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Recent findings on the Reynolds-number-dependent behaviour of near-wall turbulence
in terms of the ‘foot-printing’ of outer large-scale structures call for a new modelling
development. A two-scale framework was proposed to couple a local fine-mesh solution
with a global coarse-mesh solution by He (Int#/ J. Numer. Meth. Fluids, vol. 86, 2018, pp.
655-677). The methodology was implemented and demonstrated by Chen & He (J. Fluid
Mech, vol. 933,2022, p. A47) for a canonical turbulent channel flow, where the mesh-count

scaling with Reynolds number is potentially reduced from O(Re?) for a conventional
wall-resolved large-eddy simulation (WRLES) to O(Re'). The present work extends the
two-scale method to turbulent boundary layers. A two-dimensional roughness element
is used to trip a turbulent boundary layer. It is observed that large-scale disturbances
originating at the trip have a much shorter lifetime and weaker foot-printing signatures
on near-wall flow compared to those long streaky coherent structures in well-developed
wall-bounded turbulent flows. Modal analyses show that the impact of trip-induced large
scales can be adequately captured by a locally embedded fine-mesh block. For the tripped
turbulent boundary layer, a Chebyshev block-spectral mapping is adopted to propagate
source terms from the local fine-mesh blocks to the global coarse-mesh domain, driving
to a target solution for the upscaled equations. The computed mean statistics and energy
spectra are in good agreement with corresponding experimental data, WRLES and direct
numerical simulation (DNS) results. The overall mesh count—Re scaling is estimated to

reduce from O(Re!-®) for the full wall-resolved LES to O(Re"?) for the present two-scale
solution.
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1. Introduction
1.1. General background

Numerical simulations of wall-bounded turbulent flows are challenging due to the wide
range of length scales involved, from very large eddies away from the wall down to
very small Kolmogorov scales in the near-wall region, where the required resolution is
the highest attributed to the spatial and temporal micro-scales (Moin 1997; Jimenez &
Moser 2000). The near-wall region is thus the focus regarding computational costs for
wall-bounded turbulent flows. A higher Reynolds number will result in a more disparate
scale difference. As a result, the mesh count needed to resolve all scales of turbulence,
as in a direct numerical simulation (DNS), scales with the Reynolds number as O(Re?)
(Jimenez 2003). For a large-eddy simulation (LES) which filters out the small scales to be
modelled, the required mesh count still scales up and increases with the Reynolds number
as O(Re?) (Mizuno & Jiménez 2013), and thus is still too expensive for many practical
engineering applications.

A prevalent framework to reduce the overall computational cost for simulations
takes advantage of the near-wall ‘universal’ behaviour where turbulence behaves in a
self-sustained ‘autonomous’ manner. The underlying wisdom promotes a hybrid approach
to couple the near-wall modelled Reynold-averaged Navier—Stokes (RANS) part with the
scale-resolving outer flow (Spalart et al. 1997; Cabot & Moin 2000; Piomelli & Balaras
2002; Spalart 2009; Larsson et al. 2015; Bose & Park 2018). However, the significant
findings recently made in understanding wall-bounded turbulent flows challenge the
existing modelling approaches. The near-wall turbulence characteristics are revealed
not to be completely ‘universal’, but instead are Reynolds-number-dependent with the
“footprints’ of large-scale coherent structures of the outer flow region, which are also
‘modulated’ in the near-wall region (Hutchins & Marusic 2007; Jimenez 2013; Lee &
Moser 2015).

A distinctive alternative approach the authors adopt is the two-scale methodology
(He 2018; Chen & He 2022). The method is to couple a locally embedded near-wall
fine-mesh DNS block (or a small number of blocks) with a global coarser mesh domain.
The influence of large-scale structures on the local fine-mesh block is captured with a
scale-dependent coarse—fine mesh interface treatment originated by He (2018), so that the
local fine-mesh region can receive the large-scale signals from the global coarse-mesh
domain. The global under-resolved near-wall coarse-mesh region outside the local
fine-mesh block is governed by the augmented flow governing equations with additional
source terms. The source terms are generated by upscaling the target space—time-averaged
solution within the locally embedded fine-mesh block. The two-scale methodology has
been implemented, verified and demonstrated in the canonical channel flow by Chen &
He (2022) where the mesh-count scaling with Reynolds number is potentially reduced
from O(Re?) for the full wall-resolved LES to O(Re') for the two-scale solutions.

Given the homogeneity in both streamwise and spanwise directions as the basic
limitation of the canonical channel flow, it will be naturally of interest to examine and
demonstrate the feasibility of the two-scale method for a spatially developing flow. The
present work is therefore focused on extending the two-scale method to a turbulent
boundary layer. There are two related major issues to be addressed. First, how do we start a
turbulent boundary layer (TBL) with clearly and consistently applied inflow conditioning?
Second, how can we properly implement the two-scale method in the spatially developing
boundary layer to achieve a substantial computational performance gain through enacting
and taking advantage of the local fine-mesh solutions?
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1.2. Inflow conditioning for turbulent boundary layer

The pre-requisite to numerically studying the TBL flow is to have a properly started
turbulent flow regime. A popular way to avoid a much-too-long transition route from
laminar to turbulent (Sillero, Jimenez & Moser 2013) is to recycle and rescale the
downstream characteristics to generate synthetic turbulent inflow conditions (Lund, Wu
& Squires 1998). In so doing, the aimed Reynolds number can be reached efficiently
with the inflow turbulent profile rescaled from downstream. However, these forms of
non-physical approximation introduce a certain level of arbitrariness. The artificial inflow
does not reveal the true history of turbulence development, instead, it depends on the
future evolution from which it itself should start (Schlatter & Orlu 2010). Other synthetic
inflow generation methods include those built on theoretical properties of a well-developed
wall-bounded turbulent flow (Kraichnan 1970) and empirical information (Jarrin et al.
2006; Adler er al. 2018). After all, these methods all facilitate efficient calculations in
truncated domains, whilst they lack physical coherence and usually require a long distance
for the artificial history effects to be sufficiently diminished.

Schlatter & Orlu (2012) introduced an artificial tripping method with a function
constructed to exert a volume forcing to trigger a rapid transition. By tuning the
representative parameters, a fully developed boundary layer may be generated seemingly
almost immediately after the trip, with ‘optimal configurations’ (Hutchins 2012). On the
one hand, the optimal tripping in numerical simulations, unlike real-life experiments,
takes advantage of the synthetic nature to minimize the spatial length for developing to
a fully equilibrium turbulence boundary layer. On the other hand, the optimised tripping
function is based on a ‘collective history’ through the tuning procedure instead of a
true development history from which the flow is physically transitioned. Therefore, the
artificial tripping may not easily correspond to specific set-ups, and thus lack general
transferability and comparability with experimental studies. In addition, there is little
chance for the optimal tripping to be linked to many practical situations where the
corresponding boundary layer flows cannot be idealised as a fully developed boundary
layer in an equilibrium state. In fact, an under-developed non-equilibrium TBL may well
affect a considerable part of the flow field with a non-negligible impact on aerodynamics
performance (e.g. Wheeler, Dickens & Miller 2018). It is recognised that generating
effective artificial inflow conditions is needed for studying a fully developed TBL at
a high Reynolds number in a truncated domain. The emphasis in the present work,
however, is on exploring an easily implementable physical tripping method to cover also
a non-equilibrium part of the TBL leading to a fully developed equilibrium one with
reasonable controllability and comparability to physical experiments.

It is noted that in many experimental studies and practical applications, a forced bypass
transition has been widely explored and relevant experience has been established based
on carefully designed trips for the TBL development. The influence of the different
tripping devices including wires, grits, and pins on the downstream turbulent regime is
scrutinised by Erm & Joubert (1991). Some rather simple tripping devices, for instance
two-dimensional (2-D) simple step roughness elements, have proved to be quite successful
(Klebanoff & Tidstrom 1972). It is worth noticing that in contrast to many previous
experimental studies, very few efforts (e.g. Boudet, Monier & Gao 2015) have attempted
to resolve properly physical trips in numerical simulations for TBL inflow generation. For
wall-resolved LES, it is recognised that the mesh resolution in the near-wall region should
approach that of a DNS (Moin 1997; Jimenez & Moser 2000). In this context, one wonders
if and how much extra computational resource would be required to fully resolve a local
tripping element. We would thus like to, first of all, examine how fine the local mesh
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should be to properly resolve a tripping element, particularly in comparison to a typical
mesh required for a scale-resolving turbulent boundary layer solution at a similar Reynolds
number.

Another relevant aspect of inflow conditioning is the physical behaviour and impact of
those tripping-induced large-scale disturbances. Related issues are where in a boundary
layer these large-scale disturbances reside, how they evolve streamwise and if they
influence the near-wall turbulent flow development. These issues are particularly of
interest in the light of the ‘foot-printing’ of large-scale coherent structures in outer
flow (log-law region) on the near-wall region for well-developed wall-bounded turbulent
flows. An overly disturbed boundary layer with a trip of large size can lead to rather
persistent large structures in an outer flow region much further downstream of a TBL, as
experimentally observed by Marusic et al. (2015). The sizing of the tripping element thus
deserves attention. In general, it would be of interest to see how those tripping-induced
large-scale disturbances behave in comparison to those outer flow coherent structures
in a well-developed TBL. More specifically, would the tripping-induced large-scale
disturbances ‘footprint’ on the corresponding near-wall turbulence?

1.3. Two-scale method with locally embedded fine-mesh blocks

The long-standing wisdom of the autonomous behaviour of the ‘universal’” inner layer has
promoted an interest to explore the possibility to reduce the mesh count for scale-resolving
turbulent flow simulations by adopting local fine-mesh blocks. Previous efforts include
those placing a small locally truncated domain in the near-wall region, often called the
‘minimum flow unit’ (MFU), as adopted by Pascarelli, Piomelli & Candler (2000), Tang &
Akhavan (2016), Sandham, Johnstone & Jacobs (2017), Carney, Engquist & Moser (2020).

It must be pointed out however that all previous MFU methods are strictly limited by the
spatial periodic condition applied for the MFU domain in the two wall-parallel directions.
The periodicity of the MFU unit length is profoundly incompatible with the prevalent
“foot-printing’ of large scales from the outer flow on the near-wall flow. The large-scale
structures are inevitably truncated by the domain lengths of the MFU. In relation to the
common limit of the previous MFU methods, the distinctive scale-dependent interface
treatment in the original two-scale framework (He 2018) becomes particularly relevant.
As illustrated by Chen & He (2022) for a canonical channel flow, the scale-dependent
interface treatment enables the large scales to directly pass through the interface, so
that the ‘foot-printing’ can now be captured in the local near-wall fine-mesh block. The
well-resolved local fine-mesh domain subject to well-captured ‘footprints’ then provides a
much more suitable base on which the source terms can be generated to correct the global
under-resolved coarse-mesh domain.

The locally embedded fine-mesh solution, as a key part of the two-scale framework,
should naturally lend itself to a tripped turbulent boundary layer. In terms of the locality
of the fine-mesh blocks in relation to the coarse-mesh domain, considerations need to be
given to the two parts of the domain: first for the tripping itself and second for the tripped
turbulent boundary layer. The roughness-induced bypass transition results from the forced
generation of flow instabilities (Wu, Christensen & Pantano 2019; Kadivar, Tormey &
McGranaghan 2021). The process involves the formation of vortical structures which will
eventually break down and evolve into hairpin-type smaller-scale vortices in the turbulent
regime (Brinkerhoff & Yaras 2011). The early stage of instability involves the growth of
flow separation-associated vortical structures over the tripping element. Therefore, it is
necessary to locally resolve the associated flow instabilities at different frequencies. A
local fine-mesh block can be conveniently embedded around the tripping element to cover
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the transitional part, while the bulk flow can be efficiently resolved on a coarser base mesh.
For a 2-D tripping element, the embedded fine-mesh block may potentially be truncated
in the spanwise direction. The sensitivity of the predicted tripping to the span size of the
fine-mesh block should thus be examined with the present two-scale method.

In contrast to a tripped boundary layer, for a canonical channel flow, the local solution
can be directly mapped to the global coarse-mesh due to the global homogeneity in
the two wall-parallel directions for the time-averaged flow, as illustrated previously by
Chen & He (2022). Now for a tripped 2-D TBL, the global homogeneity still lies in the
spanwise direction, while in the streamwise direction, only a ‘local’ homogeneity exists
due to the smooth variation of the time-averaged flow. The local source terms could be
analogously generated from the space—time averaged fine-mesh solution. These source
terms are amendable to a spectral propagation to accommodate the global streamwise
inhomogeneity. Chebyshev and Fourier spectral methods have been widely used in solving
differential equations and many other applications of data interpolations (Boyd 2000).
The block-spectral (BS) method is applied to inhomogeneous micro-structured surfaces
(He 2018; Kapsis et al. 2020), based on Fourier spectral mapping. The Chebyshev method
built on the polynomial group is preferred in the present work for the source-term spectral
mapping without requiring any special periodicity.

1.4. Overall work scope and structure of the paper

As an extension of Chen & He (2022), the overall objective of the present work is to
develop, validate and demonstrate a new approach to simulating TBL with equivalent
accuracy to wall-resolved LES but at a much lower computational cost, manifested in
terms of the mesh count—Re scaling. The rest of the paper is organised as follows. First,
the tripping to obtain properly initiated TBL based on a simple 2-D roughness element is
introduced and analysed in § 2. Then, the implementation of the two-scale method for the
evolving turbulent boundary layer flow is described in § 3. The section also includes the
validation case studies and the mesh count—Re scaling for the two-scale method, compared
to fully wall-resolved LES and DNS. Finally, the summary and concluding remarks will
be presented.

2. Physical tripping for scale-resolving turbulent boundary layer simulations

Fully wall-resolved LES (WRLES) calculations on the physically tripped TBL are studied
in this section. The numerical method and case set-up are first introduced, followed by the
full LES validation against DNS databases (Wu & Moin 2009; Schlatter & Orlu 2010,
2012) and the well-established experimental correlations (Smits, Matheson & Joubert
1983; Monkewitz et al. 2007; Chauhan, Monkewitz & Nagib 2009), and the investigation
on the local resolution requirement for tripping. Thereafter, the streamwise development of
the TBL towards an equilibrium state and the impact of residual large-scale disturbances
of the tripping are examined.

2.1. Baseline method and case set-up

A nominally canonical zero pressure gradient (ZPG) TBL flow is simulated by using the
open-source CFD solver OpenFOAM. The unsteady incompressible flow equations in a
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Flow direction

Figure 1. Schematic of the computational domain (the black cone indicating the trip location, with a close-up
view of local mesh).

flow domain §£2 = [0, L] x [0, Ly] x [0, L;] are
Veu=0, 2.1a)
du/ot+ (u - Vyu — vWu + (1/p)Vp =0, (2.1b)

where u is the velocity vector, p is the constant density in the incompressible flow and v
is the kinematic viscosity. The pressure gradient Vp should be nominally zero both in the
laminar and turbulent regimes. The domain lengths L., L; and L, are those in streamwise
x, spanwise z and wall-normal y directions, respectively.

The fluid domain is illustrated in figure 1. The corresponding boundary conditions are
as follows. The inlet velocity profile is set as constant with freestream velocity Uss. The
pressure gradient is set as zero at the outlet. The periodic boundary conditions are applied
to the spanwise directions. The upper boundary is a slip wall mimicking the ideally infinite
wall-normal height. The lower boundary is the no-slip wall. The domain length L, is
designed to reach the targeted nominal Reynolds number Rey = 1000, where Reg is the
Reynolds number based on the freestream velocity U, the kinematic viscosity v and
the momentum thickness 6. The domain height is taken to contain approximately seven
boundary layer thicknesses § at the outlet. The spanwise domain size L, ~ 0.5Ly should
be large enough to contain the largest scale spanwise structures. A preliminary sensitivity
study with doubled L, has been carried out and shows negligible differences. The overall
domain covers Rey from 0 to 7 x 10°, which is based on the freestream velocity Uso, the
kinematic viscosity v and the streamwise location x.

The flow equations are discretised in a finite volume scheme, with a second-order
central difference scheme in space. The time advancement is achieved by a second-order
Crank—Nicolson scheme. A constant time-step is taken in keeping the maximum Courant
numbers below 0.5. The pressure-implicit splitting operators (PISO) algorithm is used
for solving the incompressible flow field. In the present calculations, no explicit sub-grid
model is involved. All scales are directly resolved without any turbulence models. The
simulations are therefore effectively implicit LESs where the sub-grid scales are dampened
only by numerical dissipations. The simulations are run for a sufficiently long time to reach
a statistically steady state when the mean statistics differences are confined within 1 %.
All the statistics to be reported are time-averaged for at least ten eddy turnover times 6/u,
(Wu & Moin 2009; Lee & Moser 2015), where § here is the boundary layer thickness at
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Case name Inner mesh resolution Outer mesh resolution Resolution at trip Descriptions
Base-x10z7 Axt ~10, Azt ~7 Axt ~ 40, Azt ~30  Anf~2, An;'~1.4 Base mesh, no local
Base-x20z15  Axt ~20, Azt ~ 15 Anf~52, Anj~2.3  refinement around
Base-x40z30  AxT ~ 40, AzT ~ 30 Anf~11.3, Anf~43 thetrip
RFtrip-x10z7 Axt ~10, Azt ~7 Ant~1.7, An»j’~1.3 Local refined mesh
RFtrip-x20z15  Ax™ ~ 20, AzT ~ 15 Anf~17, Anf~1.3  around the trip
RFtrip-x40z30  Ax™ ~ 40, Az" ~ 30 Anf~1.7, An;f~l.3

Table 1. Details of mesh resolution of the cases simulated.

the exit and u; is the wall shear velocity there. The statistics are spatially averaged along
the homogeneous spanwise direction.

The tripping element covers the entire span (L;). The element height is set to be
~0.788*, as suggested in the experimental study by Dryden (1959), where §* is the
displacement thickness at the tripping location based on the Blasius laminar boundary
layer solution. The streamwise length of the tripping element is the size of the outer mesh
spacing and roughly equals the element height. The distance from the inlet (the leading
edge) to the trip is approximately 300 streamwise trip element lengths. The distance
from the trip to the outlet depends on the Reynolds number, and for the nominal case
is approximately 500 trip element lengths.

The inner region (coloured in blue in figure 1) and outer region (coloured in green in
figure 1) meshes are connected by a wall-parallel interface at a wall-normal distance yj,
which is nominally determined by y;~ & 3(87)%, following Marusic et al. (2013), as an
estimation on the lower bound of the log-law layer. The superscript ‘+’ denotes values
normalised by shear velocity u; and viscosity v. The inner—outer mesh interface is located
roughly at the beginning of the log region in the y direction, which is around y;~ ~ 70
at Rey ~ 1000. Given that the inner and outer meshes have different node distributions,
there should be hanging nodes at the mesh interface. The interface is treated as the
non-conforming arbitrary mesh interface (AMI) patches based on the Galerkin projection
(Farrell & Maddison 2011) for conservation and instantaneous flow field interpolation.

The mesh resolutions of different cases are shown in table 1. Note that the wall-normal
mesh resolution is kept the same in all cases, gradually stretching from Ay ~0.5 at the
lower solid wall to the upper boundary. There are approximately 10 mesh points below
yt =5, 55 points below y! and 80 points located within the boundary layer at Rep ~
1000. Following Moin (1997) and Jimenez & Moser (2000), the near-wall mesh of WRLES
should be as fine as that of DNS. A uniformly distributed mesh is used in both spanwise
and streamwise directions as the baseline mesh.

Three cases with different inner mesh resolutions, denoted as ‘Base-x40z30" (coarse
LES), ‘Base-x20z15° (fine LES) and ‘Base-x10z7° (DNS), are set up with quadrupole
refinement in both x and z directions. Note that resolutions in wall units (inner and outer
mesh resolutions in table 1) are calculated based on wall shear velocity u, at Reg ~ 1000.
Thereafter, the investigation on the sensitivity of local mesh refinement around the trip is
carried out for the three cases with a locally refined mesh around the trip: ‘RFtrip-x40z30°,
‘RFtrip-x20z15° and ‘RFtrip-x10z7’°. The trip is refined as indicated in figure 1 with the
mesh grids clustered around the trip for RFtrip-x20z15 as an example. The resolutions at
the trip itself are calculated using local time-averaged u, at each corresponding trip surface
based on the first mesh cell size in the wall normal directions n, and ny, (figure 1).
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1B —20P*
RFtrip-x10z7 ~0.03  ~0.01
Wu & Moin (2009) ~0.02 ~0.01

Spalart & Watmuff (1993) ~0.4 ~0.1

Table 2. Averaged streamwise pressure gradient at approximately y ~ Ly /8.

2.2. Full WRLES validation and mesh-resolution requirement for tripping

For the cases considered, the streamwise pressure gradient should be nominally zero
in a zero-pressure-gradient (ZPG) TBL flow, but this is practically almost impossible
to achieve either experimentally or numerically as discussed by Wu & Moin (2009).
The indicators of the pressure gradient magnitude of Wu & Moin (2009) are used here
to evaluate the credibility of the simulated ZPG TBL: 8 = (6*/1,,)(dp/dx); —20P+ =
—20(v/ pu%)(aﬁ/ 0x), where p is the time-averaged pressure, t,, denotes the wall shear
stress and p is the constant fluid density in the incompressible flow. The averaged values
in the fully turbulent regime are compared in table 2. The results are of the same order of
magnitude as those of Wu & Moin (2009) and an order of magnitude lower than those of
Spalart & Watmuff (1993) for assurance.

The calculated time-averaged friction coefficients Cy as a function of the momentum
thickness based Reynolds number Rey are shown in figure 2. All cases overlap in the
laminar regime. In the turbulent regime, as the inner mesh is quadropoly refined in the
streamwise and spanwise directions, a clear mesh-convergence can be observed. It can also
be observed that the transition begins at Rey ~ 250-300 and the flow becomes turbulent
at Rey =~ 450 after the trip. The local refinement at the trip slightly improves the results
downstream close to the trip, shown by the comparison between Base-x20z15 (figure 2a)
and RFTrip-x20z15 (figure 2b). The results match well with the fitted curve based on the
experimental data of Smits et al. (1983). Note that the results in the transition regions
(covering the tripping and downstream recirculation regions) are not shown here as a
calculated Rey for this region with reverse flows would be hardly meaningful.

Based on the results in figure 2, we can make some more general observations regarding
the mesh resolution required for the trip. Note first that the DNS base inner mesh
(Base-x10z7) by itself without any local refinement seems to be capable of resolving
the roughness element well. Perhaps more relevantly, the corresponding first wall-normal
mesh spacings for this mesh (An} =2, Anz+ = 1.4) turn out to be all within the local
viscous sublayer (see table 1). However, it needs to be stressed that the local wall normal
mesh spacing within the sublayer should not be taken as a sufficient condition. This point
is highlighted by the two cases of the coarse LES meshes with the local refinement
(RFtrip-x20z15, RFtrip-x40z30). Even when the local refinement leads to an adequate
first wall-normal mesh spacing at the trip (An} = 1.7, Anzr = 1.3, table 1), the overall
resolution for the tripping may still be insufficient, as shown in figure 2(b). It follows
therefore that the mesh resolution required for resolving a trip properly should satisfy a
dual requirement: (a) a fine enough first wall-normal mesh spacing well within the local
viscous sub-layer (e.g. An™ < 2) on the trip element surfaces; and (b) a fine enough mesh
for the inner boundary layer region around the trip (e.g. a DNS mesh for the near-wall
region).

The present finding as discussed above is consistent with the established consensus that
for a near-wall flow, the mesh resolution of LES should approach that of DNS (Moin 1997;
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Figure 2. Skin friction coefficients as functions of Rep in the streamwise direction compared with Blasius
laminar solution and the correlated curve for the turbulent part (solid grey lines) by Smits er al. (1983). (a)
For the base meshes: Base-x10z7, open brown circles; Base-x20z15, open blue squares; Base-x40z30, open red
triangles. (b) For the trip-refined meshes: RFTrip-x10z7, solid brown circles; RFtrip-x20z15, solid blue squares;
RFtrip-x40z30, solid red triangles. Note that not all data are shown for clarity.

Jimenez & Moser 2000). Indeed, only would the two DNS inner meshes with and without
the local trip refinement (Base-x10z7 and RFtrip-x10z7) satisfy the dual requirement for
being sufficiently fine both on the wall surfaces of the trip and in the inner boundary layer
field around the trip. It is thus not surprising that for the DNS base inner mesh, the extra
local refinement around the trip (RFtrip-x10z7) should not be necessarily needed.

The finer LES inner mesh (Base-x20z15) seems to be a borderline case close to the DNS
resolution for the overall inner flow region. In this case, the local refinement around the
trip (RFtrip-x20z15”) with only approximately 2 % extra mesh count does lead to a more
identifiable improvement for the tripping solution, as seen by comparing the corresponding
results between figures 2(a) and 2(b). The present results suggest that if the inner region
mesh is sufficiently fine for a normal TBL, resolving a physical trip element should not
require a significant extra mesh resolution locally.

More sensitive indicators, the ratio between the boundary layer thickness and the
displacement or momentum thickness, §/8* and §/6, as used by Schlatter & Orlu
(2010), are also presented for a closer examination of the local mesh refinement around
the trip. For the two cases Base-x20z15 and RFtrip-x20z15, the indicators converge at
approximately Reg =~ 700, as shown in figure 3. There is little difference at a higher
Reynolds number further downstream and both cases asymptotically converge to the
correlated experimental data of Chauhan et al. (2009).

Figure 4 shows the shape factor, Hjp = §*/6, as the function of Reg for the boundary
layer development. The results from the case RFtrip-x10z7 match up with the fitted curve
of TBL development by Monkewitz et al. (2007) in the turbulent regime with the shape
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Figure 3. Indicative parameters §/8* and §/6 compared with the correlated curve of Chauhan et al. (2009)
(solid grey lines). The present results are shown for RFTrip-x20z7 (solid black lines) and Base-x20z7 (dashed
red lines).
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Figure 4. Shape factor Hy; as functions of Rey compared with fitted curve as a solid black line from
Monkewitz et al. (2007). RFTrip-x10z7, solid brown circles. Note that not all data are shown for clarity.
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Figure 5. Boundary layer thickness 8 as functions of Rey compared with the fitted curve as a solid black
line of Schlatter & Orlu (2010). RFTrip-x10z7, solid brown circles. Note that not all data are shown for clarity.

factor Hy, asymptotically approaching Hi &~ 1.4. Figure 5 shows that the equivalent shear
Reynolds number (§7) based on local boundary layer thickness and shear velocity for case
RFTrip-x10z7, which matches well in the turbulent regime with the fitted curve on TBL
development (Schlatter & Orlu 2010).

Figure 6 presents the time-mean velocity profiles, the root mean squared (rms) velocity
fluctuations and the Reynolds stresses (ensemble averaged values are denoted as ‘(-)’) as
a function of wall-normal distances y*. Results at two Reynolds numbers are compared
with the published DNS results. The present results of RFtrip-x10z7 match with the DNS
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Figure 6. Mean statistics with respect to wall-normal distances y*. (a,b) Mean velocity profiles. (c,d)
Streamwise velocity fluctuations. (e,f) Reynolds shear stresses. Results are at (a,c,e) Rey =~ 670 and (b,d,f)
Reg ~ 960. The DNS data are shown at the corresponding Rey: Schlatter & Orlu (2012) as solid black lines;
Wu & Moin (2009) as dashed green lines. The present results are shown as solid brown circles. The grey lines
mark the inner—outer mesh interfaces. Note that not all data are shown for clarity.

data well at Regp ~ 1000, better than that at Rey ~ 670 where the flow presumably may
not yet be fully developed. Interestingly, the difference between the two DNS datasets at
Reg ~ 670 is also non-trivial, probably due to their different ways of initiating TBL. In
addition, we see that outer flows are quite well resolved by the coarser mesh (table 1) with
the Reynolds stresses matching with the DNS data at Reg ~ 1000.

2.3. Development of tripped boundary layer towards an equilibrium state

An instantaneous view of vortical flow structures from the trip to the developed turbulent
boundary layer state downstream is illustrated in figure 7. The structures are visualised
in terms of the Q-criteria (Hunt, Wary & Moin 1988; Jeong & Hussain 1995) for case
RFtrip-x10z7. The laminar boundary layer is buffeted by the 2-D step with vortices
shed downstream from the top surface, similar to a roughness-induced bypass transition,
e.g. Rao et al. (2014). The roll-up of vortices becomes spanwise non-uniform and
breaks down very soon downstream, similar to that observed by Brinkerhoff & Yaras
(2011). The instability develops downstream as the spanwise vortices break down into
three-dimensional turbulent structures. From Rey &~ 350 to Reg ~ 420, when the new
boundary layer is formed after the reattachment, the hairpin vortices (Adrian 2007)
start to emerge. Note that a natural transition triggered by Tollmien—Schlichting (TS)
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Figure 7. Iso-surfaces of the Q-criterion in the inner region with refined mesh. The coloured contour levels
indicate the normalised velocity U/Uxc.

waves follows the classical route from initial linear primary disturbances to secondary
instabilities (Sayadi, Hamman & Moin 2013), where the formation of linear A-shape
vortices should be spatially long. These features are obviously bypassed in the present
situation.

Figure 8 shows the results of the present calculation (RFtrip-x10z7), the TS
wave-associated natural transition (7S), and the artificial-trip-induced transition
(OP-KTH) by Schlatter & Orlu (2012) in terms of the indicative parameters §/8* and
8/6. An obviously shorter development length of the present calculation can be observed
compared with the natural transition (7'S). The synthetic volume force tripping with
‘optimally’ tuned parameters (OP-KTH) enforces a fully developed turbulent regime
resulting in a nearly straight line shortly after the tripping, distinctively different from
the other results.

It may be more informative that the results shown in figure 8 are categorised into two
groups in terms of how each solution approaches asymptotically to the eventual almost
constant values (indicative of an equilibrium state), approximately 8.5 for §/6 and 5.8 for
8/8*. The first group consists of those physical transition routes: the natural transition
(TS), the tripping experimentally implemented (Chauhan et al. 2009) or numerically
simulated (RFtrip-x10z7). The results of this group first overshoot and then decrease
gradually to approach the equilibrium state. The initial overshoot indicates a relatively
thicker boundary layer due to the outer flow region being disturbed by large-scale
disturbances, which seemingly have a relatively small influence on the inner part with
a large velocity deficit more responsible for contributing to the two integral parameters,
8* and 6. However, in the second group, the ‘optimally’ tripped one (OP-KTH), the
two parameters §/8* and §/6 approach the final state rather differently, both increasing
with Reyp monotonically. The similarity among those physically tripped turbulent flows in
approaching the final equilibrium state draws further attention to the characteristics of a
post-transition non-equilibrium TBL.
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Figure 8. Indicators §/8* and §/6 compared with the experimentally correlated curve of Chauhan ez al. (2009)
(solid grey lines). The results of the tuned ‘optimal’ tripping of Schlatter & Orlu (2012) (‘OP-KTH’) are shown
as dash-dotted black lines; the natural TS-wave transitions (‘7S”) are shown as dashed blue lines; the present
calculations (RFTrip-x10z7) are shown as solid brown circles.

Now, we first use the present results to elaborate on the overall tripping process from
the viewpoint of turbulent energy production and dissipation. Then we will examine the
characteristics and influence of those tripping-induced large-scale disturbances through
modal analyses.

We introduce the dissipation coefficient C, for time-averaged incompressible flow (e.g.
Wheeler et al. 2018) as

C +P L[° (U 2d + Ly —l d 2.2)
= € r = —— V| — —_— .
d U3, ox; ) @ U3 Jo Mg @

where the dissipation coefficient Cy; represents the loss of mean kinetic energy as a
combination of the viscous dissipation of the mean flow (¢) and the production of
turbulence kinetic energy (Pr) in the spatially evolving boundary layer flow.

The full wall-resolved LES solutions (‘RFTrip-x10z7’ introduced in § 2.2) are processed
based on (2.2), as shown in figure 9. The entire route of the boundary layer
development may be categorised into four stages: laminar, transitional, non-equilibrium
and equilibrium. Wheeler et al. (2018) showed that Cy is initially very high within the
transitional stage, plunges to a normal level for turbulent boundary layers and eventually
approaches asymptotically to a value of 0.002. A similar process can be observed in
figure 9. Initially, in the laminar regime, there is zero turbulence kinetic energy production.
Then it takes a journey into the non-equilibrium turbulent phase after the transition, when
the boundary layer becomes fully turbulent yet not fully developed. The non-equilibrium
state is attributed to the fact that the turbulence kinetic energy generation rate reacts
much faster in transition than the viscous dissipation rate of the mean flow, resulting in
an imbalance (Wheeler er al. 2018). Note that the peak of the viscous dissipation rate €
lags behind the peak of the total dissipation coefficient C; (as shown in the later part of
the transitional stage, figure 9). The turbulent boundary layer gradually develops towards
an equilibrium state after Re,/ 10° ~ 6 with Cy ~ 0.002 (e ~ 0.001 and Pr ~ 0.001).

To examine the post-trip non-equilibrium turbulent region (from Re,/10° ~ 3.4-3.8)
more closely, we apply the fast Fourier transfer to obtain the one-dimensional
pre-multiplied energy spectra for this region, as shown in figure 10(a). Notice that the wall
shear Reynolds number Re; in the middle of the region is approximately 190. The present
results are thus compared with the DNS data at Re; ~ 192 for the canonical channel flow
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Figure 9. Dissipation coefficient C; as functions of Rey, categorised in four stages: laminar, transitional,
non-equilibrium and equilibrium. The blue solid line depicts the viscous dissipation of the mean flow €. The
orange solid line depicts the dissipation coefficient C; = € + Pr. The grey dashed line shows the equilibrium
Cq =~ 0.002.
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Figure 10. One-dimensional pre-multiplied energy spectra generated from (a) present calculation in the
non-equilibrium TBL and (b) DNS channel flow data at approximately the same Re; =~ 190 (Lee & Moser
2015). The contour levels are from 1.5 to 4 with an interval of 0.5. The white dashed lines mark the two
wall-normal locations: y* ~ 40 (roughly y ~ Ay ;. locally) and y™ 2 13.5. The solid red box highlights the
excessive energy due to the tripping-induced large scales in the outer flow region.

(Lee & Moser 2015), as shown in figure 10(b). An energy overshoot of the present results
(figure 10a) can be clearly seen around the trip height, y = Ay, (y™ & 40). This location
is in the log-region, so we label it as being of an outer flow region in contrast to the
near-wall region below the buffer layer. Large-scale disturbances in the outer flow region
of a tripped turbulent boundary layer are similarly observed by Marusic et al. (2015).
Given the presence of large-scale disturbances in the outer flow region, we now would
like to know how persistent downstream they are and whether they have a significant
influence on the near-wall region. We will first look at the power spectra density (PSD)
at different wall-normal locations in different streamwise stations. The PSD of the flow
velocity component is calculated using Welch’s method with the Hann window (Welch
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1967) to reduce finite sampling effects. The dimensionless frequencies are in the form of a
Strouhal number St = fL./ U, where the characteristic length and velocity are the trip height
Ay rip and the freestream velocity, respectively.

Figure 11 shows the PSD at different streamwise and wall-normal locations. For the
outer flow location taken at the trip height, vortex-shedding features can be observed right
after the trip (Rey/ 10° ~ 3.1), as shown in figure 11(a). The differences in the streamwise
development between the outer region (y = Ay 4p, yt & 40) and the inner region (y© ~
13.5) are more clearly illustrated by comparing figure 11(b) with figure 11(c). For the outer
flow location (figure 11b), the spectrum is characterised by a rather flat low-frequency
range, indicating a relatively higher magnitude of low-frequency large-scale disturbances.
The residual large-scale disturbances from the non-smoothness of the spectrum around
St &~ 1, are clearly detectable at Re,/10° ~ 3.6, and remain very persistent even at
Rey/ 100 ~ 7 (figure 11b). In a clear contrast, at the inner location y© ~ 13.5 (figure 11c¢),
the boundary layer develops into a typical turbulent flow shortly after the trip (Re,/10° ~
3.6), and it becomes just marginally more developed and smoother further downstream
at Re,/10° ~ 7 (figure 11¢). The excessive energy generated at the trip height seemingly
affects the outer flow region more significantly than the inner near-wall region. This is
in line with the prevalent observation that the outer region requires a longer evolution
distance than the inner one to reach a full equilibrium state (Devenport & Lowe 2022).

2.4. Evolution and impact of large-scale disturbances of tripping

To further examine the streamwise evolution of the trip-induced large-scale disturbances
and their potential impact on the near-wall turbulence, we carry out modal analyses. First,
the empirical mode decomposition (EMD) method (Huang ez al. 1998) is implemented to
identify if large-scale structures would correlate between the outer and inner regions. The
EMD algorithm splits the original signals into a set of intrinsic mode functions (IMFs)
based on local characteristic scales without introducing any cut-off wavelengths. The
EMD method of a 2-D version is applied to decompose small- and large-scale components
in the present work. The last three of eight IMFs are retained as the long-pass filtered
large-scale flow field. Essentially, the same procedure of the EMD method as in Chen &
He (2022) is applied to the snapshot plane cuts of the instantaneous flow field, as shown
in figures 12-14.

As seen from figure 12, there seems to be little correlation between the outer and
inner large-scale structures filtered from the instantaneous velocity flow fields of the
transitional region up to Rey =~ 460. Reaching the end of the domain at a relatively
higher Re (figure 13), large scales start to show up more clearly in the near-wall region
(figure 13d). The correlation of the large scales between the inner and outer flows however
still appears to be quite low.

In direct contrast to figures 12 and 13, figure 14 illustrates strong footprints as seen in
the canonical channel flow at a high Re (Chen & He 2022), where the fully developed
turbulent flow is regarded as in an equilibrium state. The outer and inner large scales
appear not only as long streaky structures but also highly correlated in both shapes and
magnitudes (figure 145 versus figure 14d).

The EMD analysis above provides a relatively straightforward way to identify and
correlate distinctive large length-scales between two snapshots. To gain more systematic
insights into those dynamically active temporal and spatial flow structures, we also carry
out some analyses using the dynamic mode decomposition (DMD) method (Schmid 2010).
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Figure 11. Power spectral density (PSD) with regard to the non-dimensional frequencies. (a) y = Ay, ; right
after the trip as a blue line; spectra in panels (b) and (c¢) are for two wall-normal distances and at two streamwise
stations: (b) outer flow (y = Ay sip, yT A~ 40); and (c) inner flow y*© & 13.5. The results right after the trip
(Rey/ 10° & 3.6) are shown as red lines; results further downstream (Rey / 10° ~ 7) are shown as green lines.
All plots are taken in the mid-span of the domain.

A snapshot matrix is constructed first when applying the DMD method as
X’S_l = [X0, X1, ..., Xp_1] € R™®=D X! =[x1,x2,...,x4] € R™ =D (234 p)

where in the present case, x; represents the instantaneous streamwise velocity field,
consisting of m data points at time ¢ = iA¢, with a sampling interval set to be At. The
matrix X 8_1 effectively contains snapshots from i = 0 to n — 1. Assume there is a linear
operator between two consecutive snapshots:

"=AXp!, (2.4)

where A is the dynamics matrix and can be obtained by 4 = X} (X 871)_1, where [-]7!
denotes the pseudo-inverse operator. Given that the size of X is usually huge, the singular
value decomposition is introduced (Taira ez al. 2017) to reduce the rank of 4 to r. The jth
eigenvalue and eigenvector of A are A; and @;, respectively. The dominant modes as the
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Figure 12. (a,c) Instantaneous velocities on cut planes at two wall-normal locations: y,,, & 52 and y?,'l ~ 13.5,
respectively. (b,d) Corresponding large-scale structures retained from the regions marked by black dashed boxes
in panels (a) and (¢), respectively. The contour maximum values in panels (b) and (d) are set as £2.74u;.

(a) Your = 70 - (®) Your = 70

Re, =800 Re,=950  Re,~ 800 Re, =950
Re /105~ 6 Re /1057 Re/10°%6 Re /10°=7

Figure 13. (a.c) Instantaneous velocity field from Rey 2 800 to 950 at two wall-normal locations: y., & 70
and y; ~ 13.5, respectively. (b,d) Large-scale structures retained from panels (a) and (c), respectively. The
contour maximum values in panels (b) and (d) are set as £2.4u;.

eigenvector and the corresponding frequency calculated by the eigenvalue can thereafter
be picked up as the representatives of the raw field to reveal the dominant features of the
original flow field.

To reconstruct the field, the amplitude of each mode should be first determined as b =
[b1, ba, ..., b,]. The ith snapshot at time 7 is then given by

,

Xi=Y Aibd;, i=t/At. 2.5)
j=0
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Figure 14. Clear ‘foot-printing’ evidence at high Re in a fully developed channel flow (reproduced from
Chen & He 2022). (a,c) Instantaneous velocity field from Re, 2 2000 at two wall-normal locations: .\, &
3.9¢/Rer ~ 175 and y;, ~ 13.5, respectively. (b,d) Large-scale structures retained from panels (a) and (c),
respectively. The inner and outer plane locations have the same y* values as those of Marusic, Mathis &
Hutchins (2010).
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Figure 15. Loss function in relation to the number of modes retained for field reconstruction N.

The loss function is introduced for comparison as the difference between the reconstructed

field (X 8_1) pmp and the original field X 8_1 accumulated from ¢t =0to T = (n — 1) At,

loss = [|1X7~ " — &X¢ Domp ! P/11X57 2. (2.6)

For the verification purpose, the DMD method is first applied to the present full
WRLES case. The aforementioned procedure is applied to n = 201 snapshots extracted
from the x—y plane at the middle span of the domain. The streamwise range is chosen
to be right downstream of the trip (Rex = 3.1-3.6 x 10°). The convergence of the modal
reconstruction is shown in figure 15, by the means of the loss of accuracy as a function of
the number of modes N retained. The loss gets to less than 5 % when N is larger than 120.

The reconstructed fields using 5, 25 and 50 modes and the original field are shown in
figure 16. The time instant is taken at ¢t = 0.57,1i.e. t = 0.5(n — 1) At. The reconstructed
field using 50 modes and the original field are in fairly good agreement.

There are various selection criteria to identify the dominant modes (Jovanovic,
Schmid & Nichols 2014; Tissot et al. 2014). The corresponding mode frequency is
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Figure 16. (a) Original simulated flow in the full-LES case (RFTrip-x10z7), (b—d) Reconstructed field using
5, 25 and 50 modes respectively.

non-dimensionalised in the form of a Strouhal number St = fL /U, where the frequency f is
calculated from the imaginary part of the eigenvalue A;, together with the trip height as the
characteristic length and the freestream velocity. In the present study, the most dominant
mode amplitude is selected at the primary vortex shedding frequency St ~ 0.3 (figure 11a)
as the first mode. The dominant modes are shown in figure 17, with the second and third
modes chosen at the second and third harmonics of the primary shedding frequency.

The alternating velocity components of the first mode (figure 17a) above the trip height
right after the tripping element (Re, /107 ~ 3.1, y/ Ay wip ~ 1.5) appear as the key feature
of vortex shedding in the streamwise velocity flow field. They begin to break down at the
streamwise location range of Re,/10° & 3.2 to 3.3. Interestingly, the vortical signatures
are seemingly dissected from y/A, ;4 ~ 1, either keeping convected downstream or
propagated towards the near-wall region. There is a clear difference in magnitude between
the downstream convected and the near-wall propagated. Thus, the outer-flow structures
do not seem to be able to penetrate into the inner layer with a significant effect. Note that
in Agostini & Leschziner (2016), the magnitudes of the outer coherent large scales are
identified to be similar to those of their ‘footprints’ in the near-wall region. In the present
work, we see no clear evidence of such ‘“footprints’ from the outer-flow region.

In relation to the streamwise evolution, we can also see that the large-scale
trip-associated disturbances start to decay soon after being generated. The largest scales
in the most dominant mode (figure 17a) decay the fastest. The shorter scales are generated
later, but also seem to decay at a slower pace, as shown in figures 17(b) and 17(c). This
is in clear contrast to the ‘footprinting’ features in a well-developed turbulent flow where
large coherent streaky structures persist with a long lifetime.

Overall, the excessive energy observed in the outer flow region (figure 10) is clearly
associated with the shed vortices over the tripping element. These vortical flow structures
residing in the log-region make the outer flow take longer to settle down to a complete
equilibrium state. However, these tripping-induced large-scale residual disturbances share
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Figure 17. Dominant modes extracted from the mid x—y plane from full WRLES with frequency around
(a) St = 0.3, (b) St ~ 0.6 and (c) St ~ 0.9. The blue contour colour corresponds to a negative value, while
the yellow one indicates a positive value. The red dashed line indicates roughly the location of y™ & 13.5,
calculated with local shear velocity.

little similarity with the coherent large structures of long meandering streamwise streaks
in a fully developed turbulent flow. The tripping-induced large-scale disturbances clearly
decay in the streamwise direction, seemingly at a faster rate than those of shorter
wavelengths. These large scales also do not show clearly discernible ‘footprints’ on the
near-wall region. The characteristics as observed may, to some extent, explain why the
near-wall region is usually observed to experience a shorter development distance than
the outer flow region before reaching an equilibrium state (Devenport & Lowe 2022).
The related physical understanding also provides a useful basis for implementing the
two-scale method for a tripped turbulent boundary layer, more particularly for sizing a
locally embedded fine-mesh block for resolving the trip itself in relation to other fine-mesh
blocks embedded in the near-wall region for the rest of the boundary layer.

3. Two-scale block-spectral solutions

Having initiated a TBL with the physical tripping as described in the last section, we
now turn to solving the tripped TBL efficiently and accurately. To this end, we resort to
the two-scale BS method with locally embedded fine-mesh DNS blocks in the near-wall
region. In this section, the basics of the two-scale methodology are first introduced briefly,
including the dual meshing, the two-scale formulation together with the source-term
propagation method. Then the spanwise sizing of the embedded fine-mesh block for the
tripping will be examined. Thereafter, the two-scale BS methodology is applied to a
boundary layer flow. The validity of the two-scale method for a tripped boundary layer
is assessed by comparing the present solutions with the corresponding DNS and full
LES results. Finally, the mesh count—Re scaling for the two-scale TBL solutions will be
estimated and compared to those of DNS and fully wall-resolved LES.
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Figure 18. Illustration of computational domain with the near-wall embedded DNS blocks. (a) Overall view
of the configuration (the solid magenta line indicates the trip). (b) Close-up x—y cut plane view.

3.1. Two-scale methodology for turbulent boundary layer flows

The local fine-mesh DNS blocks embedded in a near-wall region, as illustrated in
figure 18(a), are generated by subdividing corresponding coarse-mesh cells. At the inlet
to the computational domain, a laminar Blasius profile can be specified to reduce the
domain size for the laminar part. The distance from the inlet to the trip is kept around
20 tripping element streamwise lengths. No identifiable influence of the trip in the form
of upstream propagated pressure waves on the inlet velocity profile is observed, thus the
distance is regarded as adequately long. The whole computational domain can be divided
into three parts as shown in figure 18(b): the global outer flow region (coarse-mesh) where
the large-scale structures are directly resolved on the base coarse-mesh, the local near-wall
DNS blocks (fine-mesh) and the global inner region (coarse-mesh). The key working
of the present two-scale method is that the solution of the under-resolved global inner
coarse-mesh region will be corrected using the time-invariant source terms originated from
the local fine-mesh blocks and propagated spatially by a block-spectral mapping.

The interface flux conservation between the coarse- and fine-mesh regions is achieved
through the non-conforming arbitrary mesh interface (AMI) (Farrell & Maddison 2011).
It is applied directly as the interface condition to the top surface of each embedded block.
For a pair of side faces of a block embedded in the developed turbulent region (either
Fy 4 and Fy 02, or F; 40 and F_ j», as marked in figure 18a), the scale-dependent interface
treatment (He 2018) is adopted. A local flow variable is decomposed into a coarse-mesh
base value and a fine-mesh perturbation:

ulx, 1) =uclx, 1) +u'r(x, 1), (3.1

where uc(x, t) is the coarse-mesh resolved, obtained directly via the baseline AMI. For
the fine-scale fluctuation part u”¢(x, 1), the periodic condition is applied. As an example
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of the pair faces of the block, Fy 4 and Fy p», we have
ur (O = w6, O

ux, Dy =ucx, Dy +u"r (X, Dypot - (3.2)

ux, 0y p0 = ucx, ypy +u'r(x, 0,0

The scale-dependent interface treatment can also be applied to the spanwise pairing
points of the frontal block (F; 41 and F_ ;1). The upstream boundary of the frontal block
(Fy.q1) 1s consistent with the global region, subject to the Blasius laminar velocity profile.
The downstream boundary of the frontal block (Fy 1) is simply dealt with by the AMI
treatment.

The principal working of the two-scale methodology consists of two related aspects: (a)
generating the source terms from the local fine-mesh blocks and (b) propagating the source
terms to the global inner coarse-mesh region (figure 18b). Consider the flow governing
equations in a simple form for flow variable vector u:

ou

ot
which in its original form will be directly solved numerically in the global outer domain
and local inner blocks (figure 18b). For the under-resolved global coarse-mesh inner
domain in the near-wall region (figure 18b), the upscaling is introduced leading to the
augmented equations with extra source terms to drive the coarse-mesh solution toward the
target solution equivalently subject to a fine-mesh locally.

The upscaling is facilitated through space—time averaging. For a coarse-mesh cell
embedded with ny fine-mesh cells, the space—time averaged flow variable can be simply
defined as the local volume-average of time-averaged variables of ny fine-mesh cells:

+R(u) =0, (3.3)

~ 1 &L
Ww:XEZ?W”m%’ (3.4)

where Avc is the volume of the coarse-mesh cell, Ave = Z?L | (Avy),. The overbars

-~ and ‘~’ denote the time-averaged and the spatial-averaged values, respectively. The
upscaled equations in the coarse-mesh domain become

uc

o + R(uc) = STg(x). (3.5)
The source term ST (x) is time-invariant and consists of two parts (He 2018):

STt = (STst)f + (STo)c. (3.6)

The first part is generated by simply computing the net flux residuals on the coarse-mesh in
a discrete form with the space—time averaged variables from the corresponding fine-mesh
solution:

(STs)s = R(uy). 3.7)

The second part exists due to the nonlinear time-averaging effect of the unsteady solution
on the coarse-mesh. It should be accounted for so that the upscaled equations for the
targeted space—time-averaged solution in (3.5) can be balanced:

(STy)c = R(uc) — R(uc). (3.8)

When a scale-resolving flow solution in the global inner region is statistically converged,
the local time-mean coarse-mesh solution u¢ should converge to the target space—time
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averaged fine-mesh solution Zf as intended. For more detailed formulations, the reader is
referred to He (2018, 2021) and Chen & He (2022).

Once the locally sampled source terms are generated, they need to be effectively
propagated to the global coarse-mesh domain spatially in a wall-parallel direction with
inhomogeneity. He (2018) resorts to constructing and propagating the global spatial
variations in the two wall-parallel directions through a Fourier spectral mapping for a
periodic domain or a half of the Fourier spectrum for a non-periodic domain. In the
present work, the Chebyshev spectral method is used for the non-periodic TBL flow in the
streamwise direction. The orthogonal group of Chebyshev polynomials are constructed as

T,(x) = cos[n x arccos(x)], n=1,2,.... 3.9

The sampling points on the transformed interval [—1, 1] are based on the
Chebyshev—Gaus-Lobatto points as

xnz—cos(nx]%), n=0,1,2,....N. (3.10)
The corresponding values at sampling points are f,(x,), n =0, 1,..., N. The globally

mapped variable f,,,, can be expressed in terms of the basis functions 7,(x) with
coefficients C,, as

N—1
Fnap®) =Y CuTy (). 3.11)
n=0
Herein, the discrete cosine transform can be used to acquire the coefficients C =
[Cy, Ca, ..., Cxn]T from the locally sampled function values f = [f1, f2, . .. ,fN]T as
C = Af, (3.12)

where the constructor matrix A is a linear system of N 4 1 dimensions (Trefethen 2000).
The constructor matrix can be expressed as

m=1, ..., N—-1 (3.13)

A flowchart showing the main parts of the present two-scale block spectral method
during one time-marching step is given in figure 19, as implemented in the OpenFOAM
for incompressible flows.

3.2. Sizing locally embedded fine-mesh block for tripping

Chen & He (2022) discussed the sizing of the embedded block for a turbulent channel
flow, chiefly based on the energy spectra generated from the DNS database (Lee & Moser
2015) with the analysis of the length scales of the near-wall ‘universal’ portion as well
as in relation to the inner region in terms of the low bound wall-normal distance of the
log-law region, based on Marusic et al. (2013). The corresponding block sizes should
also be applicable to a fine-mesh block embedded in a fully turbulent part of a boundary
layer after the trip. Thus, the streamwise and spanwise block lengths (figure 18a) should
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Figure 19. Flowchart of the two-scale block-spectral solution process as implemented.

accordingly be l;rz ~ 3500 and 1:2 ~ 350 respectively, where ‘+’ denotes the wall units
based on the local shear velocity u; and viscosity v. The wall-normal height of the block
is chosen to be 1;2 ~ 75 in the turbulent region, consistent with the baseline WRLES study
presented in § 2 and that of Chen & He (2022).

For sizing the frontal fine-mesh block for the tripping, extra considerations should be
given particularly in the context of the physical characteristics, as identified and discussed
in § 2. First, regarding the streamwise length of the fine-mesh block, it is required to cover
the key streamwise development phase with essential features of the break-down process
of the initial vortices shed from the tripping element. Given the observations made in § 2
on how far downstream the laminar-to-turbulent transition would be largely completed, the
streamwise length is chosen to reach Rey ~ 650 in the present case study.

Second, the wall-normal height of the fine-mesh block for the tripping should cover
and resolve the trip element itself as well as the trip-generated large-scale vortical
disturbances. Those large-scale vortical disturbances, once generated, would evolve
streamwise in the lower part of the log-region which should be covered by the base
coarse-mesh. However, the near-trip vortex shedding process, responsible for generating
these large-scale disturbances, needs to be resolved locally with the fine-mesh resolution.
As such, the wall-normal distance of the frontal fine-mesh block for tripping should be
higher than the low bound of the log-region, which is used to determine the fine-mesh
block height in a fully turbulent regime, as shown by Chen & He (2022). This requirement
can be easily met however if we take a value of the log region low-bound at a downstream
position (thus a more developed and thicker boundary layer). In the present work, we
take the wall-normal distance of the frontal block for the tripping to be the same as that
of the second one for the tripped boundary layer, l;’l = l;”z ~ 75. This should provide
sufficient coverage for resolving the generation of those tripping-associated large-scale
vortical disturbances evolving in the outer flow region of the tripped turbulent boundary
layer.
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Case name Full LES (§2)  Full-Span  Half-Span  Mini-Span
block width Z; L, L, L;/2 L./3

Table 3. Frontal block widths of the cases simulated.

— Full-span
— Half-span
— Mini-span

PSD 10*10.-

10—15j

0 02 04 06 08 10 12
St

Figure 20. Turbulence power spectra density (PSD) with respect to the non-dimensional frequency, Strouhal
number St. The black, magenta and blue lines are for the Full-Span, the Half-Span and the Mini-Span results,
respectively.

Third, the sensitivity to the spanwise length of the fine-mesh tripping block /;; is studied
through several test cases shown in table 3. The ‘Full-Span’ case has the frontal fine-mesh
block span I;; covering the full spanwise width L,. The ‘Half-Span’ case reduces the
frontal block span by half to L,/2. The minimum width of /;; (‘Mini-Span’) here is chosen
to be the same size as that of the second fine-mesh block in the tripped TBL [/;>. The
spectra of flow velocity taken from a numerical probe placed at a location just downstream
of the trip height show clearly stand-out peaks (figure 20). These peaks correspond to the
dominant shedding frequency and its second and third harmonics at the corresponding
Strouhal number St, approximately 0.3, 0.6 and 0.9 as discussed in § 2. At the primary
shedding frequency (St ~ 0.3), the energy peak is well captured in all three cases. At
higher frequencies with much less energy (less than 1% of the dominant peak), the
Half-Span and Mini-Span are seemingly subject to more broadband disturbances.

How would these detailed differences at the trip between different spanwise block sizes
affect the downstream flow? Flow statistics including the mean velocity profiles and the
fluctuations are extracted at two locations, as shown in figure 21. The first location is
in the rear part of the frontal fine-mesh block at Regp &~ 600 and the second location is
in the rear part of the second embedded fine-mesh block in the fully turbulent region at
Reg ~ 800. Also shown (figure 22) are the energy spectra at these two locations. We see
good agreement in the mean statistics and the energy spectra at both locations between
the Full-Span, Half-Span and Mini-Span sizes. For the spanwise size range tested, the
downstream flow field seems largely insensitive to the spanwise size of the frontal block
[;1. The rest of the two-scale calculations is thus all taken with the Mini-Span for the
frontal embedded fine-mesh block.

To see more closely how the large-scale disturbances are triggered and evolve
downstream in the embedded block, we now apply the DMD modal analysis here, in the
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Figure 21. Mean velocity profiles as functions of wall-normal distance y* at (@) Reg =~ 600 and (b) Reg =~ 800.
Profiles of streamwise velocity fluctuations as functions of y™ at (c) Reg &~ 600 and (d) Reg ~ 800. Full-Span,
solid black lines; Half-Span, solid magenta squares; Mini-Span, open blue circles. The grey lines mark the
inner—outer mesh interface. Note that not all data are shown for clarity.
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Figure 22. PSD as a function of non-dimensional frequency k: (a) Reg ~ 600 and (b) Rey =~ 800. Full-Span,
black lines; Half-Span, magenta lines; Mini-Span, blue lines. The energy spectra are taken at y+ ~ 13.5 as the
peak energy location in figure 21(c,d).

same procedure as in § 2. We compare the mid-plane of the local fine-mesh block with a
reduced-span to that of the full LES solutions. The streamwise coverage range is from the
trip (x = 0.1/,1) to the end of the frontal block (x = ;7). The comparison between the two
cases is shown in figure 23. The transition process from shed vortical disturbances to the
breakdown and formation of a new TBL is well captured in the embedded block, shown
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Figure 23. Comparison of large-scale disturbances (St &~ 0.3) on the mid x—y plane from (@) full LES and (b)
the local DNS block.

in figure 23(b). The detailed features in the vicinity of the trip are slightly different, e.g.
a slightly later break-down process for the full LES (figure 23a) compared to that for the
locally embedded block (figure 23b). Downstream, however, the differences between the
two seem rather insignificant with the rapid decay of the large-scale disturbances towards
the end of the block. The overall picture of the streamwise evolution for the trip-induced
large scales is in line with the observed insensitivities in the mean statics and energy
spectra at Reg ~ 600, indicating the adequate length of the locally embedded fine-mesh
block for capturing and resolving the tripping.

3.3. Two-scale solution for tripped TBL

3.3.1. Validation against baseline full LES

A key variable sensitive to the near-wall mesh resolution is the wall shear stress, as shown
in the mesh-dependence study in § 2.2. The accurate calculation of the wall shear stress is
of great importance in many spatially developing flows (Launder & Spalding 1974). The
computed friction coefficient Cr is shown in figure 24 as the function of the local Reynolds
number. The full LES result is also shown as the baseline reference which has been
validated against well-established experimental results and DNS databases, as presented
in §2. The direct solution with locally embedded blocks but without the source-term
coupling is labelled as the ‘one-scale’ solution, showing a significant discrepancy, because
of the under-resolution of the near-wall coarse-mesh. In the present two-scale solution,
the mean flow errors are markedly reduced by the source terms propagated through BS
mapping.

The time-mean boundary layer velocity profiles on the global coarse-mesh at the exit of
the domain where Regy ~ 1000 are compared, as shown in figure 25. The under-resolved
‘one-scale’ solution with no source-term coupling gives poor results with large errors
(~19 %). The impact of the source term correction is clearly underlined by the two-scale
BS solution agreeing well with the DNS results (Schlatter & Orlu 2012).

It should be noted that the source term mapping for the tripping region covered by the
first embedded fine-mesh block is different from that for the rest of the TBL. As shown
previously in § 2, the trip-induced transition process is subject to large-scale disturbances
of large amplitudes highly interactive particularly shortly downstream of the trip element.
As a result, the region from Re,/10° ~ 3 to 4 (figure 24) experiences a much higher
gradient and stronger local history effect in the streamwise direction than the rest of the
TBL. Consequently, for the frontal tripping region, the source terms generated in the first
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Re/ 105

Figure 24. Friction coefficient Cr as the function of Reynolds number Rey. The blue solid line is for the
present two-scale block-spectral solution in the global coarse region. The solid black squares indicate the full
LES results. The red dash line shows the ‘one-scale’ solution in the global coarse-mesh region without the
source-term coupling.
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Figure 25. Mean velocity profile in relation to wall normal distance y™ in the global coarse-mesh region. The
present two-scale BS solution (blue squares) is compared with the DNS result from Schlatter & Orlu (2012)
(black solid lines) at the Reynolds number Reg ~ 1000. The red dash line is for the ‘one-scale’ solution without
the source-term coupling.

fine-mesh block are only propagated in the spanwise direction. They are directly mapped to
the full-span coarse-mesh region. The source term components in the x, y and z directions,
STy, STy and ST, are shown in figure 26, where dash lines indicate those source terms
generated from the frontal fine-mesh tripping block to be mapped directly to the full span
of the corresponding coarse-mesh region.

From the streamwise location Re, /10 ~ 4 onwards, the streamwise change of the flow
development and the wall shear stress is much more gradual as it enters a fully turbulent
region. The source term distribution along the streamwise direction also becomes much
smoother. The Chebyshev spectral method introduced in § 3.1 is applied here for the
source-term propagation. Two sample points for constructing the streamwise Chebyshev
spectrum in this case are marked by triangle symbols in figure 26. One is at the rear portion
of the frontal fine-mesh block and the other is at the rear part of the second fine-mesh block
embedded in the fully turbulent region.

The mean velocity and the fluctuations in rms in the near-wall fine-mesh blocks and
adjacent coarse-mesh region are compared with the full LES results in good agreement
at two streamwise locations, as shown in figure 27. Figure 27(a,b) are for the results

at the rear part of the frontal block at Re,/10° & 4 with the corresponding Rey = 600.
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Figure 26. Distribution of source terms ST = (ST, STy, ST;) along the streamwise direction with respect to
local Reynolds numbers Re, in the viscous sublayer (y* & 6). The blue dash lines indicate ST, in the frontal
trpping block with a spanwise mapping only. The solid blue lines indicate the spectrally mapped results from
the Chebyshev method for the rest of TBL. The solid blue triangles mark the sample points. The other two
scalar components ST, and ST, are shown in yellow and green, respectively.
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Figure 27. Mean statistics including (a,c) the mean velocity profiles and (b,d) streamwise velocity fluctuations
with respect to the wall-normal distance. The present two-scale BS solutions (blue circles) are compared with
the full LES solutions (black solid lines) at two Reynolds numbers: (a,b) Reg ~ 600 and (c,d) Reg =~ 800. The
grey lines mark the inner—outer mesh interfaces. Note that not all data are shown for clarity.

Figure 27(c,d) are for the results at the rear part of the second block at Re,/10° ~ 5.7 with
the corresponding Reg = 800.

Shown in figure 28 are the energy spectra at these two Reynolds numbers in the
fully turbulent regime. The spectra are taken in the near-wall region at y* ~ 13.5. The
dimensionless frequency is again calculated based on the boundary layer thickness and
wall shear velocity: k = f6/u,. First, note that the results from the present two-scale
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Figure 28. PSD with respect to the dimensionless frequencies. The present two-scale BS solutions (blue lines)

are compared with the full LES solutions (green lines) at two Reynolds numbers: (@) Reg ~ 600 and (b) Rey ~

800. Red lines are for the results in the global coarse-mesh inner region. The energy spectra are taken at
+

yT ~13.5.

method overlap with the full-LES spectra. Second, the PSD taken from the embedded
region confirms a full coverage of the spectral range in the local fine-mesh block. More
remarkably, the fine-mesh spectrum overlaps smoothly with the coarse-mesh PSD at
lower frequencies without any spectral gap. This is attributed to the local embedded
fine-mesh block receiving low-frequency large-scale signals directly from the global
coarse-mesh domain, thanks to the scale-dependent interface method. The global coarse
mesh is capable of resolving the large scales, but experiences high numerical dissipations
for shorter wavelengths in the higher frequency range, as expected. The corresponding
coarse-mesh under-resolution in the near-wall region is corrected by the source terms to
drive towards the target time-mean flow. The present observation for a tripped TBL, where
a smooth coverage of full turbulence spectrum without a spectral gap or scale separation
can be achieved in a locally embedded fine-mesh block, is consistent with that for a
canonical channel flow made by Chen & He (2022). It underscores the advantage of the
scale-dependent interface treatment over the direct periodic condition commonly adopted
in previous MFU-based methods. In the previous MFU methods, the spatial periodicity of
the unit length would have to artificially truncate the local large-scale disturbances in the
near-wall region footprinted by those large-scale coherent structures residing in the outer
flow region.

3.3.2. Cases with higher Reynolds numbers
For further validation and demonstration, we have two additional cases simulated at
higher Reynolds numbers (Rey ~ 1500 and 2600) at the end of the TBL. The simulation
parameters are shown in table 4. Both cases have the same frontal block embedded as
that in § 3.3.1 and the second block embedded close to the exit. All configurations in wall
units are normalized by the local shear velocity u; at the specific Reynolds numbers Reg.
The fluid domain simulated is 2 = [0, L,] x [0, Ly] x [0, L], with the domain used
in § 3.3.1 denoted as £2" = [0, L] x [0, L;,] x [0, L] for comparison purposes.
Validations of the solution accuracy are shown in figures 29 and 30. Figure 29 presents
the friction coefficient Cr distribution with respect to the Reynolds number Reg. Figure 30
shows the mean statistics at the highest Reynolds number calculated (Rey ~ 2600) with
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Rey Domain G:L.L, G:L, Al Af N, Af,
L:If 1t L:yf
1500 G 1.53L, L] ~64 at exit 38,28 104 0.5
L ~3000, ~400 75 95,7 52
2600 G AL, L] ~64 at exit 44, 30 132
L ~3000, ~370 90 11,7.5 67

Table 4. Parameters of simulation at higher Re.

Figure 29. Friction coefficient Cy as a function of Reynolds number Rey. The solid grey lines indicate the
correlated curve by Smits ef al. (1983). The solid blue circles are for the present two-scale BS solution. The red
dashed lines are for the one-scale solution without the source-term coupling. Both results are taken from the
global coarse-mesh region. Note that not all data points are shown for clarity.
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Figure 30. Mean statistics at Reynolds number Reg ~ 2540: (a) mean velocity profiles and (b) streamwise
velocity fluctuations with respect to the wall-normal distance. The present two-scale block-spectral solutions

(open blue squares) are compared with the DNS results (Schlatter & Orlu 2010) (black solid lines). The grey
lines mark the inner—outer mesh interfaces. Note that not all data points are shown for clarity.

the local DNS block embedded. All two-scale solutions match well with the correlated
curves (Smits ef al. 1983) and the DNS data (Schlatter & Orlu 2010).

3.4. Mesh count—Re scaling

Finally, we examine the mesh count—Reynolds number scaling for the spatially developing
TBL to evaluate the potential benefit in terms of computational cost for the present
two-scale method. As a laminar-to-turbulent transition (regardless of the way of initiation)
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Figure 31. Sectioned TBL domain: (a) illustration of the TBL domain with N sub-domains; (b) a close-up
view of the sub-domain i.

should occur at a largely fixed Reynolds number, we shall only consider a fully turbulent
part of the boundary layer starting from an upstream station x¢ to a downstream one
x = Ly, where the Reynolds number based on either the total length or the maximum
boundary layer thickness is calculated.

We assume that the whole TBL can be divided into Ny subdomains, as shown in
figure 31(a). Within each subdomain, we have one locally embedded near-wall fine-mesh
block. As such, a subdomain can be approximately viewed as a channel flow with the local
mean boundary layer thickness § being taken as the half channel height.

The total mesh count required for the whole TBL (xg < x < L,) is

N;
Niotat = ) Ni(Res,), (3.14)
i=1

where the total mesh count N, is a summation of local mesh counts for Ny subdomains
(figure 31a). For sub-domain i, its mesh count N; depends on the local Reynolds number
Res; based on the freestream velocity Uxo, the kinematic viscosity v and the local boundary
layer thickness §;. For each sub-domain, the boundary layer thickness can be approximately
taken as a constant. Thus, a local TBL flow in a sub-domain is equivalent to a channel flow
(figure 31b).

Following Choi & Moin (2012), the local mesh count is estimated as NLES}ycq1 ~ Re;1

for wall-resolved LES and NDNSyca1 ~ Reél/ 4 for DNS. For the present two-scale method,

there should be one embedded fine-mesh DNS block in each subdomain. As indicated
above, the mesh count N;(Res) for subdomain i can be estimated similarly to a channel
flow. Chen & He (2022) estimated the mesh count for a channel flow with § being the half
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channel height as

NLES channel = NLESﬁne inner + NLES coarse outer

(3.15)
+ NLES coarse inner ™~ st

The three terms on the right-hand side of (3.15) corresponding to the three domains
(figure 31b) are estimated as

NLESﬁne inner = NDNS einbed block ™~ y;" ~ 3+0~5

$
NLES coarse outer ™~ / 82/}’3 dy ~ 8t s (3.16)
Vs

NLES coarse inner ™~ 8t

where y; marks the starting point of the log region, being proportional to §+03 (Marusic
et al. 2013). In the present TBL case, we replace § denoting the half channel-height for
channel flow by the local boundary layer thickness §;. Choi & Moin (2012) represented
scaling with different Reynolds number definitions through the conversion, Res ~
(81121 Thus, correspondingly, (3.15) can be rewritten in terms of local TBL thickness
for subdomain i as

NLES;(Res,) ~ Rey’". (3.17)

Furthermore, we assume the local Reynolds number for subdomain i can be
approximately correlated to the overall Reynolds number Res based on the downstream
boundary layer thickness by Res; = CiRes, where C; is a multiplier coefficient for
subdomain i (0 < C; < 1). The multiplier coefficient should remain roughly constant
when the TBL Reynolds number Res varies. Equation (3.14) can then be expressed as

Ny
2
NLES ol ~ Res'™ Y " fi(Ch. (3.18)
i=1

As f; for subdomain i is only a function of the local multiplier C; independent of Reynolds
number, we will then have

NLES oia1 ~ Reg/". (3.19)
Therefore, the overall mesh count for TBL can now be reduced from O(Reél/ 6 )

for the WRLES to (Reél/ 12) for the two-scale solutions. Figure 32 shows the mesh

count—Re scaling for the different solution approaches.

4. Summary and conclusions

The principal objective of the present work is to explore an efficient and accurate
methodology for scale-resolving simulations of turbulent boundary layer flows. Previously,
Chen & He (2022) demonstrated a two-scale method for the canonical channel flow where
the mesh-count scaling with Reynolds number is potentially reduced from O(Re?) of the
full WRLES to O(Re'). The present work extends the methodology to spatially evolving
boundary layers. Two main issues of interest are, first, how to start a properly initiated TBL,
and second, how to implement the local embedded two-scale method for a streamwise
inhomogeneous TBL.
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Figure 32. Mesh count—Re scaling. DNS (black dots); wall-resolved LES (red dashed line); the present
two-scale method (blue solid line). The open black square and red circle are for the actual Ny, as reviewed
in Deck et al. (2014). Solid red circle is for the full WRLES used in the present case study (§ 2); solid blue
squares are for the present two-scale calculations (§ 3).

We resort to a physical tripping method as widely adopted experimentally to initiate a
TBL. For a simple 2-D step element to trip the TBL, extensive computational analyses
are carried out, first to identify the adequate mesh resolution around the trip and second
to examine the evolution and impact of the large-scale disturbances associated with the
tripping. We validate the full LES with Rey being approximately 1000 at the exit, of which
the results match well with well-established DNS results (Wu & Moin 2009; Schlatter &
Orlu 2010, 2012) and the experimental correlation (Smits er al. 1983; Monkewitz et al.
2007; Chauhan et al. 2009). It is found that a fine DNS mesh (AxtT ~ 10, AzT ~ 7)
should be sufficiently fine for resolving the trip without any extra local mesh refinement.
A coarser mesh (Ax™ ~ 20, Az & 15) would require local refinement for an adequate
resolution, corresponding to a minimal 2 % extra mesh count. The mesh sensitivities with
and without local refinement indicate that the mesh resolution required for resolving a trip
properly should satisfy a dual requirement of having both a fine enough first wall-normal
mesh spacing well within the local viscous sub-layer (e.g. An™ < 2) on the trip element
surface, and having a fine enough mesh for the inner boundary layer region around the
trip, approaching a DNS mesh for the near-wall region.

Particular attention is paid to the post-tripping non-equilibrium development phase of
a turbulent boundary layer before reaching a fully developed equilibrium state. Excessive
large-scale disturbances residing in the lower log-region are associated with the tripping,
clearly observable from spectral and modal representations. These triping-induced large
scales in the outer flow are shown to survive a longer distance downstream compared with
the inner near-wall counterpart. Both modal analyses using the EMD (Huang ef al. 1998)
and the DMD (Schmid 2010) indicate that initial tripping-induced large-scale disturbances
do not have noticeable ‘footprints’ on the near-wall flow. Moreover, the DMD modal
analyses illustrate clearly that the streamwise decay of the trip-induced disturbances is
scale-dependent, with larger scale disturbances decaying seemingly faster than shorter
ones. Overall, not only do these outer-flow large scales have no marked ‘footprinting’
on the near-wall region, but they also seem to be more difficult to survive along the
streamwise direction than those with shorter-length scales. This is in clear contrast to
well-established wall-bounded turbulence at a high Re where long coherent streaks appear
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persistently in the outer flow region with a marked ‘footprinting’” on the near-wall part
(Marusic, Mathis & Hutchins 2010).

When implementing the two-scale method for the tripped boundary layer flow, a locally
embedded fine-mesh block is first set up and sized for adequately covering and resolving
the trip element and its downstream proximity where the tripping-related large-scale
vortical disturbances are initiated. The tripping effects on the downstream turbulent
regime are seemingly insensitive to the spanwise size of the frontal fine-mesh block.
Characteristics of large-scale unsteadiness around the trip appear to be similar regardless
of the spanwise size of the embedded block though detailed spectra over the trip show
some differences. These differences manifested in the local spectra around the trip seem to
vanish quickly further downstream with very limited history effects. Therefore, the frontal
fine-mesh block with a short span comparable to those embedded blocks for the tripped
TBL is deemed adequate.

For a tripped turbulent boundary layer, the block-spectral method with a Chebyshev
mapping is shown to be effective. The space—time averaged fine-mesh solution is taken as a
target, leading to source terms for the upscaled equations in the corresponding coarse-mesh
region. The source terms generated from the locally embedded near-wall fine-mesh blocks
are effectively propagated to the global coarse-mesh near-wall region by the Chebyshev
spectral mapping. The present two-scale method and implementation are validated and
demonstrated by the calculated mean statistics and energy spectra in good agreement
with full LES and DNS results. Finally, the scaling of computational mesh count with
respect to the Reynolds number (based on the boundary layer thickness §) is estimated.
It is highlighted that the overall mesh count—Re scaling may be potentially reduced from

O(Re é's) for the full wall-resolved LES to O(Reg'g) for the present two-scale method.
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