
Glasgow Mathematical Journal (2024), 1–14
doi:10.1017/S0017089524000041

RESEARCH ARTICLE

On twisted group ring isomorphism problem for p-groups
Gurleen Kaur1 , Surinder Kaur2 and Pooja Singla3

1Indian Institute of Science Education and Research Mohali, Knowledge City, Mohali, 140 306, India
2Department of Mathematics, School of Engineering and Sciences, SRM University AP, Amaravati, Andhra Pradesh, 522502,
India
3Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
Corresponding author: Pooja Singla; Email: psingla@iitk.ac.in

Received: 28 July 2023; Revised: 10 January 2024; Accepted: 12 January 2024

Keywords: twisted group algebras; projective representations; Schur multiplier

2020 Mathematics Subject Classification: Primary - 16S35; Secondary - 20C25, 20E99

Abstract
In this article, we explore the problem of determining isomorphisms between the twisted complex group algebras
of finite p-groups. This problem bears similarity to the classical group algebra isomorphism problem and has been
recently examined by Margolis-Schnabel. Our focus lies on a specific invariant, referred to as the generalized corank,
which relates to the twisted complex group algebra isomorphism problem. We provide a solution for non-abelian
p-groups with generalized corank at most three.

1. Introduction

The group ring RG, where G is a finite group and R is a commutative ring, holds significant importance in
representation theory. Over the past few decades, there has been considerable interest in decoding infor-
mation about a group G from its group ring RG. One particularly challenging problem in this context is
the isomorphism problem, which investigates whether a group ring uniquely determines its correspond-
ing group. Specifically, if RG and RH are isomorphic as R-rings, does it imply that the groups G and
H are isomorphic as well? For the current status of this problem, one can refer to [2, 13, 15, 16, 27].
The solution to this problem depends mainly upon the ring under consideration. For example, all the
finite abelian groups of a given order have isomorphic complex group algebras, whereas the rational
group algebras of any two non-isomorphic abelian groups are always non-isomorphic (see [25]). In
1971, Dade [3] constructed an example demonstrating the existence of two non-isomorphic metabelian
groups that possess isomorphic group algebras over any field. Subsequently, Hertweck [9] presented a
counterexample of this phenomenon for integral group rings, showcasing two non-isomorphic groups
of even order whose integral group rings are isomorphic. However, the problem of determining whether
integral group rings of groups with odd order are isomorphic remains an open question. Additionally,
investigating this problem in the context of modular group rings, in particular, for the group rings of
finite p-groups over a field of characteristic p has been of significant interest (see [26]).

In recent times, a variant of the classical isomorphism problem known as the twisted group ring iso-
morphism problem has gained considerable attention. The problem was initially introduced in [17] and
has been further explored by the authors in [18, 19]. In order to explain this version of the isomorphism
problem, we start by introducing some notation.

Let R be a commutative ring with unity and R× be the unit group of R. Following [14], we denote the
set of 2-cocyles of G by Z2(G, R×) and the second cohomology group of G over R× by H2(G, R×). For
a 2-cocycle α, let Rα[G] be the α-twisted group ring of G over R, that is Rα[G] = {∑g∈G xgeg | xg ∈ R} is
an R-algebra with the following operations:
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• (addition) (
∑

g∈G xgeg) + (
∑

g∈G ygeg) = ∑
g∈G (xg + yg)eg.

• (multiplication) eg.eh = α(g, h)egh for all g, h ∈ G, and defined distributively for all other
elements of Rα[G].

For an element α ∈ Z2(G, C×), the corresponding element of H2(G, C×) will be denoted by [α]. It is well
known that Rα[G] ∼= Rβ[G] as R-algebras for α, β ∈ Z2(G, R×) such that [α] = [β].

Given groups G, H and a ring R, we write G ∼R H if there exists an isomorphism ψ : H2(G, R×) →
H2(H, R×) such that Rα[G] ∼= Rψ(α)[H] for every [α] ∈ H2(G, R×). The twisted group ring isomorphism
problem is to determine the equivalence classes of groups of order n, under the relation ∼R. We call
these equivalence classes the R-twist isomorphism classes.

Throughout this article, our focus lies on the C-twist isomorphism classes of finite p-groups. The
second cohomology group of a finite group G over C×, that is H2(G, C×), is commonly referred to as
the Schur multiplier of G. The order of the group, the structure of the Schur multiplier, and the structure
of the complex group algebra remain invariant under C-twist isomorphism.

In [17, Theorem 4.3], Margolis and Schnabel determined the C-twist isomorphism classes of groups
of order p4, where p is a prime. In the same article, they proved (see [17, Lemma 1.2]) that any equiv-
alence class of a finite abelian group with respect to ∼C is a singleton. Hence, it is sufficient to focus
on the classification of the C-twist isomorphism classes of non-abelian finite groups. In this article, we
continue this line of investigation of the C-twist isomorphism classes of finite non-abelian p-groups
by fixing the order of the second cohomology group over C×. Green [6] proved that the order of the
Schur multiplier of a p-group G of order pn is at most p

n(n−1)
2 . Niroomand [20] improved this bound for

non-abelian p-groups and proved that |H2(G, C×)| ≤ p
(n−1)(n−2)

2 +1 for any non-abelian group G of order
pn. In view of this result, a finite non-abelian p-group G is said to have generalized corank s(G) if
|H2(G, C×)| = p

(n−1)(n−2)
2 +1−s(G).

We study the C-twist isomorphism classes of finite non-abelian p-groups by fixing their generalized
corank. In particular, we describe the C-twist isomorphism classes of all p-groups with s(G) ≤ 3. The
classification of all non-isomorphic p-groups with s(G) ≤ 3 is known in the literature by the work of
Niroomand [24] and Hatui [7]. We use this classification along with the structure of the corresponding
twisted group algebras to obtain our results. We use the following notation:

• Cpn denotes the cyclic group of order pn.
• Cm

pn or C(m)
pn denote the direct product of m-copies of the cyclic group of order pn.

• H1
m and H2

m denote the extraspecial p-groups of order p2m+1 and of exponent p and p2,
respectively.

• H.K denotes the central product of the groups H and K.
• E(r) = E.Cpr , where E is an extraspecial p-group.

We now list the main results of this article. Our first result describes the C-twist isomorphism classes
of groups with generalized corank zero or one.

Lemma 1.1. For non-abelian groups G of order pn with s(G) ∈ {0, 1}, every C-twist isomorphism class
is a singleton, that is consists of only one group up to isomorphism.

In our next result, we describe all non-singleton C-twist isomorphism classes of finite p-groups with
s(G) = 2.

Theorem 1.2. All non-singleton C-twist isomorphism classes of non-abelian groups of order pn and
generalized corank two are as follows:

(1) for any n ≥ 4, Q8 × C(n−3)
2 ∼C E(2) × C(n−4)

2 ;
(2) for an odd prime p, E(2) ∼C H2

1 × Cp ∼C 〈a, b | ap2 = 1, bp = 1, [a, b, a] = [a, b, b] = 1〉;

https://doi.org/10.1017/S0017089524000041 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000041


Glasgow Mathematical Journal 3

Figure 1. Relation between Hochschild-Serre spectral sequences of G1 and G2.

(3) for n ≥ 5, E(2) × C(n−4)
p ∼C H2

1 × C(n−3)
p ;

(4) for n = 2m + 1 and m ≥ 2, H1
m × C(n−2m−1)

p ∼C H2
m × C(n−2m−1)

p ;
(5) for n ≥ 6 and 1<m ≤ n/2 − 1, E(2) × C(n−2m−2)

p ∼C H1
m × C(n−2m−1)

p ∼C H2
m × C(n−2m−1)

p .

See Section 3 for the proof of Lemma 1.1 and Theorem 1.2. The next result describes the
non-singleton C-twist isomorphism classes for the groups of order pn with s(G) = 3. A complete clas-
sification of these groups was given by Hatui [7, Theorem 1.1]. We refer the reader to Theorem 4.1 for
the details and for the notation appearing in our next result.

Theorem 1.3. All non-singleton C-twist isomorphism classes of non-abelian groups of order pn and
generalized corank three are as follows:

1. φ3(211)a ∼C φ3(211)b1 ∼C φ3(211)brp ;
2. φ2(2111)c ∼C φ2(2111)d.

A proof of the above result is included in Section 4.

Remark 1.4. By [4], a group G of order pn is said to have corank t(G) if its Schur multiplier has order
p

n(n−1)
2 −t(G). A classification of all finite p-groups G with corank of G at most 6 is also known in literature,

see [1, 4, 21, 23, 29]. By definition, t(G) ≤ 6 for any non-abelian group G of order pn implies n ≤ 8 and
s(G) ≤ 5. Further, s(G) ∈ {4, 5} gives n ≤ 4. Therefore, our above description of C-twist isomorphism
classes along with the known results from literature also gives ∼C classes of groups with t(G) ≤ 6.

To prove Theorem 1.2, we use the following general result. This is a helpful tool to prove the C-twist
isomorphism between groups G1 and G2 and may be of an independent interest.

Theorem 1.5. Suppose G1 and G2 are two groups with isomorphisms δ : G′
1 → G′

2, σ : G1/G′
1 → G2/G′

2

and the following short exact sequences for i ∈ {1, 2}:

1 −→ Hom(G′
i, C

×)
trai−→ H2(Gi/G′

i, C
×)

infi−→ H2(Gi, C
×) −→ 1,

where trai and infi are the transgression and inflation homomorphisms. If δ̃ : Hom(G′
2, C×) →

Hom(G′
1, C×) and σ̃ : H2(G1/G′

1, C×) → H2(G2/G′
2, C×) are the induced isomorphisms such that the

Figure 1 is commutative, then G1 ∼C G2.
We refer the reader to Section 2 for the definition of transgression and inflation homomorphisms as

well as for a proof of the above result.

2. Preliminaries

In this section, we fix notation and include a few preliminary results that we use throughout this article.
We refer the reader to Karpilovsky [14] for most of the results included in this section.
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Let G be a finite group. Recall, for a group G, Z2(G, C×) consists of all functions f : G × G →C×

such that f (x, 1) = f (1, x) = 1 and f (x, y)f (xy, z) = f (x, yz)f (y, z) for all x, y, z ∈ G. We shall call ele-
ments of Z2(G, C×) as 2-cocycles (or sometimes just cocycles when it is clear from the context). Then
H2(G, C×) = Z2(G, C×)/B2(G, C×), where B2(G, C×) is the set of 2-coboundaries of G, is called the
second cohomology group of G or the Schur multiplier of G. The elements of H2(G, C×) are called the
cohomology classes of G. For an element α ∈ Z2(G, C×), the corresponding element of H2(G, C×) will
be denoted by [α]. For 2-cocycles α, β ∈ Z2(G, C×) we say α is cohomologous to β, whenever [α] = [β].

A central extension,

1 → A → G → G/A → 1 (2.1)

is called a stem extension, if A ⊆ Z(G) ∩ G′. For a given stem extension (2.1), the Hochschild-Serre
spectral sequence [10, Theorem 2, p. 129] yields the following exact sequence

1 → Hom(A, C×)
tra−→ H2(G/A, C×)

inf−→ H2(G, C×),

where tra : Hom(A, C×) → H2(G/A, C×) given by f → [tra(f )], where

tra(f )(x, y) = f (μ(x)μ(ȳ)μ(x̄y)−1), x, y ∈ G/A,

for a section μ : G/A → G, denotes the transgression homomorphism and the inflation homomorphism,
inf : H2(G/A, C×) → H2(G, C×) is given by [α] → [ inf (α)], where inf (α)(x, y) = α(xA, yA).

Let G be a finite group and V be a finite-dimensional complex vector space. A mapping ρ : G →
GL(V) is called a (finite-dimensional and complex) projective representation of G if thhere xists a
mapping α : G × G →C× such that

• ρ(x)ρ(y) = α(x, y)ρ(xy) for all x, y ∈ G,
• ρ(1) = IdV .

In this case, we say ρ is an α-representation of G on V . For α ∈ Z2(G, C×), we use Irrα(G) to denote
the set of equivalence classes of irreducible α-representations of G. For α = 1, we use Irr(G) instead of
Irrα(G) and call this the set of ordinary irreducible representations of G. For ρ ∈ Irr(G), at times, we shall
also omit the word “ordinary” and call ρ to be a representation of G. For α ∈ H2(G, C×), the complex
group algebra CαG is semisimple and

Cα[G] ∼=
∏

ρ∈Irrα (G)

Mdim (ρ)(C), (2.2)

where Mn(C) denotes the n × n matrix algebra over C. Hence, the information of projective represen-
tations of G is also helpful to study the twisted group algebra isomorphism problem. To this end, the
representation group (also called a covering group) of a group G will play an important role. We now
recall the definition of the representation group.

Definition 2.1. A group G∗ is called a representation group of the group G if the following conditions
are satisfied:

1. There exists a central extension 1 → A → G∗ → G → 1 such that Hom(A, C×) ∼= H2(G, C×).
2. For every projective representation ρ of G, thhere xists an ordinary representation ρ̃ of G∗ such

that ρ(g) = ρ̃(s(g)) for all g ∈ G and for some section s : G → G∗.

In [28], Schur proved that representation group of a finite group always exists (see also [14, Chapter 3
(Corollary 3.3)]). From above, it is clear that to determine the projective representations of a group G,
it is enough to determine a representation group of G (there may be many non-isomorphic ones) and its
ordinary representations. We now recall a result that elaborates the above correpondence between the
projective representations of G and the ordinary representations of G	.

https://doi.org/10.1017/S0017089524000041 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000041


Glasgow Mathematical Journal 5

Let N be a normal subgroup of G and χ ∈ Irr(N). Let Irr(G | χ ) denote the set of inequivalent ordinary
irreducible representations of G lying above χ , that is ρ ∈ Irr(G | χ ) if and only if HomN(ρ|N , χ ) is non-
trivial. The following well-known result relates the projective representations of G and the ordinary ones
of G	, see [14, Chapter 3, Lemma 3.1] and [8, Theorem 3.2] for its proof.

Theorem 2.2. Let α be a 2-cocycle of G. Let χ ∈ Hom(A, C×) be such that tra(χ ) = [α]. There is a
bijective correspondence between

Irrα(G) ↔ Irr(G	 | χ )

obtained via lifting a projective representation of G to an ordinary representation of G	. In particular,
we obtain the following:

⋃
[α]∈H2(G,C×)

Irrα(G) ↔ Irr(G	).

To understand the ordinary representations of a representation group, we also require a few general
results from the theory of the ordinary characters of a finite group. These results are usually known by
the name of Clifford’s theory and they provide an important connection between the complex represen-
tations of a finite group G and its normal subgroups. Recall that Irr(G), for a finite group G, denotes the
set of all inequivalent irreducible representations of G. For an abelian group A, we also use Â to denote
Irr(A) and call this to be the set of characters (or one-dimensional representations) of A. Let N be a
normal subgroup of G and ρ ∈ Irr(N) be an irreducible representation of N. The representation obtained
by inducing ρ from N to G will be denoted by IndG

N(ρ). We say ρ ∈ Irr(N) has an extension to G if thhere
xists ρ̃ ∈ Irr(G) such that ρ̃|N = ρ.

The group G acts on Irr(N) via conjugation action of G on N. For ρ ∈ Irr(N) and g ∈ G, define ρg ∈
Irr(N) by ρg(x) = ρ(gxg−1) for all x ∈ N. For ρ, ρ ′ ∈ Irr(N), we use ρ ∼= ρ ′ to denote that ρ and ρ ′ are
equivalent representations of N. For ρ ∈ Irr(N), let IG(ρ) = {g ∈ G| ρg ∼= ρ} denote the stabilizer (or the
inertia) group of ρ in G. We will use the following results of Clifford’s theory:

Theorem 2.3.

(i) ([11], Theorem 6.11) The map

θ → IndG
IG(ρ)(θ )

is a bijection of Irr(IG(ρ) | ρ) onto Irr(G | ρ).
(ii) ([11], Theorem 6.16) Let H be a subgroup of G containing N, and suppose that ρ is an irre-

ducible representation of N which has an extension ρ̃ to H. Then the representations δ⊗ ρ̃ for
δ ∈ Irr(H/N) are irreducible, distinct for distinct δ and

IndH
N (ρ) = ⊕δ∈Irr(H/N)δ

′ ⊗ ρ̃,

where δ′ is obtained by composing δ with the natural projection from H onto H/N.
(iii) ([11], Corollary 11.22) Suppose G/N is cyclic. Let ρ ∈ Irr(N) such that IG(ρ) = G. Then ρ has

an extension to G.

We conclude this section by including a proof of Theorem 1.5.

Proof of Theorem 1.5. Our goal is to define an isomorphism γ : H2(G2, C×) → H2(G1, C×) that gives
C-twist isomorphism between G2 and G1. It follows from [14, Theorem 2.9] and [8, Theorem 3.2] that
the projective representations of Gi are obtained from those of Gi/G′

i via inflation and

Cα[Gi] ∼=
∏

infi([β])=[α]

Cβ[Gi/G′
i]. (2.3)
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The map σ̃ is an induced isomorphism obtained from σ . Hence, Cβ[G1/G′
1] ∼=Cσ̃ (β)[G2/G′

2].
Therefore, it is sufficient to define an isomorphism γ : H2(G2, C×) → H2(G1, C×) such that Figure 1
is commutative. Indeed, such a γ is obtained by defining

γ ([α]) = inf1(σ̃ ([α0])) for [α] ∈ H2(G2, C
×),

where [α0] ∈ H2(G2/G′
2, C×) is any element such that inf2 ([α0]) = [α].

3. p-groups with s(G) ≤ 2

In this section, we study the C-twist isomorphism classes of p-groups with s(G) ≤ 2. We first deal with
the case of s(G) ∈ {0, 1}.

Proof of Lemma 1.1. Niroomand [22, Theorem 21, Corollary 23] proved the following classification
of finite non-abelian p-groups G with s(G) ∈ {0, 1}:

(a) s(G) = 0 if and only if G is isomorphic to H1
1 × C(n−3)

p .
(b) s(G) = 1 if and only if G is isomorphic to D8 × C(n−2)

2 or C(4)
p � Cp (p �= 2).

We remark that in [22], Niroomand uses the corank of a group G (denoted t(G)) instead of the gen-
eralized corank of G. We have used the well-known relation t(G) = s(G) + (n − 2) for any non-abelian
p-group G to use the results of [22]. We observe that among the groups mentioned in (a) and (b), thhere
xists at most one group for any given order and fixed s(G). Since both order and s(G) are invariant of
C-twist isomorphism, our result follows.

The rest of this section is devoted to the s(G) = 2 case.

Proposition 3.1.

(i) (a) E(2) × C(n−4)
p ∼C H2

1 × C(n−3)
p , for p �= 2

(b) E(2) × C(n−4)
2 ∼C Q8 × C(n−3)

2

(ii) (a) For n = 2m + 1 and m ≥ 2, H1
m × C(n−2m−1)

p ∼C H2
m × C(n−2m−1)

p

(b) For n ≥ 6 and m ≥ 2, E(2) × C(n−2m−2)
p ∼C H1

m × C(n−2m−1)
p ∼C H2

m × C(n−2m−1)
p .

Proof. We proceed to prove (i). The proof of (ii) is similar so we only give essential ingredients there
and omit the details.

(i)(a) For simplification of notations, we denote E(2) × C(n−4)
p and H2

1 × C(n−3)
p by G1 and G2,

respectively. The groups G1 and G2 have following presentations:

G1 =< x1, y1, z1, γ1, a1, a2, · · · an−4 | [x1, y1] = z1 = γ
p

1 , xp
1 = yp

1 = ap
i = 1, γ p2

1 = 1>

G2 =< x2, y2, z2, b1, · · · , bn−3 | [x2, y2] = xp
2 = z2, xp2

2 = yp
2 = zp

2 = bp
i = 1> .

Therefore, G′
i
∼= Cp and Gi/G′

i
∼= Cn−1

p for i ∈ {1, 2}. Also, in view of Proposition 1.3 of [14],

H2(Gi/G′
i, C

×) ∼= C
(n−1)(n−2)

2
p , H2(Gi, C

×) ∼= C
(n−1)(n−2)

2 −1
p .

This yields the following short exact sequences for i ∈ {1, 2}:
1 −→ Hom(G′

i, C
×)

trai−→ H2(Gi/G′
i, C

×)
infi−→ H2(Gi, C

×) −→ 1.

We now define δ : G′
1 → G′

2 and σ : G1/G′
1 → G2/G′

2 such that the Figure 1 is commutative. Define δ by
δ(z1) = z2 and σ by

σ (x1G′
1) = x2G′

2, σ (y1G′
1) = y2G′

2, σ (γ1G′
1) = bn−3G′

2, σ (aiG′
1) = biG′

2,

for all i ∈ {1, . . . , n − 4}. We now describe transgression maps for these groups.
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Define a section s1 : G1/G′
1 → G1 by

s1(x
i
1yj

1γ
k

1 ar1
1 · · · arn−4

n−4 G′
1) = xi

1yj
1γ

k
1 ar1

1 · · · arn−4
n−4

For u = xi
1yj

1γ
k

1 ar1
1 · · · arn−4

n−4 G′
1 and v = xi′

1 yj′
1γ

k′
1 a

r′
1

1 · · · a
r′
n−4
n−4G′

1, we have

s1(u)s1(v)s1(uv)−1 = γ
−pji′

1 .

Hence, a representative of [tra1(χ )] is given by tra1(χ )(u, v) = χ (z−ji′
1 ) for χ ∈ Hom(G′

1, C×). Define a
section s2 : G2/G′

2 → G2 by

s2(x
i
2y

j
2br1

1 · · · brn−3
n−3 G′

2) = xi
2yj

2br1
1 · · · brn−3

n−3

For u = xi
2yj

2br1
1 · · · brn−3

n−3 G′
2 and v = xi′

2 yj′
2 b

r′
1

1 · · · b
r′
n−3
n−3G′

2, we have

s2(u)s2(v)s2(uv)−1 = z−ji′
2 .

Therefore, a representative of [tra2(χ )] is given by tra2(χ )(u, v) = χ (z−ji′
2 ) for χ ∈ Hom(G′

2, C×). This
combined with the given isomorphisms δ and σ gives the commutativity of Figure 1. Now, the result
follows as a direct consequence of Theorem 1.5.

For (i)(b), proof is along the same lines as that of (i)(a) with only difference that Q8 × C(n−3)
2 has the

following presentation:

〈a, b, c, b1, · · · , bn−3 | a4 = 1, a2 = b2 = c, b−1ab = ca, b2
i = 1 ∀ 1 ≤ i ≤ (n − 3)〉.

We leave the rest of the details for the reader.
(ii) We denote the groups E(2) × C(n−2m−2)

p , H1
m × C(n−2m−1)

p and H2
m × C(n−2m−1)

p by Gm
1 , Gm

2 and Gm
3 ,

respectively. Note that if m �= m′, then for any i, j ∈ {1, 2, 3}, the complex group algebras of Gm
i and Gm′

j

are not isomorphic. Further, observe that for any m ≥ 2, the order of Gm
1 is pn such that n ≥ 6. Therefore,

for some n ≥ 6, if Gm
i is C-twist isomorphic to Gm′

j , then it implies that m = m′. Similarly, when n = 5,
a necessary condition for the C-twist isomorphism of Gm

1 and Gm′
2 is that m = m′. Therefore, from now

onwards, we fix m and prove the result.
The commutator subgroup of Gm

i is central and is isomorphic to Cp; and Gm
i /(G

m
i )′ ∼= C(n−1)

p . Further,

since for any i ∈ {1, 2, 3}, H2(Gm
i , C×) ∼= C

n2−3n
2

p , we get the following short exact sequences:

1 −→ Hom(G′
i, C

×)
trai−→ H2(Gi/G′

i, C
×)

infi−→ H2(Gi, C
×) −→ 1.

As in (i), the proof of C-twist isomorphism follows by considering the image of the trai for i ∈ {1, 2, 3}
and by proving the commutativity of Figure 1. This is obtained by using the following presentation of
groups Gm

i .

Gm
1 = < x1, · · · , xm, y1, · · · ym, z, γ , a1, a2, · · · an−2m−2 | [xi, yi] = z = γ p,

xp
i = yp

i = ap
i = 1, γ p2 = 1> .

Gm
2 = < x1, · · · , xm, y1, · · · ym, z, a1, a2, · · · , an−2m−1 | [xi, yi] = z,

xp
i = yp

i = ap
i = 1> .

Gm
3 = < x1, · · · , xm, y1, · · · ym, z, a1, a2, · · · , an−2m−1 | [xi, yi] = z = xp

m = yp
m,

xp
i = yp

i = zp = 1(1 ≤ i ≤ m − 1), ap
i = 1> .

Below we calculate tra1 explicitly and leave the details for tra2 and tra3 as those are similar. By the
given presentation of Gm

1 , we have (Gm
1 )′ =< γ p >. Define a section s : Gm

1 /(G
m
1 )′ → Gm

1 by

s(xi1
1 · · · xim

m yj1
1 · · · yjm

m γ
kar1

1 · · · arn−2m−2
n−2m−2(Gm

1 )′) = xi1
1 · · · xim

m yj1
1 · · · yjm

m γ
kar1

1 · · · arn−2m−2
n−2m−2

Note that for any two elements

u = xi1
1 · · · xim

m yj1
1 · · · yjm

m γ
kar1

1 · · · arn−2m−2
n−2m−2(Gm

1 )′, v = x
i′1
1 · · · xi′m

m y
j′1
1 · · · yj′m

m γ
k′

a
r′
1

1 · · · a
r′
n−2m−2
n−2m−2(Gm

1 )′
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of Gm
1 /(G

m
1 )′, we have s(u)s(v)s(uv)−1 = γ −p

∑m
l=1 jl i

′
l . Therefore, for any χ ∈ Hom((Gm

1 )′, C×), a represen-
tative of [tra1(χ )] is given by tra1(χ )(u, v) = χ (z− ∑m

l=1 jl i
′
l ). By a similar computation of tra2 and tra3, we

obtain that for all i ∈ {1, 2, 3}, the groups Gm
i pairwise satisfy the hypothesis of Theorem 1.5 and hence

are C-twist isomorphic.

We now complete the details regarding the C-twist isomorphism classes for p-groups with s(G) = 2.

Proof of Theorem 1.2. It follows from [24, Theorem 11] that for any fixed p, thhere xists only one
p-group of order p3 with s(G) = 2 and so it forms a singleton C-twist class. We now consider cases when
n ≥ 4.

n = 4: Any group of order p4 with s(G) = 2 is isomorphic to one of the following:

• E(2)
• H2

1 × Cp, p �= 2
• Q8 × C2

• 〈a, b | a4 = 1, b4 = 1, [a, b, a] = [a, b, b] = 1, [a, b] = a2b2〉
• 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉
• 〈a, b | ap2 = 1, bp = 1, [a, b, a] = [a, b, b] = 1〉
• 〈a, b | a9 = b3 = 1, [a, b, a] = 1, [a, b, b] = a6, [a, b, b, b] = 1〉
• 〈a, b | ap = 1, bp = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1〉 (p �= 3).

Here, the group 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉 is isomorphic to E(2). As mentioned in
Theorem 4.3 in [17], any non-singleton C-twist isomorphism class of groups of order p4 consists of two
groups, when p = 2; and of three groups, when p is an odd prime. Thus, comparing with the groups
given in Tables 3 and 4 in [17], we obtain the following non-singleton C-twist isomorphism classes of
groups of order p4 with generalized corank 2:

• Q8 × C2 ∼C E(2), when p = 2
• E(2) ∼C H1

1 × Cp ∼C 〈a, b | ap2 = 1, bp = 1, [a, b, a] = [a, b, b] = 1〉, when p is odd.

Thus, each of the remaining groups of order p4 in the above list constitutes a C-twist isomorphism class
of size 1.

n ≥ 5: Any group of order pn with n ≥ 5 and s(G) = 2 is isomorphic to one of the following:

• E(2) × C(n−2m−2)
p

• H2
1 × C(n−3)

p , p �= 2
• Q8 × C(n−3)

2

• H1
m × C(n−2m−1)

p

• H2
m × C(n−2m−1)

p

• Cp × (C4
p �θ Cp), p �= 2.

The derived subgroup of Cp × (C4
p �θ Cp), p �= 2 is of order p2; whereas the derived subgroup of the

rest of the groups in the above list is of order p. Therefore, by comparing the complex group algebras,
we obtain that for a fixed odd prime p, the group Cp × (C4

p �θ Cp) forms a singleton C-twist isomor-
phism class. Finally, Proposition 3.1 completes the classification of the rest of the groups into C-twist
isomorphism classes.

4. p-groups with s(G) = 3

In this section, we proceed with the determination of the C-twist isomorphism classes of the p-groups
with s(G) = 3. The following result, using the notations of [12], gives a complete list of p-groups with
s(G) = 3.
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Theorem 4.1. ([7], Theorem 1.1) Let G be a non-abelian p-group of order pn with s(G) = 3. Let rp be
the smallest positive integer which is a non-quadratic residue mod (p).

(a) For an odd prime p, G is isomorphic to one of the following groups:

(i) φ2(22) = 〈α, α1, α2 | [α1, α] = αp = α2, α
p2

1 = α
p
2 = 1〉

(ii) φ3(211)a = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = αp = α3, α(p)
1 = α

p
2 = α

p
3 = 1〉

(iii) φ3(211)br = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α]r = α
(p)
1 = αr

3, αp = α
p
2 = α

p
3 = 1〉, where r is

either 1 or rp.
(iv) φ2(2111)c = φ2(211)c × Cp, where φ2(211)c = 〈α, α1, α2 | [α1, α] = α2, αp2 = α

p
1 = α

p
2 = 1〉

(v) φ2(2111)d = ESp(p3) × Cp2

(vi) φ3(15) = φ3(14) × Cp, where φ3(14) = 〈α, α1, α2, α3 | [αi, α] = αi+1, αp = α
(p)
i = α

p
3 = 1 (i =

1, 2)〉
(vii) φ7(15) = 〈 α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3, αp = α

(p)
1 = α

p
i+1 = βp = 1 (i = 1, 2)〉

(viii) φ11(16) = 〈 α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2, α(p)
i = β

p
i (i =

1, 2, 3)〉
(ix) φ12(16) = ESp(p3) × ESp(p3)
(x) φ13(16) = 〈α1, α2, α3, α4, β1, β2 | [α1, αi+1] = βi, [α2, α4] = β2, αp

i = α
p
3 = α

p
4 = β

p
i = 1(i =

1, 2)〉
(xi) φ15(16) = 〈α1, α2, α3, α4, β1, β2 | [α1, αi+1] = βi, [α3, α4] = β1, [α2, α4] = β

g
2 , αp

i = α
p
3 =

α
p
4 = β

p
i = 1(i = 1, 2)〉, where g is the smallest positive integer, which is a primitive root

modulo p
(xii) (C(4)

p � Cp) × C2
p.

(b) For p = 2, G is isomorphic to one of the following groups:

(xiii) C4
2 � C2

(xiv) C2 × ((C4 × C2) � C2)
(xv) C4 � C4

(xvi) D16, the dihedral group of order 16.

As mentioned earlier, the C-twist isomorphism classes of the groups of order p4 were described by
Margolis-Schnabel [17]. We now consider the groups of order p5 with s(G) = 3. Let H1 and H2 denote
the groups φ2(2111)d and φ2(2111)c, respectively. We proceed to prove that H1 and H2 are C-twist
isomorphic. We use the following general result to prove this.

Lemma 4.2. Let G1 and G2 be two finite groups with G̃1 and G̃2 as their representation groups,
respectively. For i ∈ {1, 2}, let Ai be a central subgroup of G̃i such that G̃i/Ai

∼= Gi and the transgres-
sion maps trai : Hom(Ai, C×) → H2(Gi, C×) are isomorphisms. Let σ : Hom(A1, C×) → Hom(A2, C×)
be an isomorphism such that the following sets are in a dimension preserving bijection for every
χ ∈ Hom(A1, C×):

Irr(G̃1 | χ ) ↔ Irr(G̃2 | σ (χ )).

Then G1 and G2 are C-twist isomorphic.

Proof. Consider the following diagram:

Hom(A1, C× ) H2(G1, C× )

Hom(A2, C× ) H2(G2, C× ).

tra1

tra2

s
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Define σ̃ : H2(G1, C×) → H2(G2, C×) by σ̃ (tra1(χ )) = tra2(σ (χ )) for χ ∈ Hom(A1, C×). It is easy to
see that σ̃ is a group isomorphism. By Theorem 2.2, the dimension preserving bijection

Irr(G̃1 | χ ) ↔ Irr(G̃2 | σ (χ ))

for any χ ∈ Hom(A1, C×) gives

Cα1 [G1] ∼=Cα2 [G2],

where [α1] = tra1(χ ) and [α2] = tra2(σ (χ )). Therefore, σ̃ gives the required C-twist isomorphism
between G1 and G2.

Note that H1 = E1 × Cp2 and H2 = 〈α, α1, α2 | [α1, α] = α2, αp2 = α
p
1 = α

p
2 = 1〉 × 〈α3〉. Define the

following groups:

H̃1 = 〈α1, α2, α3, α4, x, y, z, α | [x, y] = z, [x, z] = α1, [y, z] = α2,

[x, α] = α3, [y, α] = α4, xp = yp = zp = α
p
i = αp2 = 1〉.

and

H̃2 = 〈x, y, z, w, α, α1, α2, α3 | [α1, α] = α2, [α1, α2] = x, [α, α2] = y,

[α3, α1] = z, [α3, α] = w, αp2 = α
p
i = xp = yp = zp = wp = 1〉.

Lemma 4.3. The groups H̃1 and H̃2 are representation groups of H1 and H2, respectively.

Proof. Here, we give a proof for H1. The proof for H2 is along the same lines so we omit that part.
The group H1 has the following presentation:

H1 = 〈x, y, z, α | [x, y] = z, xp = yp = αp2 = 1〉.
Consider the projection map from H̃1 onto H1 obtained by mapping x, y, z, α to x, y, z, α, respectively,
and all αi to 1. Let K1 be the kernel of this projection map. Then |K1| = |H2(H1, C×)| = p4 and K1 ⊆
Z(H̃1) ∩ [H̃1, H̃1]. Therefore, by [14, Theorem 3.7 (Chapter 3)], H̃1 is a representation group of H1.

Proposition 4.4. The groups H̃1 and H̃2 satisfy the following:

C[H̃1] ∼=C[H̃2] ∼=C⊕p4 ⊕ (Mp(C))⊕(p3+4p2−p+1)p2(p−1) ⊕ (Mp2 (C))⊕p3(p−1)3(p+2).

Furthermore, for the subgroups A = 〈α1, α2, α3, α4〉 and B = 〈x, y, z, w〉 of H̃1 and H̃2 respectively, the-
here ists an isomorphism σ : Â → B̂ such that the following sets are in a dimension preserving bijection
for every χ ∈ Â:

Irr(H̃1 | χ ) ↔ Irr(H̃2 | σ (χ )).

Proof. Representations of H̃1: We first justify the representations of H̃1. By the definition of H̃1, the
derived subgroup of H̃1 (denoted H̃

′
1) is 〈α1, α2, α3, α4, z〉 and the center of H̃1 is 〈α1, α2, α3, α4, αp〉. By

considering the quotient group H̃1/H̃
′
1, we obtain that H̃1 has exactly p4 one-dimensional representations.

We next consider the abelian normal subgroup N = 〈α1, α2, α3, α4, α, z〉 of H̃1. The group N has
order p7. By Frobenius reciprocity and Theorem 2.3, every irreducible representation of H̃1 has dimen-
sion either 1, p or p2. We have already justified all one-dimensional representations of H̃1. Our next goal
is to determine all p and p2 dimensional representations of H̃1.

Let χ ∈ Irr (N) such that χ (α1) = ξ i1 , χ (α2) = ξ i2 , χ (α3) = ξ i3 and χ (α4) = ξ i4 , where ξ is a primitive
pth root of unity and 0 ≤ i1, i2, i3, i4 ≤ (p − 1). We determine the stabilizer (or inertia group) of χ in
H̃1, denoted by IH̃1 (χ ). Recall from Section 2, IH̃1 (χ ) = {g ∈ H̃1 | χ g = χ}. By definition of IH̃1 (χ ), N ≤
IH̃1 (χ ). We will obtain the following information from |IH̃1 (χ )| and by the virtue of Theorem 2.3.
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1.
∣∣∣ IH̃1

(χ )

N

∣∣∣ = 1 implies every ρ ∈ Irr(H̃1 | χ ) satisfies dim (ρ) = p2.

2.
∣∣∣ IH̃1

(χ )

N

∣∣∣ = p implies every ρ ∈ Irr(H̃1 | χ ) satisfies dim (ρ) = p.

3.
∣∣∣ IH̃1

(χ )

N

∣∣∣ = p2 implies every ρ ∈ Irr(H̃1 | χ ) satisfies dim (ρ) ∈ {1, p}.
As we already have information regarding dimension one representations, we will easily obtain the rest
of the information regarding C[H̃1] from the description of IH̃1 (χ ). Consider g = xiyjn, with n ∈ N and
i, j ∈ {0, 1, . . . , p − 1}. Recall that every m ∈ N satisfies m = αezf h for some h ∈ Z(H̃1). Therefore, we
have

χ xiyj
(αezf h) = χ (αezf h)

if and only if χ (xiyjαezf y−jx−i) = χ (αezf ). Since

xi(yjαe)zf y−jx−i = xi(αeyjα
je
4 )zf y−jx−i = αexiαie

3 yjα
je
4 zf y−jx−i

= αexiyjzf y−jx−iαie
3 α

je
4 = αexizf yjα

jf
2 y−jx−iαie

3 α
je
4

= αezfα
if
1 α

jf
2 α

ie
3 α

je
4 ,

we obtain that xiyjn ∈ IH̃1 (χ ) if and only if χ (αif
1 α

jf
2 α

ie
3 α

je
4 ) = 1. This is equivalent to saying that

ξ i1if +i2jf +i3ie+i4je = 1.
We now consider various cases of irreducible representations of N. Note that in each of the cases

discussed below, all the computations for i and j are done modulo p.

• Case I: Consider χ ∈ Irr(N) such that i1 = i2 = i3 = i4 = 0. These are exactly p3 in number.
Among these there are p2 characters which act trivially on z and hence on H̃

′
1. These give p4

one-dimensional characters of H̃1. The other (p3 − p2) characters of N, by Theorem 2.3, of this
case give irreducible characters of H̃1 of dimension p and therefore we obtain p4 − p3 many
characters of H̃1 of dimension p.

• Case II: When any three of i1, i2, i3, i4 are 0 and the fourth one is non-zero, then g = xiyjn ∈
IH̃1 (χ ) if and only if either i or j is 0. Thus, |IH̃1 (χ )| = p8.

• Case III: When any two of i1, i2, i3, i4 are 0 and the other two are non-zero, then i is a non-zero
multiple of j or one of them is zero and other can take any value. Hence, |IH̃1 (χ )| = p8.

• Case IV: When any three of i1, i2, i3, i4 are non-zero and the fourth one is 0, then i = j = 0 and
hence IH̃1 (χ ) = N.

• Case V: Assume that each it, where t ∈ {1, 2, 3, 4}, is non-zero. When f = 0 and e = 1, i = −i4j
i3

;

and when e = 0 and f = 1, i = −i2j
i1

. Therefore, −i4j
i3

= −i2j
i1

, which holds if and only if (i4i1 −
i2i3)j = 0. Now if i4i1 �= i2i3, then i = j = 0 and hence IH̃1 (χ ) = N.
Here, note that (p − 1)3 many characters of N satisfy i4i1 = i2i3 and their inertia group is of
order p8. Thus, the remaining ((p − 1)4 − (p − 1)3) characters have inertia group N.

Considering the case of (p7 − p3) many characters of N, discussed in Cases II-V, the inertia group of
p3(p − 1)3(p + 2) characters is N, and for the other p3(p − 1)(p2 + 4p − 1) characters, it is of order p8.
Hence, we obtain the following description of the group algebra of H̃1.

C[H̃1] ∼=C⊕p4 ⊕ (Mp(C))⊕(p3+4p2−p+1)p2(p−1) ⊕ (Mp2 (C))⊕p3(p−1)3(p+2).

Representations of H̃2: We have H̃
′
2 = 〈x, y, z, w, α2〉 and Z(H̃2) = 〈αp, x, y, z, w〉. Clearly, there are

exactly p4 number of linear characters of H̃2. Consider the subgroup

M = 〈α2, α3, x, y, z, w, αp〉
of H̃2. This is an abelian normal group of order p7. Let χ ∈ Irr(M) such that χ (x) = ξ i1 , χ (y) = ξ i2 ,
χ (z) = ξ i3 , and χ (w) = ξ i4 , where ξ is a primitive pth root of unity and 0 ≤ i1, i2, i3, i4 ≤ (p − 1). Let
g = αiα

j
1m, where m ∈ M, be an element of IG(χ ). Therefore, for any m′ = αk

2α
l
3h ∈ M, where h ∈ Z(H̃1),
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we have χαiα
j
1 (αk

2α
l
3h) = χ (αk

2α
l
3h). Computations, similar to H̃1, yield that g ∈ IH̃2 (χ ) if and only if

ξ i1jk+i2ik+i3(−jl)+i4(−il) = 1 and hence the following cases arise:

• Case I: When any three of i1, i2, i3, i4 are 0 and the fourth one is non-zero, then either i or j is
0. Thus, |IH̃2 (χ )| = p8.

• Case II: When any two of i1, i2, i3, i4 are 0 and the other two are non-zero, then i is a non-zero
multiple of j or one of them is zero and other can take any value. Hence, |IH̃2 (χ )| = p8.

• Case III: When any three of i1, i2, i3, i4 are non-zero and the fourth one is 0, then i = j = 0 and
hence IH̃2 (χ ) = M.

• Case IV: Assume that each it, where t ∈ {1, 2, 3, 4}, is non-zero. When l = 0 and k = 1, i =
−i1j

i2
; and when k = 0 and l = 1, i = −i3j

i4
. Therefore, −i3j

i4
= −i1j

i2
, which holds if and only if (i4i1 −

i2i3)j = 0. Now if i4i1 �= i2i3, then i = j = 0 and hence IG(χ ) = M. On the other hand, if i4 = i2i3
i1

,
then |IG(χ )| = p8.
Therefore, in this case the inertia group of (p − 1)3 many characters is of order p8 and for the
remaining ((p − 1)4 − (p − 1)3) characters it is M.

Similar to the proof of H̃1, all the above cases along with Theorem 2.3 give

C[H̃2] ∼=C⊕p4 ⊕ (Mp(C))⊕(p3+4p2−p+1)p2(p−1) ⊕ (Mp2 (C))⊕p3(p−1)3(p+2).

We now proceed to define required isomorphism σ : Â → B̂. For this, define an isomorphism σ ′ : A → B
by σ ′(α1) = x, σ ′(α2) = y, σ ′(α3) = z, σ ′(α4) = w. This defines an isomorphism, denoted by σ , between Â
and B̂. From above discussion, by considering various cases of ij for j ∈ {1, . . . , 4}, we obtain a dimension
preserving bijection between the following sets for every χ ∈ Â:

Irr(H̃1 | χ ) ↔ Irr(H̃2 | σ (χ )).

Proposition 4.5. The groups H1 and H2 are C-twist isomorphic.

Proof. This follows from Lemmas 4.2, 4.3 and Proposition 4.4.

Lemma 4.6. C[φ3(15)] �C[φ7(15)].

Proof. It follows from the presentations of φ3(15) and φ7(15) that the nilpotency class of both the
groups is 3. Now, consider the abelian normal subgroup N1 = 〈α1, α2, α3, β〉 of φ3(15). Since it is of
index p, each irreducible representation of φ3(15) is of dimension at most p.

Now note that the derived subgroup of φ7(15) is 〈α2〉 × 〈α3〉 and its center is 〈α3〉. Consider the
abelian normal subgroup N2 = 〈α1, α2, α3〉 of φ7(15). Let χ ∈ Irr(N2) such that χ (α1) = ζ i1 , χ (α2) = ζ i2

and χ (α3) = ζ i3 , where ζ is a primitive p-th root of unity and 0 ≤ i1, i2, i3 ≤ (p − 1). Assume that for
some 0 ≤ i, j ≤ p − 1, αiβ j stabilizes χ . Let αa

1α
b
2α

c
3 ∈ N2.

Since the group φ7(15) is of nilpotency class 3,

αi(β jαa
1)αb

2α
c
3β

−jα−i = αiαa
1β

jαb
2β

−jα−iα
c−aj
3

= α−ai
2 αa

1α
iβ jαb

2β
−jα−iα

c−aj−a( i
2)

3

= αa
1α

b−ai
2 α

−ib+c−aj−a( i
2)

3 = αa
1α

b
2α

c
3α

−ai
2 α

−ib−aj−a( i
2)

3 .

Thus, αiβ j stabilizes χ if, and only if, ζ−aii2−(ib+aj+a( i
2))i3 = 1. When i2 = 0 and i3 �= 0, then for a = 0

and b = −1
i3

, we have ζ i = 1; which implies that i = 0. Further, a = −1
i3

(note that i3 is invertible modulo
p) gives ζ j = 1. Hence, j = 0 and it follows that the inertia group of χ in φ7(15) is N2. Therefore, by
Theorem 2.3, the character of φ7(15) induced from χ is irreducible of degree p2. Since φ3(15) has no

https://doi.org/10.1017/S0017089524000041 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000041


Glasgow Mathematical Journal 13

irreducible representations of dimension p2, the complex group algebras of φ3(15) and φ7(15) are not
isomorphic.

Proof of Theorem 1.3. From Theorem 4.1, it is clear that every p-group with s(G) = 3 has order pn where
n ∈ {4, . . . , 7}.

In the following, we separately consider the cases of n with 4 ≤ n ≤ 7:

n = 4. For the proof of this case, one can refer to [17, Theorem 4.3].

n = 5. When p is an odd prime, it follows from Theorem 4.1 that the only groups of order p5 with s(G) = 3
are φ3(15), φ7(15), H1 and H2. The derived subgroups of φ3(15) and φ7(15) are elementary abelian of
order p2 and of H1 and H2 are of order p. Thus, the groups φ3(15) and φ7(15) have p3 linear characters;
whehere H1 and H2 have p4 linear characters. Therefore, no group in the set {φ3(15), φ7(15)} can be C-
twist isomorphic to any group in {H1, H2}. Now it follows from Lemma 4.6 and Proposition 4.5 that in
this case the only non-singleton C-twist isomorphism class is constituted by H1 and H2.

When p = 2, T1 = C4
2 � C2 and T2 = C2 × ((C4 × C2) � C2) are the only two 2-groups of order 32 that

have generalized corank 3. The GAP ID of these groups is [32,27] and [32,22] and it can be checked
using GAP [5] that the size of the derived subgroup of T1 is 4 and that of T2 is 2. Thus, the complex
group algebras of these groups are not isomorphic and hence each of these groups constitutes a singleton
C-twist isomorphism class.

n = 6. The groups of order p6 with s(G) = 3 are φ11(16), φ12(16), φ13(16) and φ15(16). Note that the size
of the commutator subgroup of φ11(16) is p3 and of the rest of the groups is p2.

It can be checked that φ12(16) = ESp(p3) × ESp(p3) has 2p2(p − 1) inequivalent irreducible representa-
tions of dimension p and (p − 1)2 of dimension p2. Further, it follows from [12, Table 4.1] that φ13(16) has
(p3 − p2) representations of dimension p; whereas φ15(16) has no representation of dimension p. Thus,
the complex group algebras of the groups of order p6 with generalized corank 3 are not isomorphic. It
establishes the desired result.

n = 7. There is a unique group of order p7 with s(G) = 3 which is isomorphic to C(4)
p � Cp × C2

p.
Therefore, it constitutes a singleton C-twist isomorphism class.
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