then there is a natural Z-grading on M(α,β)

given by setting deg(xa yb) = b for all b ∈ Z. It has the additional property that any
submodule of M(α,β) inherits this grading. Note that the homogeneous subspace of

degree k is K[x]yk. We will show now under the assumption α 6= 0 that M(α,β) is
simple. Let W be a nonzero submodule, and take a nonzero homogeneous element
of W , say p, which we can write as

p = (a0 + a1x + · · · + alx
l)yb

= a0 yb + a1xyb + · · · + alx
l yb,

where ai ∈ K, al 6= 0, l ≥ 0, and b = deg p.

Case 1 b ≥ 0. Since
el

3.p = (−1)lq−l(b−1)[l]! al y
b+l,

we see that yb+l ∈ W , and hence so is

eb+l
1 .yb+l

= αb+l[b + l]! 1.

It follows that 1 ∈ W and so W = M(α,β), as 1 generates M(α,β).

Case 2 b < 0. As in the previous case, one sees from the following computations

that 1 ∈ W and W = M(α,β):

el
1.p = al[l]! yb−l,

el−b
3 .yb−l

= (−qα)l−b[l − b]! 1.
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So M(α,β) is indeed simple for all pairs (α, β) ∈ K
× × K. The center Z of Uq(sl4)+

acts via

z1.m = α2m,(11)

z2.m = βm, for all m ∈ M(α,β),(12)

where z1, z2 are as in 6.3. The above equations show that if the modules M(α,β) and
M(α ′,β ′) are isomorphic, then α2

= (α ′)2 and β = β ′, as their central characters
should be the same. Furthermore, the eigenvalues of the operator ∆1 on each module
must coincide and hence α ′

= qbα for some b ∈ Z, which forces α = α ′, as α2
=

(α ′)2. Therefore the modules M(α,β) are pairwise non-isomorphic, and simple if
α 6= 0. A similar argument shows that M(α,β) is not isomorphic to the module P(γ,δ,ǫ)

defined earlier or to any of its simple quotients if α 6= 0, as the central element z1

annihilates P(γ,δ,ǫ).

Remark The subalgebra of Uq(sl4)+ generated by the elements X1,X6,∆1,∆2, and
∆3 is isomorphic to quantum affine 5-space, but Uq(sl4)+ is no longer free over it, and
in fact if we try to induce one-dimensional modules for this algebra up to Uq(sl4)+,

then corresponding to any character with ∆1 7→ λ, ∆3 7→ µ, and λ 6= µ, we obtain
just the zero Uq(sl4)+-module.
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