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Abstract

An Eisenstein-like criterion is proved for power series with algebraic coefficients satisfying al-
gebraic differential equations of a certain general kind. The proof is elementary and the result
extends earlier results of Hurwitz, Polya and Popken

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 11 Q 10;
secondary 30 B 10.

1. Introduction

Algebraic coefficients of formal power series which satisfy certain kinds of
equations possess a number of interesting arithmetic properties. We address
here the problem of determining the shape of the denominators in such co-
efficients. A classical result of Eisenstein (see Polya and Szego [10, Chapter
3]) states that if a power series

(i) ^
n=0

with rational coefficients represents an algebraic power series, that is, is a
solution of an algebraic equation of the form

(2) PK(z)yK + PK_l(z)yK-l + --- + Pl(z)y + PQ(z) = 0
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where Pt(z), i = 0, ... , K, are polynomials with rational coefficients, PK(z)
^ 0, then there exists a positive integer / such that Inan is integral for each
n > 1. In [3], this theorem has been generalized to a wider class of power
series, termed Eisensteinian power series. A formal power series of the form
(1) with algebraic coefficients is said to be Eisensteinian if there exists a pos-
itive integer / such that Inan is an algebraic integer for all n > 1. The
result in [3] says that if a power series (1) with algebraic coefficients satis-
fies an algebraic equation of the form (2) with all Pt(z) being Eisensteinian
series and PK(z) ^ 0, then y is also Eisensteinian. Passing from algebraic
to linear differential equations, the situation is generally more complicated.
It is convenient to introduce another definition. A power series (1) with
algebraic coefficients is said to be an H-series if there exist a positive in-
teger / and a nontrivial polynomial Q(z), possibly dependent on / , with
rational integral coefficients and with Q(j) ^ 0 for all natural j such that
Q(l)Q(2) • • • Q(n)aI+n is an algebraic integer for each n > 1. The simplest
examples of //-series are of course polynomials with algebraic coefficients.
A special case of what we proved in [4] asserts that if a power series (1) with
algebraic coefficients satisfies a linear differential equation

where Pt(z), i = 0, . . . , K, are polynomials with algebraic coefficients,
PK{z) ^ 0, then y is an //-series. Furthermore, if 0 is not a singularity
of the differential equation, the result simplifies considerably. In this case,
we have that n\Qnan is an algebraic integer for all n > 1, where Q is a
fixed positive integer, and we say that y is an HQ-series.

It seems natural and more useful to consider not only solutions of linear
differential equations, but also other more general differential equations. We
treat here the case of (generalized) algebraic differential equations for which
the shape of the denominators can also be determined. For brevity, following
[5], we say that a power series which satisfies an algebraic differential equation
is differentially algebraic (or DA for short). Hurwitz [ 1 ] proved that if a power
series (1) with rational coefficients is DA, then there exist a positive integer /
and a nontrivial polynomial Q(z) with rational integral coefficients and with
Q(j) ^ 0 for all natural j such that the prime factors in the denominators of
the coefficients aI+n divide Q(I)Q(I + 1) • • • Q(I + n) for all n > 1. Kakeya
[2] slightly improved this information by making explicit the degree of Q(z).
Polya [9] refined Hurwitz's proof to deduce delicate estimates on the size of
the coefficients extending a more restricted result of Pincherle [8]. Better and
more general size estimates have been obtained by Popken [11], [12], Mahler
[6], [7], Sibuya and Sperber [13]. In this paper, we pursue the original line
of Hurwitz and prove a theorem analogous to that of Eisenstein for a class
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containing the DA series. The proof is algebraic in character and its basic
ideas can be traced back to the works of Hurwitz, Polya and Popken.

Let us begin with the following definition. A power series (1) with algebraic
coefficients is said to be an HPP-series (or series of Hurwitz-Polya-Popken
type) if there exist a positive integer / and a nontrivial polynomial Q(z),
possibly depending on / , with rational integral coefficients and with Q(j) ^
0 for all natural j such that

is an algebraic integer for each n > 1, where [x] denotes the integer part of
real x. Throughout the paper, we make use of the standard abbreviation

yt := d'y/dz'

for the derivatives of y = y(z).
Our principal result is

THEOREM. Let y = E ^ o
a « 2 " and for finitely many k.let tk = Y^=otknz"

all be power series with algebraic coefficients. Assume y satisfies a (general-
ized) algebraic differential equation of the form

where P is a polynomial in y, yx, ... , ym with coefficients tk . Assume also
that the separant of this differential equation

If all the tk 's are H-series, then y is an HPP-series.

2. Auxiliary lemmas

We first establish a few lemmas by following closely the proofs given in
Popken [11]. The proof of the main theorem will be given in the next sec-
tion. Apart from using algebraic identities from these lemmas, there are
fundamental ideas from Hurwitz [1] and Polya [9].

LEMMA 1. Let m, k^ (/n = 0, 1, . . . , m) be nonnegative rational inte-
gers. Let t := t(z), y := y(z) be functions differentiable arbitrarily often.
Set
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(1) For h > 0, we have

. h

az

t y y

where Ah are rational integers, and the sum extends over the (m + h + 2)-

tuples x — (K , XQ > • • • > Xm+h) of nonnegative rational integers subject to

m+h m m+h m h

T=0 /i=0 r=0 fi=0 r=l

(2) Each summand on the right hand side of (3) contains at most one factor
yT with r > m + j(h + 1).

(3) If T is an integer, with x > m + \{h + 1) and if the summand of (3)
divisible by yT is denoted by Ah(T)yT (Ah(T) depends of course on x, z),
then

PROOF. (1) The assertion is clear for h = 0 and follows for h > 0 by
induction.

(2) If the assertion were false, then on the right hand side of (3) there
would exist a summand of at least two terms, say ym+T and ym+T with

T, > j(h + 1) and x2 > \{h + 1), and so with T, + x2 > h + 1. This
contradicts the third condition in (4).

(3) Let T be an integer, with x>m + \{h + \), and let the term from (3)
not divisible by yT be Bh{T). Then

(6) ^ =

Let / , / (fi = O,... , m) be nonnegative integers, and set

U:=zlyl°y[l •••y£.

By Leibniz's formula, we have

dh(TU) ^(h\dgTdn~gU
dzh j ^ \gJ dzg

 dz»-* •

Substitute for the derivatives on the right from (6) and expand. By part (2) of
the lemma, the coefficient of y2 is 0 and the coefficient of yz gives Ah(TU).
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That is

/LN (A(T)B (U) + Ah (U)B(T)),= £ (h)

Therefore

(7) Ah(TU) = J2 (k\{Ag{T){Bh_g{U)+yxAh_g{U))

Ah_g(U)(Bg(T)+yrAg(T))}

g=0

Now assume the assertion holds for the expressions T and U and substitute
for Ah_g(T) and Ah_g(U).

h

We interchange the order of summation and note that h-x+ft < h-x+m < h
to get

We have thus proved that if the assertion holds for T and U, then it also
holds for TU. We need only show now that the assertion holds for different
factors t = t(z), y, y{, . . . , ym of T. If T = t, then both sides of (5) are
equal to 0. If T = yt (0 < i < m), then the left hand side of (5) is either 1
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or 0 according as x = i + h or not, while the right hand side is clearly equal
to {h_

h
T+i)d

h~T+> \ldzh~x+l and so is either 1 or 0 according as x = i + h or
not. Hence, the lemma follows.

LEMMA 2. Let m, kM {fi = 0, . . . , m), t, y and T be as in Lemma 1.
For each pair of nonnegative integers s, h with h > 2s + 1, we have

m+h—s '

az a=0 0 v /*/ uz vsm_fl

where

dhT ^ , A / h \ d'-" dT

az a=Q ^=0 \
u /*/ az

Bm,u„ — / u m , i „ _i y y, •••ym+/l_s_l

X

is a finite sum with rational integral coefficients Bm,._. „ and the sum Y]
extends over (m + h - s + \)-tuples / = (K , x0» Xi. • • • > Xm+h-s-{) of non-
negative integers subject to

m+h—s—I m m+h—s—I m

i=0 fi=0 r=0 >t=0

PROOF. For each x — m + h-a {a = 0, . . . , s), because h > 2s + 1, the
inequalities x > m + h - s > m + j(h + 1) are satisfied. By Lemma 1, there
appears in each summand of (3) at most one factor ym+h_a (0 < a < s)
whose coefficient is

h \ d dT v-̂  / » \ d dT
{hT + n) dzh~z+>i dyn'^yo + V'™) dz°+fl-m

Consequently, (8) is fulfilled with

z'

where the sum £ z ' extends over all systems jf' = (K , x 0 , Xx, • • • . Xm+h-s-1 >
0, . . . , 0) of nonnegative integers satisfying (9).

LEMMA 3. Let y :—y{z) and for finitely many k, tk := tk(z) be functions
differentiate arbitrarily often. Assume y and all tk together with all their
derivatives at the origin take algebraic values. If y satisfies a {generalized)
algebraic differential equation of the form
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where P is a polynomial in y, y{,..., ym with coefficients tk , and if the
separant dP/dym ^ 0 , then there exist a nonnegative integer s, and a non-
trivial polynomial ps{z) with algebraic integral coefficients such that for all
h>2s+l,we have

(11) / ? \ \ U l
where the Dm+hs x are rational integers and the sum J2i extends over
(m + h - s + l)-tuples k = {X, Ao, . . . , Xm+h_s_l) of nonnegative integers
subject to
(12)
m+h—s—l m m+h—s—l m

^2 A T < m a x ^ ^ , X + ^2 TAT < h + max
r=0 n=0 T=0 /x=0

PROOF. Applying Lemma 2 to each expression T = t^^y^ . ..y1^1 of P
with nonnegative integers s and h , h > 2s + 1, we get

rfV * - / h \ d"-" ( dp \

dzh hym+h~aU^a-^dza~11 \ d y - J m+h~s'
where the finite sum

C — V C tmvx<>vx< • • • v A m + * - s - '

I

has rational integral coefficients Cm+h_s x, and the sum £)A extends over
(m + h - s + l)-tuples k of nonnegative integers subject to (12). Making use
of the differential equation and putting z = 0, we get

~ ">+h-s'

where now the finite sum
, = 0 - - ^ ^ " " V a ^ - ,

X

has rational integral coefficients, and the sum extends over the same range
of nonnegative integers as before. Since the separant is not identically zero,
there is a nonnegative integer j such that

f dj dP\

and so among the j + 1 polynomials (in h)

' dx~" dP
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at least pAh) does not vanish identically in h . Let ps(h) be the first among
the (j+1) polynomials in (14) which does not vanish identically in h . Thus
for h > 2s + 1, (13) implies

(15) Ps(h)ym+h_s(0) = Dm+h_s.

Since y, tk and all their derivatives take algebraic values at the origin, then
(14) indicates that all coefficients of ps (h) are algebraic. Multiplying through-
out (15) by a suitable positive integer and modifying Dm+h_s x accordingly,
we can be sure that all coefficients of pAh) are algebraic integers.

3. Proof of the theorem

Since the tk are //-series and there are only finitely many of them, we
can find a nonnegative integer / and a nontrivial polynomial Q(z) with
rational integral coefficients, and with Q(j) ^ 0 for natural j , such that
Q(l)Q(2) • • • Q(n)tk

I+"\0) is an algebraic integer for each natural n, and for
all k. By Lemma 3, we can find a nonnegative integer j , and a nontrivial
polynomial ps{z) with algebraic integral coefficients such that for all h >
2 ^ + 1 , (11) holds along with (12). Put n = m + h-s so that n > m + s+ I,
and ps(h) = p{n). Then (11) reads

(16) J " \ X ^ X

where the sum on the right hand side runs through nonnegative integers sub-
ject to

n - l n-l

(17) ^2K^D' ^ + ^2^^T<n + S, X<n-m + s ,
r=0 T=0

where D := maxk J2™=o ^ > s '•= -m+s+ maxv X)J=o ̂  . Let iV be a pos-
itive integer such that Ny(0), Ny^O), . . . , Ny^O) are algebraic integers.
Multiplying (16) throughout by ND and adjusting Dn k, p(n) accordingly,
we see that (16) and (17) still hold with yn(0) replaced by JV>n(O) for all
n . We then assume for the rest of the proof that y(0), y,(0), . . . , ys(0)
are algebraic integers. We may also assume with no loss of generality that
I > IS. Let R be a positive integer sufficiently large so that R > I and
p(n) ^ 0 for all n > R.
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Now construct a sequence of algebraic integers (uv) by setting

u{ — denominator of y5+1(0),

«2 = denominator of ys+2(0) > • • • >
UR-S = denominator of yR(0),

wR_5+i =P(R+1), uR-S+2 =P(R + 2 ) , . . . , UR_S+I/ = p{R + v).

Next construct another sequence of algebraic integers (Uv) by setting

r . [I//1] [I//2J [vlv]

Observe that for positive integers

(18) \<a<v,\<fi<v,...,\<y/<v and a + fi-\ Vy/<v

we have that

(18)' Uv is divisible by the product uv\JaU?- • -U^.

Let M be a positive integer such that Mtk (0) are algebraic integers for
A = 0, 1 , . . . , / and for all A;. Define

so V{v) is a polynomial in v with rational integral coefficients. Now con-
struct a final sequence of rational integers (Wv) by Wv-\ if J/ < 0, and

Observe that (18)' also holds for Wv as well as Uu .
We shall show by induction that yn(0)Wn_sUn_s is an algebraic integer

for all n > S. For n = S + 1, S + 2, ... ,R from the definition of (uv),
it is clear that yn{0)un_s is an algebraic integer, and so is yn(0)Wn_slIn_s .
Now consider n > R, and assume yk{0)Wk_sUk_s are algebraic integral for
S < k < n - 1 . Rewrite (16) as

X

where X, a, b, ... , g, h, ... , I are nonnegative integers subject to 0 < / <
n-m + s , 0<a<n-l, 0 < b < n-l, ... , 0 < I < n-l, a>b>->l,
X + a + b + --- + l<n + S. We distinguish three separate cases.

CASE 1. a, b, . . . , g, h,... , I < S. Then by the algebraic integrality of
y{0), y,(0), . . . , ys(0), we see that ya{0)yb(0) • • -y,(0) is algebraic integral,

and by (18)', we have that •f=1Dn xya{0) • • -y^O) is algebraic integral. Since
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Wx_jt{^{Q) is algebraic integral for all k, and k < n-m+s < I + (n+S-I),
that is, X-I <n-S, then by (18)' (for Wv) we see that

is an algebraic integer.
CASE 2. a > S and all other indices b, ... , I < S. Since a < n, then

by the induction hypothesis Wa_sUa_sy a{Q)y b(Q) • • -^(0) is an algebraic in-
teger. From (18)' then Wa_s(Un_s/un_s)ya{0)yb(Q) • --^(0) is an algebraic
integer. Now since W^jt^iO) is an algebraic integer, a + X-S-I < n-I,
and using (18)' for Wv , we have that statement (19) still holds in this case.

CASE 3. there are two or more indices, say, a, b, ... , g > S and the re-
maining indices h, ... , / < S. Since a, b, ... , g < n, then the induction
hypothesis implies Wa_sUa_sya(0)Wb_sUb_syb(0)--Wg_sUg_syg(0)yh(0)
• • • ̂ (0) is algebraic integral, and since A + (a - S) + (b - S) H h (g - S) <
n-S, (18)' implies WH_s_x(Un_s/un_s)ya(0)yb(0)---y,(0) is algebraic in-
tegral. Since W^_/4A>(0) is algebraic integral, we conclude also in this case
that (19) holds.

Hence, yn(0)Wn_sUn_s is algebraic integral for all n >S. Putting q{n) =
V(n)un (n > 1), we get that q{n) is a polynomial in n with algebraic
integral coefficients such that

(20)

is algebraic integral for all n > S. Let r{n) be the product of all con-
jugate polynomials of q{n). Then statement (20) is valid with q(n) re-
placed by r(n). Putting F(n) = (r(l) • • • r{S)f+i r(S + n), we see that
ir["/i](1)ir[«/2](2)... Fln/n](n)yn+s(0) is algebraic integral for all n > 1, that
is, y is an HPP-series.
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