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On tame Z/pZ-extensions with prescribed
ramification

Farshid Hajir, Christian Maire, and Ravi Ramakrishna

Abstract. �e tameGras–Munnier�eorem gives a criterion for the existence of aZ/pZ-extension of

a number fieldK ramified at exactly a tame set S of places ofK, the finite v ∈ S necessarily having norm

1 mod p. �e criterion is the existence of a nontrivial dependence relation on the Frobenius elements

of these places in a certain governing extension. We give a short new proof which extends the theorem

by showing the subset of elements of H1(GS ,Z/pZ) giving rise to such extensions of K has the same

cardinality as the set of these dependence relations.We then reprove the key Proposition 2.2 using the

more sophisticated Greenberg–Wiles formula based on global duality.

1 Introduction

Let D ∈ Z be squarefree and odd and write∞∣D if D < 0. It is well-known that there
exists a quadratic extension K/Q ramified at exactly the set of places {v ∶ v∣D} if and
only if D ≡ 1 mod 4. �e key is how the Frobenius elements of the v∣D lie in the
Galois group of the governing extensionQ(i)/Q. Let σv denote Frobenius at v in this
extension with σ∞ being the nontrivial element of Gal(Q(i)/Q). We frame this result
as the following Fact:

Fact �ere exists a quadratic extension K/Q ramified exactly at a tame (not
containing 2 but allowing∞) set S of places if and only if∑

v∈S

σv = 0 in Gal(Q(i)/Q).

�e paper [GM] extended this to Z/pZ-extensions of a general number field K
and, with some hypotheses, to Z/peZ-extensions of K. To explain the result precisely,
we need some background. For a fixed prime p and set S of tame places (prime to p
and allowing real Archimedean places), let

VS ∶= {x ∈ K× ∣ (x) = J p ; x ∈ K
×p
v ∀ v ∈ S},
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where J is a fractional ideal of K. Note K×p ⊂ VS for all S and S ⊆ T Ô⇒ VT ⊆ VS .
LetO×K and ClK[p] be, respectively, the units ofK and the p-torsion in the class group
of K. �at V∅/K×p lies in the exact sequence

0→ O
×
K ⊗ Fp → V∅/K×p → ClK[p]→ 0(1.1)

is well-known (see, e.g., Proposition 10.7.2 of [NSW], though note that the definition
of V∅ in [NSW] is formulated slightly differently than the one used here, but they
are easily shown to be equivalent. Click here for the updated online version 2.3). Set
K′ ∶= K(µp) and L ∶= K′( p

√
V∅). We call L/K′ the governing extension for K. When

K = Q and p = 2, one easily has L = Q(i) and we have recovered the field of the Fact.
L ∶= K′( p

√
V∅)

K′ ∶= K(µp)

K

As L is obtained by adjoining to K′ the pth roots of elements of K (not K′), one
easily shows that places v′1 , v

′
2 of K

′ above a fixed place v ofK have Frobenius elements
in Gal(L/K′) that differ by a nonzero scalar multiple. We abuse notation and for any
v′ of K′ above v in K denote Frobenius at v′ by σv . �e theorem of [GM] (also see
Chapter V of [G]) below and�eorem 1.1 implicitly use this abuse of notation.

�eorem (Gras–Munnier) Let p be a prime, and let S be a finite set of tame places
(prime to p and allowing real Archimedean places if p = 2) of K. For v ∈ S finite, we
require that N(v) ≡ 1mod p.�ere exists aZ/pZ-extension of K ramified at exactly the
places of S if and only if there exists a dependence relation∑

v∈S

avσv = 0 with all av ≠ 0

in the Fp-vector space Gal(L/K′).
�eorem 1.1 is a generalization of the Gras–Munnier �eorem. We first give a

short proof that uses only one element of class field theory, the Koch–Shafarevich
formula (2.1). We easily prove Proposition 2.2 from (2.1), a�er which one only needs a
standard inclusion–exclusion argument to prove�eorem 1.1. �e cardinalities of the
two sets of�eorem 1.1 being equal suggests a duality. In the final section of this note,
we give an alternative proof of Proposition 2.2 using the Greenberg–Wiles formula
whose proof requires the full strength of global duality. Denote by GS , the Galois
group over K of its maximal pro-p extension unramified outside S and recall that
for 0 ≠ f ∈ H1(GS ,Z/pZ) = Hom(GS ,Z/pZ), Kernel( f ) fixes a Z/pZ-extension of
K f /K unramified outside S. Our main result is the following theorem.

�eorem 1.1 Let p be a prime, and let S be a finite set of tame places (prime to p
and allowing real Archimedean places if p = 2) of a number field K where we require
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N(v) ≡ 1mod p. �e sets below have the same cardinality:

{ f ∈ H1(GS ,Z/pZ)
H1(G∅,Z/pZ) ∣ the extension K f /K is ramified exactly at the places of S}

and

{Dependence relations ∑
v∈S

avσv = 0 with all av ≠ 0 in Gal(L/K′)}.

When p = 2, there is clearly at most one dependence relation. If K(√α1) and
K(√α2) are both ramified at all v ∈ S, the “diagonal” extension K(√α1α2) is unram-

ified everywhere, so there is a unique f ∈
H1(GS ,Z/2Z)
H1(G∅,Z/2Z) giving rise to the ramified

extension and the bijection is natural in this case.
For examples and applications, we refer the reader to [HMR], especially the

examples in Section 3. Note that p = 2 in those examples and the primes of S all have
trivial Frobenius element in the governing extension.

2 Proof of Theorem 1.1

For any field E, set δ(E) = { 1, µp ⊂ E ,
0, µp /⊂ E . Dirichlet’s unit theorem and (1.1) imply

Gal(L/K′) is an Fp-vector space of dimension r1 + r2 − 1 + δ(K) + dimClK[p],
where r1 and r2 are the number of real and pairs of complex embeddings of K.
�e standard fact from class field theory that we need (see [K, Section 11.3] or [NSW,
Section 10.7]) is a formula of Koch and Shafarevich for the dimension of the space
of Z/pZ-extensions of K unramified outside a tame (prime to p and allowing real
Archimedean places if p = 2) set Z:

dimH1(GZ ,Z/pZ) = −r1 − r2 + 1 − δ(K) + dim(VZ/K×p) + (∑
v∈Z

δ(Kv)) .(2.1)

Fix a tame set S noting that H1(GS ,Z/pZ) may include cohomology classes that
cut outZ/pZ-extensions ofK that could be ramified at proper subsets of S. As we vary
Z from ∅ to S one place at a time, dim(VZ/K×p) may remain the same or decrease
by 1. Since δ(Kv) = 1, we see dimH1(GZ ,Z/pZ) increases by 1 or remains the same,
respectively.

Let W ⊂ Gal(L/K′) be the Fp-subspace spanned by ⟨σv⟩v∈S , the Frobenius ele-
ments of the places in S. Recall that each σv is well-defined up to a nonzero scalarmul-
tiple soW is well-defined. Let I ∶= {u1 , u2 , . . . , ur} ⊂ S be such that {σu1

, σu2
, . . . , σur

}
form a basis ofW, and let D ∶= {w1 ,w2 , . . . ,ws} ⊂ S be the remaining elements of S.
We think of the σu i

as independent elements and the σw j
as the dependent elements.

Recall L ∶= K′( p
√
V∅) so Gal(L/K′) is dual to V∅/K×p , so as we vary Z in (2.1) from

∅ to I by adding in one u i at a time, we are adding 1 through the δ(Ku i
) term to the

right side, but dimVZ/K×p becomes one dimension smaller. �us, both sides remain
unchanged. �en, as we add in the dependent places w j of D to get to S = I ∪ D, we
are not changing the span of the Frobenius elements so we have VI/K×p = VS/K×p .
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�us

H1(G∅,Z/pZ) = H1(GI ,Z/pZ) and dim(H1(GS ,Z/pZ)
H1(G∅,Z/pZ)) = s.(2.2)

We write each σw j
uniquely as a linear combination of the σu i

:

R j ∶ σw j
−

r

∑
i=1

F jiσu i
= 0.

For X ⊆ S, let RX be the Fp-vector space of all dependence relations on the elements{σv}v∈X ⊂ Gal(L/K′).
Lemma 2.1 �e set {R1 , R2 , . . . , Rs} forms a basis of the Fp-vector space of RS .

Proof Clearly, {R j} j=1, . . . ,s is independent. We show they span RS . Consider any
dependence relation R ∈ RS . We can eliminate any σw j

term in R by adding a suitable
multiple of R j . We are le� with a dependence relation on the σu i

, which are indepen-
dent, so it is trivial. ∎

Proposition 2.2 For any X ⊆ S, dimRX = dim(H1(GX ,Z/pZ)
H1(G∅,Z/pZ)) .

Proof Lemma 2.1 and (2.2) prove this for X = S. For X ⊂ S, letWX ⊂ Gal(L/K′) be
the span of the Frobenius elements ofX. Form IX and DX as we formed I andD above
and apply the proof above with X, IX and DX playing the roles of S, I and D. ∎

Proposition 2.2 does not complete the proof of �eorem 1.1 as RS may contain

dependence relations with support properly contained in S and
H1(GS ,Z/pZ)
H1(G∅,Z/pZ) may

contain elements giving rise to extensions of K ramified at proper subsets of S.

Proof of�eorem 1.1 �e set of dependence relations with support exactly in S is

RS/⋃
v∈S

RS/{v},(2.3)

thosewith support contained in S less the union of thosewith propermaximal support
in S. For any sets A i ⊂ S, it is clear that ⋂RA i

= R⋂ A i
, so by inclusion–exclusion,

#⋃
v∈S

RS/{v} = ∑
v∈S

#RS/{v} − ∑
v≠w∈S

#RS/{v ,w} +⋯.(2.4)

Similarly, the set of cohomology classes giving rise to Z/pZ-extensions ramified
exactly at the places of S (up to unramified extensions) is

H1(GS ,Z/pZ)
H1(G∅,Z/pZ)/⋃v∈S

H1(GS/{v},Z/pZ)
H1(G∅,Z/pZ) .(2.5)

Since, for any sets A i ⊂ S, we have

⋂
H1(GA i

,Z/pZ)
H1(G∅,Z/pZ) =

H1(G∩A i
,Z/pZ)

H1(G∅,Z/pZ) ,
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we see

#⋃
v∈S

H1(GS/{v} ,Z/pZ)
H1(G∅ ,Z/pZ)

= ∑
v∈S

#
H1(GS/{v} ,Z/pZ)
H1(G∅ ,Z/pZ)

− ∑
v≠w∈S

#
H1(GS/{v ,w} ,Z/pZ)

H1(G∅ ,Z/pZ)
+⋯.(2.6)

Proposition 2.2 implies the terms on the right sides of (2.4) and (2.6) are equal so
the le� sides are equal as well. �e theorem follows from (2.3), (2.5) and applying
Proposition 2.2 with X = S. ∎

3 A proof via the Greenberg–Wiles formula

As the association of dependence relations and cohomology classes in �eorem 1.1
resembles a duality result, we reprove Proposition 2.2 using the Greenberg–Wiles
formula, which follows from global duality. We assume familiarity with local and
global Galois cohomology.

Henceforth, we assume the hypothesis of the Greenberg–Wiles formula that Z
is a set of places of K containing all those above {p,∞}. For each v ∈ Z, let Gv ∶=
Gal(K̄v/Kv), where K̄v is an algebraic closure of Kv , and consider a subspace Lv ⊆
H1(Gv ,Z/pZ). Under the perfect local duality pairing (see [NSW, Chapter 7, Section
2]),

H1(Gv ,Z/pZ) ×H1(Gv , µp)→ H2(Gv , µp) ≃ 1

p
Z/Z

Lv has an annihilator L⊥v ⊆ H1(Gv , µp). Set
H1

L(GZ ,Z/pZ) ∶= Kernel(H1(GZ ,Z/pZ)→ ⊕v∈Z
H1(Gv ,Z/pZ)

Lv
)

and

H1
L⊥(GZ , µp) ∶= Kernel(H1(GZ , µp)→ ⊕v∈Z

H1(Gv , µp)
L⊥v

) .
We call {Lv}v∈Z and {L⊥v }v∈Z the Selmer and dual Selmer conditions and
H1

L
(GZ ,Z/pZ) and H1

L⊥
(GZ , µp) the Selmer and dual Selmer groups.

We need Lemma 3.1 and the Greenberg–Wiles formula below for our second proof
of Proposition 2.2. As Lemma 3.1(ii) is perhaps not sowell-known, we include a sketch
of its proof.

Lemma 3.1 (i) For v ∤ p, the unramified cohomology classes H1
nr(Gv ,Z/pZ) and

H1
nr(Gv , µp) are exact annihilators of one another under the local duality pairing.

(ii) Suppose v∣p and set K′v = Kv(µp). �e annihilator of H1
nr(Gv ,Z/pZ) ⊂

H1(Gv ,Z/pZ) is H1
f (Gv , µp) ⊂ H1(Gv , µp), the peu ramifiée classes, namely,

those f ∈ H1(Gv , µp)whose fixed field Lv , f of Kernel( f ∣GK′v
) arises fromadjoining

the pth root of a unit u f ∈ Kv .

Proof (i) �is is standard (see [NSW,�eorem 7.2.15]).
(ii) �is result is Corollary 1.4 in Chapter III of [M], but we sketch the proof.

It follows once we explain the commutative diagram below.
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H1(Spec(OKv
),Z/pZ)

� _

��

× H1(Spec(OKv
), µp)� _

��

// H2(Spec(OKv
), µp) = 0� _

��

H1(Gv ,Z/pZ) × H1(Gv , µp) // H2(Gv , µp) =
1
p
Z/Z

Cohomology taken over Spec(OKv
) is flat.�e rows are cup product pairings in flat

and Galois cohomology. Recall Z/pZ ≃ H1
nr(Gv ,Z/pZ) = H1(Spec(OKv

),Z/pZ) ⊂
H1(Gv ,Z/pZ) and

H1
f (Gv , µp) = H1(Spec(OKv

), µp) = O×Kv
/O×pKv

⊂ K×v /K×pv = H
1(Gv , µp),

where the containment is codimension one asFp-vector spaces. Lemma 1.1 in Chapter
III of [M] gives the two le� vertical injections and the triviality of the top pairing.
�is last pairing is consistent with the local duality pairing of the bottom row of the
above diagram. As H1

nr(Gv ,Z/pZ) ⊂ H1(Gv ,Z/pZ) and H1
f (Gv , µp) ⊂ H1(Gv , µp)

are dimension 1 and codimension 1, respectively, they are exact annihilators of one
another, proving (ii). ∎

�eorem (Greenberg–Wiles) Assume Z contains all places above {p,∞}. �en

dimH1
L
(GZ ,Z/pZ) − dimH1

L⊥
(GZ , µp) =

dimH0(GZ ,Z/pZ) − dimH0(GZ , µp) +∑v∈Z (dim Lv − dimH0(Gv ,Z/pZ)) .
See �eorem 8.7.9 of [NSW] for a proof.

Second proof of Proposition 2.2 Recall X is tame and write X ∶= X<∞ ∪ X∞. Set
Z ∶= Zp ∪ X<∞ ∪ Z∞, where Zp ∶= {v ∶ v∣p} and Z∞ is the set of all real Archimedean
places of K (so X∞ ⊆ Z∞).

For v complexArchimedean, we haveGv = {e} so the Selmer and dual Selmer con-
ditions are trivial. For v real Archimedean, dimH1(Gv ,Z/2Z) = dimH1(Gv , µ2) = 1
and the pairing between them is perfect (see Chapter I, �eorem 2.13 of [M, Chapter
I,�eorem 2.13]). It is easy to see in this case that the unramified cohomology groups
are trivial.

In the table below, we choose {Mv}v∈Z and {Nv}v∈Z so that

H1
M(GZ ,Z/pZ) = H1(GX ,Z/pZ) and H1

N(GZ ,Z/pZ) = H1(G∅,Z/pZ).
�e previous paragraph and Lemma 3.1 justify the stated dual Selmer conditions of
the table.

Mv M⊥v Nv N⊥v

v ∈ Zp H1
nr(Gv ,Z/pZ) H1

f (Gv , µp) H1
nr(Gv ,Z/pZ) H1

f (Gv , µp)
v ∈ X∞ H1(Gv ,Z/2Z) 0 H1

nr(Gv ,Z/2Z) = 0 H1(Gv , µ2)
v ∈ Z∞/X∞ H1

nr(Gv ,Z/2Z) = 0 H1(Gv , µ2) H1
nr(Gv ,Z/2Z) = 0 H1(Gv , µ2)

v ∈ X<∞ H1(Gv ,Z/pZ) 0 H1
nr(Gv ,Z/pZ) H1

nr(Gv , µp)

We now compute dimMv − dimNv . �e first three entries of the table below are
clear. As δ(Kv) = 1, local class field theory implies dimH1(Gv ,Z/pZ) = 2. �at
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dimH1
nr(Gv ,Z/pZ) = 1 follows as there is a unique unramified Z/pZ-extension of

any local field. �is establishes the last entry.

dimMv − dimNv

v ∈ Zp 0
v ∈ X∞ 1
v ∈ Z∞/X∞ 0
v ∈ X<∞ 1

Applying theGreenberg–Wiles formula for {Mv}v∈Z and {Nv}v∈Z and subtracting
the second equation from the first and recalling #X = #I + #D = r + s:

dimH1(GX ,Z/pZ) − dimH1(G∅,Z/pZ) =
dimH1

M
(GZ ,Z/pZ) − dimH1

N
(GZ ,Z/pZ) =

dimH1
M⊥(GZ , µp) − dimH1

N⊥
(GZ , µp) +∑v∈Z(dimMv − dimNv) =

dimH1
M⊥(GZ , µp) − dimH1

N⊥
(GZ , µp) + r + s.

(3.1)

To prove Proposition 2.2, we need to show this last quantity is dimRX = s,
the dimension of the space of dependence relations on the set {σv}v∈X ⊂W =
Gal(K′( p

√
V∅)/K′).

An element f ∈ H1
N⊥
(GZ , µp) gives rise to the field diagram below, where L f /K′ is

aZ/pZ-extension peu ramifiée at v ∈ Zp , with no condition on v ∈ Z∞ andunramified

at v ∈ X<∞. We show the composite of all such L f is K
′ ( p
√
V∅).

L f ∶= K′ ( p
√
α f )

K′ ∶= K(µp)

K

By the nature of cohomology classes in H1(GZ , µp), the extension L f /K is Galois.

Kummer �eory implies α f ∈ K′/K′×p , which decomposes into ω i-eigenspaces,

where ω ∶ Gal(K′/K)→ (Z/pZ)× is the cyclotomic character given by σ(ζp) = ζω(σ)p

for ζp a primitive pth root of unity. As µp ≃ Z/pZ(ω), Kummer �eory gives the
Gal(K′/K)-equivariant pairing

α fK
′×p

K′×p
×Gal(L f /K′)→ µp ≃ Z/pZ(ω).

�at f ∈ H1(GZ ,Z/pZ(ω)) implies Gal(L f /K′) is in the ω-eigenspace as is
Z/pZ(ω). �us, α f is in the trivial eigenspace of K′×/K′×p . We will show we may
assume α f ∈ K. If K′ = K this is obvious so we assume 1 < d = [K′ ∶ K] ∣ p − 1. Since
α f is in the trivial eigenspace, NK′

K (α f ) ≡ αd
f mod K′×p . But NK′

K (α f ) ∈ K× and

(d , p) = 1 so a suitable power NK′

K (α f )r is congruent to α f mod K′×p . Just replace α f

by NK′

K (α f )r ∈ K.
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Since L f /K′ is unramified at all finite tame v, we have α f = uπ
pr
v , where u ∈ Kv

is a unit and πv is a uniformizer. At v ∈ Zp being peu ramifiée implies that locally at

v ∈ Xp , we again have α f = uπ
pr
v . Together, these mean that the fractional ideal (α f )

of K is a pth power, which implies that α f ∈ V∅. Conversely, if α ∈ V∅, then, recalling
that (α) = J p for some ideal of K, we have that K′ ( p

√
α) /K′ is a Z/pZ-extension peu

ramifiée at v ∈ Zp , with no condition at v ∈ Z∞. �us, α gives rise to an element fα ∈
H1

N⊥
(GZ , µp) so L ∶= K′ ( p

√
V∅) is the composite of all L f for f ∈ H1

N⊥
(GZ , µp) and

dimH1
N⊥
(GZ , µp) = dim(V∅/K×p).

An element f ∈ H1
M⊥(GZ , µp) gives rise to a Z/pZ-extension of K′ peu ramifiée

at v ∈ Zp and split completely at v ∈ X. We denote the composite of all these fields by

D ⊂ K′ ( p
√
V∅).

L ∶= K′ ( p
√
V∅)

D

K′ ∶= K(µp)

K

Recall that r is the dimension of the space ⟨σv⟩v∈X ⊂ Gal(L/K′). Clearly,D is the field
fixed of ⟨σv⟩v∈X so dimFp

Gal (K′ ( p
√
V∅) /D) = r = #I from the second section of this

note. �us, dimH1
M⊥(GZ , µp) = dim(V∅/K×p) − r so the right side of (3.1) is

(dim(V∅/K×p) − r) − dim(V∅/K×p) + (r + s) = s = dimRX

proving Proposition 2.2.
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