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On irreducible representations of Fuchsian
groups

Vikraman Balaji and Yashonidhi Pandey
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Abstract. Let R ⊂ P1
C

be a finite subset of markings. Let G be an almost simple simply-connected
algebraic group over C. Let KG denote the compact real form of G. Suppose for each lasso l around
the marked point, a conjugacy class C l in KG is prescribed. The aim of this paper is to give verifiable
criteria for the existence of an irreducible homomorphism of π1(P1

C
/R) into KG such that the image

of l lies in C l .

1 Introduction

Let G be an almost simple simply-connected algebraic group over C. Let KG denote
a maximal compact subgroup. Let R ⊂ P1

C
be a finite subset of distinct closed points

or markings. Recall that the fundamental group π1(P1
C
/R) is a free group on

s = ∥R∥-number of generators γ1 , . . . , γs such that γ1 . . . γs = 1. Recall that a subset
H ⊂ KG is called irreducible if the {Y ∈ Lie(G) ∣ adh(Y) = Y ,∀h ∈ H} = center of
Lie(G) = 0 and a homomorphism ρ ∶ π1(P1

C
/R) → KG is called irreducible if the

image ρ(π1(P1
C
/R)) ⊂ KG is irreducible (see Ramanathan [16]). For i ≥ 3, let

{C i ∣1 ≤ i ≤ s} denote a prescribed set of conjugacy classes in KG . The aim of this
paper is to give verifiable criteria for the existence of an irreducible homomorphism
ρ ∶ π1(P1

C
/R) → KG , such that the conjugacy class of ρ(γ j) lies in C j .

The multiplicative Horn problem asks whether there exists a set of lifts {c i ∈ C i}
satisfying ∏ c i = 1. S. Bauer [4] was the first to relate the representation question to
standard algebro-geometric objects. For G = SUn such a criteria was obtained inde-
pendently by Agnihotri–Woodward [1] and P. Belkale [5]. Teleman and Woodward
[19] gave numerical criteria for this problem for arbitrary G. We note that the additive
Horn problem was solved in the late nineties independently by A.A. Klyachko [9] and
Knutson and Tao [10].

By Balaji–Seshadri [3, Theorem 8.1.7 and Corollary 8.1.8] for finite-order conjugacy
classes and by [2, Corollary 10.6] for arbitrary ones, the existence of an irreducible
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2 V. Balaji and Y. Pandey

set of lifts is equivalent to the existence of a stable torsor under a suitable parahoric
Bruhat–Tits group scheme on P

1
C

. When KG = Un , by Mehta–Seshadri [12] this
problem is equivalent to the existence of a stable parabolic vector bundle on P

1
C

.
From the perspective of the root system of G, we recall that conjugacy classes in

KG are parameterized precisely by the points of the Weyl alcove a0 (see [14, p. 151]).
In this setting, our aim is to give a numerical verifiable criteria for the existence of
such an irreducible set of lifts in terms of the points of the Weyl alcoves determined
by the {C i}. More precisely, let a0 denote the points of the closed Weyl alcove. Let
Δs denote the set of points θ = {θx}x∈R ∈Maps(R, a0) such that there exists a stable
parahoric torsor on P

1 with weight θ. In this note, we want to describe the stable
polytope Δs ⊂Maps(R, a0). One defines the semistability polytope Δss similarly.

Such criteria were obtained by I. Biswas [6] for U2 and later [7] for Un , by P. Belkale
[5] for SUn , and by Y. Pandey [15] for the maximal compact subgroups of SOn(C) and
Sp2n(C).

Returning to the setting of [3], let MP1(G) denote the moduli stack of G-torsors
on P

1
C

, where G is a Bruhat–Tits group scheme on P
1
C

at a fixed set of marked points
on P

1
C

given by a choice of weights θ. Let MP1(G
I

) be the moduli stack of torsors
with Iwahori structures at these marked points. Recall that the points of MP1(G

I

) can
be viewed as principal G-bundles with parabolic structures given by the Borel B at
points x ∈ R, analogous to vector bundles with full-flag parabolic structures. Under
this identification, the set consisting of the trivial G-bundle with varying B-structures,
gives a subset of the points of MP1(G

I

).
Denoting the moduli stack of principal G-bundles by MX(G) for an arbitrary

curve X, it can be seen that these fit in together in the following Hecke-modification
diagram:

MX(G
I

)

p
�����

���
���

�

q
����

���
���

��

MX(G) MX(G),

(1.0.1)

where the morphism q is simply the one which forgets the flag structures (see the
discussion after (2.1.3) for details).

In Section 5, we explain the main construction of this paper generalizing the
completing flag construction of [5, Appendix]. For each representation ρ of G, this
construction extends weights θ on G-torsors to GI-torsors. Recall that if V∗ and W∗
are two parabolic vector bundles, then the quasi-parabolic structure underlying their
tensor product depends on the weights and is not determined by the quasi-parabolic
structures underlying V∗ and W∗. Keeping this feature in mind, as it happens in [2,
Section 4.2], in order to carry the construction out for each point x ∈ R, we need to
make the choice of a smaller facet a○,x

ρ (see Definition 5.2.1). Then in Section 6, given
a choice of weights θ for G, we show how one can derive an extended set of weights
(θ , {a○,x

ρ }x∈R) for GI-torsors EI such that the stability condition for a G torsor E with
weights θ becomes equivalent to an intrinsic stability condition for all the GI torsors
EI with weights (θ , {a○,x

ρ }x∈R) sitting above E under the map p (see Proposition
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On irreducible representations of Fuchsian groups 3

6.5.1). Thus, for varying choices of {a○,x
ρ }x∈R, the (EI , θ , {a○,x

ρ }x∈R) are (semi)stable
or not simultaneously. We turn this observation into a definition (see 6.5.2). The
equivalence of stability of parahoric torsors to that of usual parabolic G-bundles but
for extended weights is the main point of Sections 5 and 6 and is the technical heart of
this work.

As we noted above in (1.0.1), through q the stability condition can alternatively
be seen as an extended weight θ stability condition on the underlying parabolic
G-bundle. Denoting by Ad the adjoint representation, we prove the following
theorem.

Theorem 1.0.1 Let X = P1. The open sub-stackMP1(G)
s

ofMP1(G) consisting of stable
torsors is non-empty if and only if the trivial G-bundle with generic B-structures and
extended weight θ (see 6.5.2) is stable as a point of MP1(G

I

).

The setting is as in [19], and by Proposition 6.5.4, the sought-after criterion now
gets translated into one in terms of Gromov–Witten numbers. We describe the stable
polytope Δs in Corollary 3.1.1 and Corollary 3.1.2 shows that the difference between
Δss and Δs is at the boundary of Maps(R, a0).

Let EI be the trivial G-bundle with parabolic structures of the full-flag type, i.e.,
B-structures at the marked points R. For a parabolic subgroup P ⊂ G, let EI

P
be a

reduction of structure group to P. We then have an inclusion of Lie algebra bundles
EI

P
(p) ⊂ EI(g). Observe that the associated Lie algebra bundle EI(g) gets canonical

parabolic structures at the marked points (these will not be full-flag types though).
We denote this Lie algebra bundle with parabolic structures by EI(g)∗. The sub-
bundle EI

P
(p) gets the canonical induced parabolic structures and we have similarly

EI
P
(p)∗ ⊂ EI(g)∗.
Say a P-reduction EI

P
⊂ EI is of the minus 1 type if the parabolic degree of the

quotient EI(g)∗/EIP (p)∗ is 0 and further, the degree of the vector bundle underlying
the quotient EI(g)∗/EIP (p)∗ is −1. We prove the following theorem.

Theorem 1.0.2 A point θ ∈ Δss lies in Δs if and only if the trivial G-bundle EI with
generic B-structures and extended weight (θ , {a○,x

Ad }x∈R) does not have any P-reduction
EI

P
of the minus 1 type.

Proposition 7.0.1 reduces the condition in the above theorem to Gromov–Witten
numbers. This gives new verifiable criteria for points in Δss to lie in Δs .

1.1 Comparison with [19]

The inequalities in Corollary 3.1.1 determining Δs are strict versions of those in [19,
Proposition 4.4] determining Δss . A point to be noted is that, whereas [19] had an
underlying principal G-bundle to work with, in general, we do not have such a bundle.
In fact, the extending weight construction and Theorem 1.0.1 fill the void left by the
nonexistence of an underlying principal G-bundle. The bundle-theoretic description
of difference between points in Δss and Δs sheds some light on the role played by
them.
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4 V. Balaji and Y. Pandey

1.2 Some remarks on the far wall and stability

We conclude by giving a few words of justification on why the far wall cannot be
avoided for the stability question (although it can be avoided for semistability in the
very special case of G = GL(n) because of the presence of an underlying GL(n)-
bundle). Let us mention some difficulties. First, in [15, Section 7], some examples of
stable parahoric symplectic and (special orthogonal) torsors are shown to lie on the
product of far walls. Second, Belkale has shown that (Δss)○ ⊂ Δs (see [15, Proposition
7.0.5]). So they have the same closures in Maps(R, a0). Also the origin in Maps(R, a0)
lies in Δss /Δs because it corresponds to the case of principal G-bundles with trivial
parabolic structures. Finally, Meinrenken and Woodward (see [13, Corollary 4.13])
have shown that Δss is a closed convex polytope of maximal dimension inside
Maps(R, a0) and to the best of our knowledge, for stability, no such argument is
known. Thus, it does not seem possible to reduce the problem of determining Δs to
the case of generic weights, i.e., the interior of Maps(R, a0). We are forced to consider
Maps(R, a0) fully and directly. Now weight tuples, one of whose factor lies on the far
wall of a0, correspond to strictly parahoric (non-parabolic) torsors under parahoric
group schemes. These need to be reckoned with in the sense there is no underlying
principal G-bundle. Consequently, one cannot deform to the trivial bundle without
going through Heckemodifications. In Corollary 3.1.2, we find that the difference
between Δss and Δs is at the boundary of Maps(R, a0).

1.3 Some remarks on nonexistence of underlying bundle and Hecke modification

We carry out the technique of Hecke modification in this paper for the following
reason. In [5] or [15], one finds that for Δs , the corresponding hyperplanes are
not merely the strict versions of the hyperplanes for Δss . Indeed, this is in fact
expected, because for stability, unlike for semistability, one cannot restrict oneself
only to the case when the Gromov–Witten invariant is one. But, even if one allows
for higher Gromov–Witten numbers, as we do in this paper, the formulation of the
slope inequalities for stability in [5] could be done because in the case G = SLn ,
by implicitly extending structure group to GLn , there was an underlying parabolic
vector bundle to work with and the stability of the parahoric torsor, when G = SLn , is
equivalent to that of the parabolic vector bundle. However, in general, for an arbitrary
G taking an associated vector bundle under a faithful representation does not preserve
stability.

The hyperplanes defining the semistability polytope (see [5, 19] (from which even
the stability polytope may be deduced)) arise by a translation of semistability con-
ditions on the trivial principal G-bundle with generic parabolic structures. Further,
the reduction to this special case relies on the existence of an underlying G-bundle to
work with. For these reasons, for stability, strict versions of slope inequalities, seem
inadequate to address the situation for weight tuples with at least one coordinate in
the far wall.

Lastly, the reduction to Gromov–Witten inequalities works when one has a trivial
principal G-bundle but in the parahoric situation, with weights constrained to lie on
the far wall, there is no reduction to anything analogous to the trivial bundle.
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On irreducible representations of Fuchsian groups 5

It might seem that parahoric weights from the far wall can still be handled by
going to an equivariant bundle as in [3]. But again, in the equivariant setup, there
is no analogue of Ramanathan’s theorem [17] on deformations of principal G-bundles
on P

1. In this context, we wish to clarify that in [15, Section 4.2, p. 109], for the
case of classical groups G of Bn,Cn, and Dn type, the second-named author found
a Hecke modification allowing to pass from parahoric torsors to usual parabolic
G-bundles preserving (semi)stability. Such a route seems more elusive for the case
of exceptional G. In this note, we give a unifying argument in the general case. We
also wish to point out that whereas in [5, 15], the weights do change under Hecke
modifications, they do not in this note. In terms of line bundles, we are merely pulling
them back under p of (1.0.1) and then viewing them through q.

1.4 Layout

We develop notions over a general smooth projective curve X over an algebraically
closed field k of arbitrary characteristic throughout the paper and specialize to the
case X = P1 and k = C only to prove the main theorems in Sections 3 and 7. In
Section 2, we explain our basic setup. Then after recalling the main consequences
of our construction, we prove our first main theorem in Section 3 and derive the
stable polytope in Corollary 3.1.1. In Section 4 after recalling [5, Appendix], we
recast it in our setup of alcoves, weights, facets, and Hecke-modification diagram.
The introduction of Section 5 explains the main constructions of the paper. It also
has a few examples serving to highlight the key issues. In Section 6, we show the
equivalence of (semi)stability of usual parahoric torsors (E, θ) with that of extended
weight parahoric torsors (EI , θ , {a○,x

ρ }x∈R). In Section 7, we prove the second main
theorem.

2 The moduli stack MX(G)

2.1 Local group theoretical data of parahoric group schemes

We will write k instead of C whenever the results we use holds for an algebraically
closed field of arbitrary characteristic. Let A ∶= k[[t]] and K ∶= k((t)) = k[[t]][t−1],
where t denotes a uniformizing parameter. Let G be an almost simple simply connected
affine algebraic group defined over k. We now want to consider the group G(K).

We shall fix a maximal torus T ⊂ G. Let R = R(T , G) denote the root system
of G (see [18, p. 125]). Let Y(T) = Hom(Gm , T) denote the group of all one-
parameter subgroups of T. The standard affine apartment AT is an affine space under
Y(T) ⊗Z R. We may identify AT with Y(T) ⊗Z R (see [3, Section 2]) by choosing a
point v0 ∈ AT . This v0 is also called an origin. For a root r of G and an integer n ∈ Z,
we get an affine functional

α = r + n ∶ AT→R, x↦r(x − v0) + n.(2.1.1)

These are called the affine roots of G. For any point x ∈ AT , let Yx denote the set of
affine roots vanishing on x. For an integer n ≥ 0, define

Hn = {x ∈ AT ∣∣Yx ∣ = n}.(2.1.2)
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6 V. Balaji and Y. Pandey

A facet σ of AT is defined to be a connected component of Hn for some n. The
dimension of a facet is its dimension as a real manifold. We refer the reader to [2,
Section 3.2] for the definition of the parahoric subgroup of G(K) corresponding to a
facet.

The subgroup G(A) ⊂ G(K) is an example of a maximal parahoric subgroup. We
have a natural evaluation map ev ∶ G(A) → G(k) and the inverse image I ∶= ev−1(B)
of the standard Borel subgroup B ⊂ G is called the standard Iwahori subgroup. Any
parahoric subgroup contains a G(K)-conjugate of the standard Iwahori subgroup I.
In this paper, Θ will always be either a facet or a point of AT . By [8, Section 1.7],
we have an affine flat smooth group scheme GΘ�→ Spec(A) called the parahoric
group scheme associated with Θ. It is uniquely determined by its A-valued points
which equals the parahoric group corresponding to Θ. In particular, the group scheme
whose A-valued points is I is called the standard Iwahori group scheme. For a facet
σ ⊂ AT , let Gσ → Spec(A) be the parahoric group scheme defined by σ .

2.1.1 Alcove

We choose a Borel B in G/k containing T. This determines a choice of positive
roots. Let a0 denote the unique closed alcove in AT whose closure contains v0 and
is contained in the finite Weyl chamber determined by positive simple roots. We
will denote its interior by a○0. It is the facet corresponding to the standard Iwahori
subgroup. The affine walls defining a0 determine a set S of simple affine roots. We will
denote these simple roots by the symbols {α i}.

2.1.2 The parahoric Bruhat–Tits group scheme

For an arbitrary closed point y ∈ R, let Dy ∶= Spec(Ôy), let Ky be the quotient field of
Ôy . Let R ⊂ X be a non-empty finite set of closed points. For each x ∈ R, we choose a
facet σx ⊂ AT . Let Gσx →Dx be the parahoric group scheme corresponding to σx . Let
X○ = X /R. In this paper, by a Bruhat–Tits group scheme G→X, we shall mean that G
restricted to X○ is isomorphic to the trivial constant group scheme X○ ×G on X○, and
for any closed point x ∈ X, G restricted to Dx is a parahoric group scheme Gσx such that
the gluing functions take values in Mor(D○x , G) = G(Kx). This is also the setup of [3,
Definition 5.2.1]. Thus, the Ôy-points of the restriction of G to this disk give parahoric
subgroups of G(K).

We also suppose that the facets {σx}x∈R lie in a0 because it can easily be seen that for
results and constructions in this note the general case of arbitrary facets reduces to this
one.

Remark 2.1.1 The group scheme G depends on the gluing data. But if G and G′ are
two parahoric group schemes on X which differ only in their gluing data, then it is
straightforward to check that the stacks MX(G) and MX(G′) are isomorphic. For this
reason, we fix one gluing data to get G and work with this.

We use the notation X ×G to denote the trivial group scheme on X. Let G
I

→X
(resp. G

I

tr→X) be the group scheme obtained by gluing X○ ×G with the standard
Iwahori group scheme Ga○0 at each parabolic point x ∈ R using the same gluing
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On irreducible representations of Fuchsian groups 7

functions as G (resp. the identity in G(Kx) as a gluing function). For each x ∈ R,
the inclusions I ⊂ G

Dx
(Ôx) (resp. I ⊂ G(Ôx)) induce morphisms of group schemes

G
I

→ G (resp. G
I

tr → X ×G) over the whole of X.

2.1.3 Parahoric torsors

Let G→X be a group scheme as in Section 2.1.2. A quasi-parahoric torsor E is a
G-torsor on X. This means that E ×X E ≃ E ×X G and there is an action map a ∶
E ×X G→E which satisfies the usual axioms for principal G-bundles. A parahoric
torsor is a pair (E , θ) consisting of the pair of a quasi-parahoric torsor and weights
θ = {θx ∣x ∈ R} ∈ (Y(T) ⊗R)m such that θx lies in the facet σx (see Section 2.1.2)
and m = ∣R∣. Let MX(G) denote the moduli stack of G-torsors on X. The natural
morphisms of group schemes seen above induces the following morphisms of stacks:

MX(G) ←MX(G
I

)
2.1.1
≃ MX(G

I

tr)→MX(G).(2.1.3)

In particular, the morphism MX(G
I

) q →MX(G) induced by the morphism
G

I

→ X ×G can be viewed as follows. The points of the stack MX(GI) are G-bundles
on X with B-structures at the marked points R. The morphism MX(GI)→MX(G)
forgets the B-structures. Thus, MX(GI) seen from the standpoint of MX(G) is the
analogue of the moduli stack of vector bundles with full-flag structures at the marked
points. We will call morphisms in the diagram (1.0.1) as Hecke modification.

Although in the literature, a sequence of flip-flop is called a Hecke modification,
we wish to emphasize that often only a single morphism as above will be required for
the proofs in this paper. For the usual case of parabolic vector bundles, these one-step
modification morphisms correspond to usual Hecke modifications. For torsors, we
will call them both by the same name following Balaji–Seshadri [3].

3 Main theorem

In this section, we suppose that X = P1. We wish to show that after general results
proved in later sections, our main result follows by standard arguments well-known
to experts. Let us begin by the steps of this reduction:

Step 1: Let (E, θ) be a parahoric torsor. Under p ∶MP1(GI) →MP1(G), let EI be
an arbitrary GI-torsor that maps to E and consider the Hecke-modification diagram
(1.0.1). Given a parabolic vector bundle with possibly partial flags, a construction
called completing flags is described in [5, Appendix]. In an analogous fashion (with
a somewhat involved “parahoric” adaptation), in Section 5, we explain how after
choosing any finer facet a○,x

Ad ⊂ a○, in whose closure θx lies, θ may be extended as
a weight (θ , {a○,x

Ad }x∈R) (see (5.2.1)) on EI.
Step 2: We extend the definition of (semi)stability for such objects and call this

construction extending weights (see (5.2.1)). Then in Proposition 6.5.1, we show that
(E, θ) is stable if and only if (EI , θ , {a○,x

Ad }x∈R) is stable as a extended weight parahoric
torsor. This result justifies Definition 6.5.2 where we say that (E

I

, θ) is stable if for
some (and therefore all) choice of {a○,x

0 }x∈R, (EI , θ , {a○,x
Ad }x∈R) is stable. Now we

view EI as a parabolic G-bundle with additional parabolic structures at R.
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8 V. Balaji and Y. Pandey

Proof of Theorem 1.0.1 Since G is simply-connected and X = P1, so by [17,
Theorem 7.4], the principal G-bundle E underlying EI may be put in a family
E→P

1 × T , where the generic bundle is the trivial G-bundle and T is affine. Consider
T1 ∶= T ×M

P1 (G)MP1(GI) corresponding to the classifying map T→MP1(G) of
E. The family E→P

1 × T can be used to make a T1-family of parabolic principal
G-bundles (EI , θ)→P

1 × T1 with extended weights. Thus, we have a degeneration to
EI, where the underlying bundle of the generic object is trivial. Under the morphism
MP1(GI)→MP1(G), let EI→P

1 × T1 give the family E1→P
1 × T1 of G-torsors. It

degenerates to E and we view it as a family with weight θ. Further, by [15, Proposition
6.1.2] stability is an open property of parahoric torsors. Therefore, by Proposition 6.5.1
for generic t ∈ T1, (EI , θ)t→P

1 is stable. So by q (see (1.0.1)), the trivial G-bundle with
extended weight θ and generic quasi-parabolic structure is stable. ∎

3.1 Gromov–Witten numbers and the stability polytope

By Proposition 6.5.4, the above result on parahoric torsors can be interpreted back in
the setting of parabolic G-bundles. With notations as in [19, p. 716], let us denote the
Gromov–Witten number as

nd(wx ∣x ∈ R).(3.1.1)

It counts the number of regular maps ϕ ∶ X→G/P of degree d such that for x ∈ R,
ϕ(x) lies in a generic translate of the Schubert variety Ywx ⊂ G/P corresponding to
wx ∈W . By Remark 6.5.3, for computing the slope inequality of extended weights
parahoric torsors, we may switch from our definition to that in [19] including the
far wall. Then by repeating the arguments exactly as in [19, p. 741, (13)], we get the
following checkable corollary which agrees with [5, 15].

Corollary 3.1.1 The polytope Δs is the set of points θ satisfying the inequality

∑
x∈R
(wx ωP , θx) < d(3.1.2)

for all maximal parabolic subgroups P ⊂ G and nonnegative integers d such that the
Gromov–Witten invariant (see (3.1.1)) nd(wx ∣x ∈ R) ≠ 0.

Corollary 3.1.2 The interior of Δss is contained in Δs . Its complement is the intersec-
tion of Δs with the boundary of Maps(R, a0).

Proof Let θ ∈ (Δss)○. Consider a Euclidean ball B in (Δss)○ about θ. Thus, B is also
a ball in the interior of Maps(R, a0) which equals Maps(R, a○0). Observe if one of the
inequalities in (3.1.2) is non-strict for θ, then points in one of the open hemisphere of B
cannot satisfy (3.1.2). Thus, all inequalities must be strict for θ, i.e., θ lies in Δs . We now
prove the second statement. The intersection of the boundary of Maps(R, a0) with
(Δss)○ is of course empty. We now show the inclusion of Δs / (Δss)○ in the boundary of
Maps(R, a0). Since Δs is an open polytope in the polytope Maps(R, a0), we have Δs ∩
Maps(R, a0)○ = (Δs)○ ⊂ (Δss)○. Therefore, Δs / (Δss)○ is contained in the boundary
of Maps(R, a0). ∎
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On irreducible representations of Fuchsian groups 9

4 Filtrations associated with parabolic vector bundles

In Sections 4–6, the results are of a general nature and so X will be an arbitrary smooth
projective curve of genus g ≥ 0.

4.1 Completing flags [5, Appendix]

For simplicity, we will first assume that we are working with one parabolic point x.
Recall a quasi-parabolic structure is giving a possibly partial filtration

. . . ⊃ E = F0(E) ⊃ F1(E) ⊃ ⋯ ⊃ Fl−1(E) ⊃ Fl(E) = E(−R) ⊃ . . .(4.1.1)

by subsheaves, which can be continued infinitely in both directions. Here, l is called
the length of the filtration. It can at most be the rank of E. It is called a parabolic sheaf
if it has a system of weights α0 , . . . , α l−1 such that

0 ≤ α0 < α1 . . . < α l−1 < 1.(4.1.2)

The weight α i is called the weight of the subsheaf Fi(E). A given filtration (4.1.1) need
not be full. By choosing any complete flag for a given parabolic bundle, in [5], the
notion of R-filtration of [11] is extended to complete flag parabolic vector bundles
with extended weights in [5, Appendix]. This process is carried out as follows. One
considers a filtration

. . . ⊃ En ⊃ En+1 ⊃ . . .(4.1.3)

of sheaves with strict inclusions as in (4.1.1) parameterized by Z together with weights
{αn} inR, which are allowed to coincide now. Thus, (4.1.2) has become non-strict and
is extended by the law:

αk+ml = αk +m.(4.1.4)

The constructions in [5] extend in an obvious way to multiple parabolic points as
well as to non-complete flag parabolic vector bundles, just that the indices are harder
to write because there may be jumps because of partial flags. Note that, as subsheaves
become smaller, their weights become larger.

4.2 Construction inverse to Section 4.1, sliding weights

In 4.1.3, if we forget sheaves E j for which there exists a bigger sheaf with the same weight,
then the reduced subset of {En}, together with the corresponding weights, which are
now distinct, correspond to (4.1.1). On any term Em of the filtration (4.1.3), we can
induce the structure of a parabolic vector bundle by using the l successive subsheaves
in (4.1.1) to get the flags; their corresponding weights may lie outside of [0, 1), but, after
subtracting αm from each of them the weight of Em becomes zero and the remaining
will lie in [0, 1). This will be denoted Em∗. Conversely, Em∗ gives (4.1.1) up to shifting
indices, and the same weights up to a constant. Let us call the process of adding an
arbitrary constant a ∈ R to all the weights at a point x ∈ R as sliding weights. Sliding
weights adds a to the parabolic slope of the bundle or any of its parabolic sub-bundle.
Thus, it leaves (semi)stability invariant. Therefore, up to sliding weights, the formation
of Em∗ is the inverse construction to making the filtration 4.1.3 with weights.
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4.3 Key takeaway on degree computation of sub-bundles from [5]

For simplicity, we first work in the setting of [5] which involves one parabolic point.
Now weights may now lie outside [0, 1). We will denote this as Em∗. The weights are
defined by (4.1.3) and (4.1.4) in such a way that the parabolic degree of Em∗ becomes
independent of m ∈ Z (see [5, p. 83 last para]). Further, on [5, p. 84] for any m1 , m2 ∈ Z
a natural procedure is explained to go from sub-bundles of Em1∗ to Em2∗. By [5,
Lemma 8], this procedure preserves parabolic degree of sub-bundles too. Thus, Em1∗

is (semi)stable if and only if Em2∗ is (semi)stable. These results generalize to multiple
parabolic points also.

4.4 Interpretation of passage from Em1∗ to Em2∗ in our setup of alcoves, weights,
facets, and Diagram 1.0.1

To enable us to adapt aspects of this process in the setting of parahoric torsors, we
need to interpret it in the language of alcoves.

Let us consider the case of SL(n). Let us label the vertices of a0 by integers
{0, . . . , n − 1}. Any facet σ in AT of dimension d determines a set of d + 1 vertices.
Let us call the far wall of σ as the codimension one facet determined by forgetting
the smallest vertex. Define alcove ak+1 inductively by reflecting the alcove ak along
the far wall and label the new vertex by n + k. Let us view the weights of Ek∗ (4.1.3)
as a point in ak by taking barycentric coordinates {αEk+1 − αEk , . . . , αEk+n − αEk+n−1}.
When we pass from Em∗ to Em+1∗, it follows from (4.1.4) that the weights of Em+1∗
are obtained by reflecting the weights of Em∗ along the far wall of am . Thus, in terms
of barycentric coordinates, as a set they remain the same, just that their indexing is
shifted by −1 (mod n), respectively.

Let σ be a facet in the closure of a0 of codimension one where only the affine
root αd vanishes. Then the morphism MX(GI)→MX(Gσ) corresponds to forgetting
subsheaves in the Z-filtration whose index is d (mod n). In terms of complete
flag parabolic vector bundles, this corresponds to forgetting exactly one term for
d (mod n) ≠ 0 and a Hecke modification by E0/E1 for d = 0 which gives a shift by
one. These facets are of course much more general than those of a0 and its facets.
They hold for any pair of facet σ1 and its codimension one subfacet σ . Going to far
wall of σ1 corresponds to a Hecke modification by a sky-scraper sheaf while forgetting
other vertices corresponds merely to forgetting flags in MX(Gσ1). The above process
also suitably generalizes to the graph of the hyperplane structure. More precisely, for
any two facets (σ1 , σ), where σ lies in the closure of σ1, the path we take to come
from σ1 to σ is not important, i.e., the processes of forgetting terms in flags and Hecke
modifications by sky-scraper sheaves commute.

5 Extending weights on GI torsors

The curve X is arbitrary. For simplicity of notation, we further assume that only one
parabolic point x ∈ X is fixed. It will become clear to the reader that, for all that is
done, the processes can be carried out independently at several points. However, for
the main application, the final conclusions will be made in terms of multiple points
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on X. In this section, completing flags with induced weights construction of [5] is
generalized to extending weights for GI. Recall that similar to the definition of Mehta–
Seshadri, in [3] weights have been defined for parahoric torsors to be points lying in
the facets (see Section 2.1.3). Consider the morphism of stacks p ∶MX(GI)→MX(G).
As in Section 2.1.3, suppose that we are given weights θ = {θx ∣x ∈ R} ∈ (Y(T) ⊗R)m

such that θx lies in the facet σx and σx ⊂ a0 for all x ∈ R.
In [2, Section 5], given a representation ρ ∶ G→ SL(V) and a parahoric Bruhat–

Tits torsors E, the parabolic vector bundle (E(V)
∗

, θV ) has been constructed. A
priori, a naive approach would be to take the parabolic bundle (E(V)∗ , θV ) and
carry out a process as in [5], of deforming the underlying bundle after possibly some
Hecke modifications, to get one with a full-flag and suitable schema of weights. But
the serious obstruction is that, the new parabolic vector bundle obtained by the
deformation need not come as an extension of structure group from any parahoric
torsor via the representation ρ.

5.1 Two problems that arise when we try to extend the weight θ for MX(GI).

First, the weights θx only belong to a0 and not to its interior a○0. So the setup of [2]
does not apply. Second, in order to apply the associated construction of [2], even if
we take a weight θV in a0 arbitrarily close to θ, already the quasi-parabolic structure
of (EI(V)∗, θV ) is sensitive to the choice of θV (see Example 5.2.6 which shows that
even the underlying vector bundle depends on the choice of weight). On weights θV ,
we are forced to consider the equivalence relation that arises from the quasi-parabolic
structure.

We address these problems by choosing for each x ∈ R a finer ρ-facet a○,x
ρ (see

Section 5.2) in whose closure θx lies. These are defined by the requirement that all points
in a○,x

ρ under ρ ∶ AT→ATSL(V) go to a fixed open facet of SL(V), of dimension at most
the dimension of T, in whose closure ρ(θx) lies. Now, the flag structure on (E(V)∗ , θV )
of [2, Section 5.1] or (EI , θ , {a○,x

ρ }) (see 5.2.1) may not be full since it will have
at most dim(T) many distinct flags (or weights). More importantly, unlike [5] the
vector bundle underlying it may only be related to the one underlying (E(V)∗ , θV)
by a Hecke modification. So instead of completing flags, we call this construction
extending weights for parahoric torsors. In the setup of [5], we have ρ = Id. This
reflects the facts that a parabolic vector bundle determines a choice of an alcove which
itself is a finer ρ-facet. The adjoint representation being in general the most canonical
choice, in the applications of the constructions carried out here, we will mostly have
to take ρ = Ad and so V = g.

5.2 Extending weights construction for GI-torsors with respect to a
representation ρ

Let E be a G-torsor, and let EI be a GI-torsor lying in the fiber of MX(GI)→MX(G).
To lighten the notation, it suffices to treat the case of one parabolic point, i.e.,R = {x}.
For a representation ρ ∶ G→ SL(V), we choose tori TG ⊂ G and TSL ⊂ SL(V) such
that ρ maps TG to TSL . Thus, we get a linear map

ρ ∶ AT→ATSL(5.2.1)
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between the apartments. In [2, BBP], the usual definition of facet is generalized to
facets associated with a homomorphism ρ as follows. By a generalized affine functional
on AT , we mean affine functionals for G together with those of ATSL viewed as
functionals on AT . For any point x ∈ AT , let Y g

x denote the set of generalized affine
functionals vanishing on x. For an integer n ≥ 0, define

H
g
n = {x ∈ AT ∣∣Y g

x ∣ = n}.(5.2.2)

A ρ-facet σ of AT corresponding to a representation ρ is defined to be a connected
component of Hg

n for some n. The dimension of a ρ-facet is its dimension as a real
manifold. The finer facets satisfy the property that, for any two weights belonging
to it, the parabolic vector bundles associated with ρ have the same quasi-parabolic
structure.

For each x ∈ R, we choose a ρ-facet a○,x
ρ ⊂ a0 whose closure contains θx . Then,

given a weight θx , we choose a sequence of rational weights θx ,n lying in our
chosen alcove a○,x

ρ and converging to θx . Thus, the quasi-parabolic structure of
(EI(V)∗ , ρ(θx ,n)) is independent of n and is also independent of the choice of the
limiting sequence {θx ,n}. Keeping this quasi-parabolic structure fixed, the weight
ρ(θx ,n) ∈ ATSL equips the vector space G j

x of the flag at x with a real number α j
x ,n .

We set

α j
x = lim α j

x ,n .(5.2.3)

By linearity of (5.2.1), this process is independent of the choice of weights {θx ,n} and
depends only on a○,x

ρ and θx .

Definition 5.2.1 Let (E, θ) be a parahoric torsor. With notations as above, extending
weights for aGI-torsorEI with respect to a given representation ρ ∶ G→ SL(V) is giv-
ing the triple (EI , θ , {a○,x

ρ }x∈R). The quasi-parabolic vector bundle (EI(V)∗ , ρ(θn))

associated with θn = {θx ,n}x∈R endowed with weights {α j
x} is a PVB which we will

also, by an abuse of notation, denote as the triple (EI , θ , {a○,x
ρ }x∈R).

Remark 5.2.2 Say R is a single point. A generic point θ in the interior of the
Weyl alcove ax , lies in a single ρ-facet a○,x

ρ . In this case, θ determines {a○,x
ρ }x∈R.

Thus, (EI , θ , {a○,x
ρ }) is equivalent to the associated construction (EI(V)∗ , θ) of [2].

Belkale’s completion of flag in [5] is precisely extending weights for the case θ lies in
a0 / {far wall}. This is enough to determine the semistability polytope Δss .

Example 5.2.3 In [5], we have G = SLn , ρ = Id and so a○,x
ρ is the alcove a○0 of SLn . For

simplicity, let R = {x}. Let θd be the vertex of the alcove where only the affine root
αd does not vanish for 0 ≤ d < n. For G = SL2 , ρ = Id and only one parabolic point x
consider a weight θ ∈ [0, 1) and the parabolic vector bundle V∗ given by O⊕2

X with one
flag at x of weight θ. Doing the extending weight construction for the pair (θ1 , a○,x

ρ ∶=
a○0), taking limit as θ tends to θ1, the flag acquires weight one. For G = SLn , ρ = Id
weights (b0 , b1 . . . , bn) in barycentric coordinates correspond to weights (0, b1 , b1 +
b2 , . . . , b1 +⋯+ bn). In particular, for a○,x

ρ = a○0, θd corresponds to vector bundle of
degree −d. Further, for d ≥ 1, ρ(θd) does lie on the far wall.
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Let us contrast with the case when ρ(θd) does not lie on the far wall of the chosen
a○,x

ρ . For instance, suppose ρ = Id, G = SL2, and θd = 1, but we choose a○,x
ρ = (1, 2)

instead of the standard (0, 1). In this case, the extended weight torsor (EI , θ , {a○,x
ρ })

corresponds to a vector bundle V →X of determinant −d, and full-flag 0 ⊂ F 1
x ⊂ F2

x ⊂
. . . Fn

x = Vx at Vx with extended weights d/n and ρ(θd) is not on the far wall of a○,x
ρ .

This happens because the flags are of V which is not a principal SLn-bundle.

Remark 5.2.4 We illustrate sliding of weights (see Section 4.2) for the situation
when R = {x}, G = SL3, ρ = Id. Let θ ∈ a○0 tend to a point θ1 on the far wall with
barycentric coordinates (0, b1 , b2). Hence b2 = 1 − b1. Doing the extending weight
construction for the pair (θ1 , a○,x

ρ ∶= a○0), we see that rank three vector bundle with
full flags acquire weights (0, b1 , b1 + b2). On the other hand, θ1 corresponds to rank
three vector bundles with a single flag of dimension two with weight 1 − b1. This
corresponds to the fact that θ1 = (b1 , b2) in the barycentric coordinates of the far wall.
The general case of sliding of weights is only notationally harder to write.

Remark 5.2.5 We acquire weight 1 exactly when ρ(θx) lies on the far wall of the
facet corresponding to a○,x

ρ .

Example 5.2.6 Let V∗ be as in Example 5.2.3. Now, Ad ∶ SL2 → SL3 corresponds
to V∗ ↦ Sym2(V∗). Now, Sym2(V∗) is the PVB with underlying bundle O⊕3

X with
weights {θ , 2θ} if θ ∈ [0, 1/2) or O⊕2

X ⊕OX(x)with weights {2θ − 1, θ} if θ ∈ [1/2, 1).
When θ ∈ [0, 1/2), then Sym2(V∗) corresponds to a0 / {far wall} and thus does not
have a map forgetting the flags to torsors on the far wall. When θ ∈ [1/2, 1), then
the underlying degree of Sym2(V∗) is not congruent to zero modulo three, and
it corresponds to a parahoric SL3 torsor which maps to torsors on the far wall.
Let W = OX ⊕OX(x). It corresponds to the far wall of SL2 but Sym2(W) = OX ⊕
OX(x) ⊕OX(2x) corresponds to an affine Weyl group translate of the origin of SL3,
i.e., Sym2(W) ⊗OX(−x) is a principal SL3-bundle. We see that Sym2(W) and the
bundle underlying Sym2(V∗) are related by a Hecke modification when θ ∈ [1/2, 1).
In this sense as θ tends to 1, V∗ tends to W. This observation is formalized in the
proposition below.

Proposition 5.2.7 The vector bundles underlying (EI , θ , {a○,x
ρ }) and (E(V), ρ(θ))

are related by a Hecke modification and are comparable under inclusion.

Proof By construction, the quasi-parabolic structure of (EI , θ , {a○,x
ρ }) is the same

as that of (EI(V), ρ(θn)). Notice that for each x ∈ R, the weights {ρ(θx ,n)} lie in
a fixed facet σ x

SL of SL(V) in whose closure ρ(θx) lies. So considering the quasi-
parabolic structures associated with these weights, we are in the situation of a single
Hecke-modification morphism between the stacks associated with {σ x

SL}x∈R and θ as
in Diagram 1.0.1. Equivalently, we have a morphism of stacks of quasi-parabolic vector
bundles

QPV B(ρ(θx ,n), x ∈ R)→QPV B(ρ(θx), x ∈ R).(5.2.4)
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Under this morphism, the underlying vector bundles are related by a Hecke modifica-
tion (or are the same if the morphism (5.2.4) corresponds merely to forgetting flags)
and are comparable under inclusion. ∎

Remark 5.2.8 In the following proposition, we show that the filtration (4.1.3) of
(E(V)∗ , ρ(θ)) is refined by that of (EI , θ , {a○,x

ρ }x∈R) up to (possibly) shifting of
indices, the weights are also preserved up to sliding by a real number (see Section 4.2)
and it forgets only those sheaves which do not matter for parabolic degree computa-
tions of these bundles as well as their sub-bundles as it happens in (4.3). We assume
that R = {x} because the following argument can be applied point by point in the
general case.

Proposition 5.2.9 AssumeR = {x}. Let U (resp. UI) be the vector bundles underlying
(E(V)∗ , ρ(θ)) (resp. (EI , θ , {a○,x

ρ })). Consider the filtration (4.1.3) of (EI , θ , {a○,x
ρ })

at x. Then U is the m-term for 0 ≤ m ≤ the dimension of the facet of SL(V) containing
ρ(a○,x

ρ ).

Proof The underlying bundle is the 0th term of (4.1.1). Further, by Proposi-
tion 5.2.7, U is a term in the infinite filtration (4.1.3) of (EI , θ , {a○,x

ρ }x∈R) because it is
related to UI by a Hecke modification while being comparable to it under inclusion.
It is the 0-term if and only if U is obtained from UI only by forgetting flags, but if U is
obtained by a nontrivial Hecke modification of vector bundles, then U will be the mth
term for m ≥ 1 as described above because U may correspond to any flag at x and the
flag length lx is given by the dimension of the facet of SL(V) containing ρ(a○,x

ρ ). ∎

Proposition 5.2.10 The notations are as in Section 4.2. We carry out the following
three steps. (i) We slide weights so that the bundle U of (5.2.9) has weight zero. (ii) Then,
we discard sheaves for which there is a bigger sheaf with the same weight. (iii) We shift
indices so that U index zero. Then, we recover the filtration (4.1.1) for (E(V)∗ , ρ(θ))
at x.

Proof We slide the weights (see (4.2)) to make U have weight zero. Under the
morphism MX(GI) →MX(G) for each x ∈ R depending on the facet in ATSL(V)

containing ρ(θx), we forget the corresponding terms in the filtration. These are
exactly the sheaves in the infinite filtration (4.1.3) for which there is a bigger sheaf with
the same weight. In particular, we forget all subsheaves of U containing U(−x)which
are different from these and which have weight zero or one. Now U∗ has weights lying
in [0, 1) because the formation of U∗ ignores U(−x). Thus, U∗ is the parabolic vector
bundle corresponding to (E(V)∗ , ρ(θ)). Further, we get the filtration corresponding
to (E(V)∗, ρ(θ)) if we shift indices so that the index of U becomes zero. ∎

6 (Semi)-stability of extended weight torsors

The curve X is arbitrary. The aim of this section is to formulate a notion of extended
weight θ (semi)stability for EI , i.e., the case when θ does not lie in Maps(R, a○0) but
only in its closure. We do this by showing the equivalence of (semi)stability of (E, θ)
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with that of (EI , θ , {a○,x
ρ }x∈R) as defined in (5.2.1). In this section, we work with ρ =

Ad ∶ G→ SL(g), the “adjoint” representation of G.

6.1 Invariant direct image functor

We briefly summarize [2, Section 3.1]. Let p ∶W → U be a finite flat surjective
morphism of normal integral Noetherian schemes that is Galois with Galois group �.
Let H be an affine group scheme on W. Assume further that H is equipped with an
action of � lifting the one on W, so that “mult” and “inverse” maps are �-equivariant.

Definition 6.1.1 The invariant direct image p�
∗(H) of H is the group scheme on U

whose valued points for any U-scheme S are given by p�
∗(H)(S) =H(S ×U W)�.

Further, the invariant direct image functor commutes with the Lie-algebra functor
in the following sense:

Lie(p�
∗(H)) = p�

∗(Lie(H)).(6.1.1)

More generally, the invariant direct image may be defined for any affine scheme over
W together with a lift of �-action.

6.2 Rational weight parahoric torsors as � −G bundles

We briefly recall some results from [3, Section 5]. Let G→ X be a parahoric group
scheme as in Section 2.1. Say θ is a weight such that each θx is a rational point of the
facet σx corresponding to the restriction of G at the formal disk Dx . By [3, Theorem
5.3.1], there exists a finite Galois cover p ∶ Y → X branched over R with Galois group
� and a principal G-bundle F (see [3, Notation. 5.1.0.1]) equipped with a left action
of � such that if IsomY(F , F) denotes the adjoint group scheme of F then taking the
invariant direct image sets up a canonical isomorphism of group schemes:

p�
∗(IsomY(F , F)) = G.(6.2.1)

LetRY = p−1(R) ⊂ Y be the ramification points of the covering p. For each y ∈ RY , let
�y ⊂ � denote the isotropy subgroup that fixes y. Let τy ∶ �y → Aut(Fy) be the action
on the fiber of y. We denote its conjugacy class as [τy]. By the type τ of F one means
the set τ = {[τy]∣y ∈ Ry} of conjugacy classes. LetMτ

Y(�, G) denote the moduli stack
of (� −G) bundles on Y of type τ. We have an isomorphism of algebraic stacks

αF ∶Mτ
Y(�, G) →MX(G),(6.2.2)

given by F as follows: denote by IsomY(E , F) the sheaf of local isomorphisms

E ↦ p�
∗(IsomY(E , F)).(6.2.3)

The inverse map is given by E↦ p∗(E) ×p∗(G) F.

6.3 Definition of (semi)stability for a parahoric torsor (E, θ)with rational weight θ

Keeping all the notations and the setup as in Section 6.2, we make [2, Section 6]
more precise using the notion of parabolically associated constructions. Let E(g)∗ =
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(E(g), θ) denote the associated parabolic vector bundle ([2, Section 5]). Let Epar
θ (G)

denote the parabolically associated adjoint group scheme of E defined as follows: let F
and E be be a principal � −G bundles on Y such that

p�
∗(IsomY(F , F)) = G and αF(E) = E.

Let E(G) = IsomY(E , E) denote the adjoint group scheme of E. We define

E
par
θ (G) ∶= p�

∗(E(G)).(6.3.1)

Let E(g) denote the Lie algebra bundle of E defined by associated constructions as
follows: E ×G ,Ad g. By (6.1.1), we define the parabolically associated Lie algebra bundle
Lie(Epar

θ (G)) of (E, θ) as

Lie(Epar
θ (G)) = E

par
θ (g) ∶= p�

∗(Lie(E(G))) = p�
∗(E(g)).(6.3.2)

The Lie algebra bundleEpar
θ (g) is given the structure of a parabolic Lie algebra bundle

by identifying it with the vector bundle underlying E(g)∗ (see also [2, Sections 5
and 6]).

Let η be the generic point of the curve X. Let Epar
θ (G)η denote the restriction of

E
par
θ (G) to η. Let Pη ⊂ E

par
θ (G)η be a parabolic subgroup scheme. Taking the flat

closure of Pη in E
par
θ (G) we get the subgroup scheme Pθ ⊂ E

par
θ (G). The Lie algebra

bundle Lie(Pθ) is a sub-bundle of Lie(Epar
θ (G)), and we give it the canonical induced

parabolic structure to get a parabolic Lie subbundle Lie(Pθ)∗ of E(g)∗.

Definition 6.3.1 [2, Definition 6.1] One calls a parahoric torsor (E, θ) (semi)stable
if for every generic parabolic subgroup scheme Pη ⊂ E

par
θ (G)η as above, we have

pardeg(Lie(P)∗) < 0 (resp. pardeg(Lie(P)∗) ≤ 0).

In Remark 6.4.3, we show how to extend this definition to real weights.

6.4 Definition of (semi)stability for extended real weights

Let (E, θ) be a parahoric torsor where θ = {θx ∣x ∈ R} and θx are real weights. Under
p ∶MX(GI)→MX(G), let EI map to E. For each x ∈ R, we will fix an Ad-facet a○,x

Ad
in whose closure θx lies. In each a○,x

Ad , we pick a sequence of rational points θx ,n

converging to θx . We denote by θn the rational weight {θx ,n ∣x ∈ R}. Let EI, par
θ n
(GI)

be the parabolically associated adjoint group scheme (see 6.3.1) of (EI , θn).

Proposition 6.4.1 The vector bundle underlying (EI , θ , {a○,x
Ad }) identifies naturally

with the Lie algebra bundle Lie(EI, par
θ n
(GI)) of EI, par

θ n
(GI).

Proof For simplicity, we may suppose that R = {x}. By the construction in Defi-
nition 5.2.1, the quasi-parabolic structure of (EI , θ , {a○,x

Ad }) and (EI(g)∗ , Ad(θx ,n))
are the same. Since for varying n the θx ,n all lie in the same Ad-facet a○,x

Ad , the
vector bundle underlying (EI(g)∗, Ad(θx ,n)) is independent of n. Further, just as
E

par
θ (g) identifies with the vector bundle underlyingE(g)∗ by (6.1.1), Lie(EI, par

θ n
(GI))

identifies with the vector bundle underlying (EI(g)∗ , Ad(θx ,n)). ∎
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We induce the parabolic structure on (EI, θ , {a○,x
Ad }) to Lie(EI, par

θ n
(GI)) and, by an

abuse of notation forgetting the smaller facets, denote it by Lie(EIθ(G
I))∗. We observe

the independence with respect to n of the following:

Lie(EI, par
θ n
(GI)) and E

I, par
θ n
(GI)η .(6.4.1)

The latter equals Epar
θ (G)η . Let Pη ⊂ E

par
θ (G)η be a parabolic subgroup scheme. We

denote by Lie(PI) the sheaf that is the closure of Lie(Pη) in Lie(EI, par
θ n
(GI)) with

torsion-free quotient. Thus, Lie(PI) is a sub-bundle of Lie(EI, par
θ n
(GI)). We endow

Lie(PI) with the canonical induced parabolic structure from (EI , θ , {a○,x
Ad }x∈R) and

forgetting the smaller facets denote the associated PVB by

Lie(PI
θ)∗ .(6.4.2)

Definition 6.4.2 Let (E, θ) be a parahoric torsor with real weights. Under p ∶
MX(GI)→MX(G), let EI map to E. We say that the parahoric torsor with extended
weights (EI , θ , {a○,x

Ad }) (see 5.2.1) is (semi)stable if for every generic parabolic sub-
group scheme Pη ⊂ E

I, par
θ n
(GI)η , we have

pardeg(Lie(PI
θ)∗) < 0 (resp. pardeg(Lie(PI

θ)∗) ≤ 0).(6.4.3)

Remark 6.4.3 If for each x ∈ R instead of the Ad-facets a○,x
Ad , we had chosen simply

the unique Ad-facet in which θx lies, and instead of EI we worked with the quasi-
parahoric torsor E, then the construction in this subsection recovers the extension [2,
Definition 6.1] of Definition 6.3.1 to real weights.

6.5 Equivalence of (semi)stability

Proposition 6.5.1 The parahoric torsor (E, θ) is (semi)stable (see 6.4.3) if and
only if the extended weight parahoric torsor (EI , θ , {a○,x

Ad }x∈R) is (semi)stable. The
(semi)stability of (EI , θ , {a○,x

Ad }x∈R) is independent of the choices of {a○,x
Ad }x∈R.

Proof By Proposition 5.2.7, the Lie algebra bundles Lie(EI, par
θ n
(GI)) and

Lie(Epar
θ (G)), being the vector bundles underlying (EI(g), θ) and (E(g), θ),

respectively, are related by a Hecke modification and they are comparable under
inclusion. In Proposition 5.2.9, we denoted them by U I and U , respectively. Let a
denote the difference between the weights attached to U and U I in (4.1.3). Sliding of
weights (see Section 4.2) by a real number a only changes the parabolic slope by a. So
by Remark 5.2.8 if we slide weights a, then we have

parμ(Lie(EI, par
θ n
(GI))∗) − parμ(Lie(Epar

θ (G))∗) = a.

Let us consider a generic parabolic subgroup scheme Pη ⊂ E
I,par
θ n

(GI)η =
E

par
θ (G).

We have the natural identification Lie(PI
θ)η = Lie(PI

η) = Lie(Pη) = Lie(Pθ)η . The
parabolic structure on Lie(PI

θ)∗ is induced from (EI , θ , {a○,x
Ad }x∈R). So from the

infinite filtration (4.1.3) of Lie(PI
θ)∗ we can extract, like in Remark 5.2.8, the infinite
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filtration of Lie(Pθ)∗ by forgetting some sheaves which turn out to be only those that
do not matter critically for parabolic degree computations. Thus

parμ(Lie(PI
θ)∗) − parμ(Lie(Pθ)∗) = a.

This shows the first assertion. Now the second statement follows. ∎

We turn the independence observed above into a definition.

Definition 6.5.2 We say that a GI-torsor EI is (semi)stable with extended weight
θ if for some choice of facets {a○,x

Ad }x∈R (and therefore any by (6.5.1)) the torsor
(EI , θ , {a○,x

Ad }x∈R) is (semi)stable in the sense of (6.4.2).

Remark 6.5.3 The (semi)stability Definition [19, Definition 2.2] for parabolic prin-
cipal G-bundle is for the product of alcoves without their far walls (see [19, Definition
2.1]). By continuity, it may be naturally extended to the product of closed Weyl alcoves.

Via the map q ∶M(G
I

) →M(G) of (1.0.1), a GI-torsor EI with extended weight
θ may be viewed as a parabolic G-bundle but with extended weights, especially in
the sense that some weights may become equal and may lie on the boundary of
Maps(R, a0). The following proposition shows that [19, Definition 2.2] agrees with
6.5.2 even for extended weights.

Proposition 6.5.4 A GI-torsor EI with extended weights θ is (semi)stable (see 6.5.2)
if and only if it is (semi)stable as a parabolic G-bundle (see 6.5.3).

Proof In the case of parahoric G
I

torsors, the Definition 6.5.2 reduces to Defi-
nition 6.3.1. Viewing parahoric G

I

torsors as parabolic G-bundles, (6.3.1) in terms
of slopes of the adjoint PVB with respect to reductions of structure group of G to
parabolic subgroups is equivalent to the standard definition (see [19, Definition 2.2]).
When we take limits of weights (5.2.3), this equivalence extends between G

I

torsors
equipped with extended weights and their associated PVBs in the sense of (6.5.2) and
parabolic G-bundles with weights lying in the boundary of the space of weights, which
is a product of alcoves. ∎

7 Some deformation theory and the proof of Theorem 1.0.2

We are now back in the case X = P1. Let (E, θ) be a parahoric G-torsor on P
1 with

parahoric structure on the marked pointsR. Recall that ifE(g)denotes the Lie algebra
bundle underlying the parabolic bundle E(g)∗, the first-order deformations of (E, θ)
are controlled by the cohomology space H1(P1 ,E(g)).

LetEI be a trivial bundle with generic B-structures (B being a fixed Borel subgroup
of G) and extended weight θ as in Theorem 1.0.1. In Section 5.2, after choosing smaller
Ad-facets, we have explained the construction of the parabolic vector bundle V∗
associated with it by the Ad representation. We further observe that if E is a torsor
for the Iwahori group scheme, then there is an underlying principal G-bundle with
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standard parabolic structures with fiberes B at the marked points. Under these
conditions, the (semi)stability conditions in Section 6.3 can be rephrased in terms
of the usual (semi)stability of principal G-bundles but carrying along the Iwahori
structures. In other words,E is (semi)stable if and only if for every parabolic subgroup
P ⊂ G and reduction of structure group EP to P, we have pardeg(EP(p)∗) ≤ 0(< 0),
whereEP(p)∗ ⊂ E(g)∗ gets the canonical induced parabolic structure. This definition
coincides with the one in [19].

With these notions in place, we now complete the proof of Theorem 1.0.2.

Proof of Theorem 1.0.2 �⇒ If θ ∈ Δs , by Theorem 1.0.1, EI, the trivial bundle
with generic B-structure with extended weights θ, is stable. So, owing to stability, it
has no sub-bundles whose associated parabolic vector bundle has degree zero.
⇐� Since θ ∈ Δss , so by Theorem 1.0.1 the trivial bundle with generic B-structure

EI is semistable. Now, the stack of B-structures on the trivial bundle is algebraic,
smooth, and irreducible. Therefore, we have a smooth and irreducible versal space T.
Let η denote its generic point, and letEI be a versal torsor onT. IfEI is only semistable
and not stable at η, then in the setting of Section 6.3, by restricting T if necessary, we
may assume that for all t ∈ T, the familyEIt (g)∗ of torsors admits parabolic reductions
EIP(p)t ,∗ with pardeg(EIP(p)t ,∗) = 0.

At a point t ∈ T corresponding to EIt with generic B-structures, let EIt ,P be a
parabolic reduction. Let us consider the map ϕ

EI
t ,P

from {deformations of EIt ,P} to
{deformations of EIt }. We have the following exact sequence of parabolic bundles:

0→ EIt ,P(p)∗ → EIt (g)∗ → EIt (g)∗/E
I
t ,P(p)∗ → 0.(7.0.1)

By assumption on EIt , no P-reduction EIt ,P is of the minus 1 type. So the quotient
EIt (g)∗/E

I
t ,P(p)∗ has pardeg = 0 but the degree of the underlying vector bundle is

not −1. Hence, it has a nontrivial H1. Thus, ϕ
EI

t ,P
is not surjective. Therefore, EIt ,P does

not deform to the generic point of the versal space. And this holds for all parabolic
reductions of EIt . So EIη has no destabilizing EIP ,η arising as a deformation from a
closed point of T. However, any EIP ,η of Eη spreads to a Zariski neighborhood of η in
T. So E must be stable. Hence θ ∈ Δs . ∎

Proposition 7.0.1 The condition “no P-reduction EI
P

is of the minus 1 type” of Theo-
rem 1.0.2 can be formulated in terms of vanishing of Gromov–Witten numbers.

Proof For parabolic vector bundles, one considers the trivial bundle with generic
quasi-parabolic structures of a fixed type. Then Gromov–Witten input data exactly
corresponds to the triples of rank, degree, and type of induced parabolic structure
on sub-bundles. Recall that this generalizes suitably also for principal G-bundles
(see [19]). Consider any P-reduction of structure group EI

P
of EI. By associated

constructions, it leads to a sub-PVB Lie(PI
θ)∗ in (6.4.2). We have also denoted it

as EIP(p)∗ above. Notice that for x ∈ R, the local parabolic degree of Lie(PI
θ)∗ gets

determined by EI
P

locally around x of which there are only finitely many possibilities
analogous to the induced flag types in the case of PVBs. Further, if Lie(PI

θ)∗ happens
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to have the same slope as EI(g)∗, then its underlying degree, say d, gets determined
as well. Thus, the set of input data {d} and {wx ∣x ∈ R} for Gromov–Witten numbers
of sub-bundles that could potentially violate stability gets determined and is finite.
We now further observe that these input data also determine the underlying degree
of the quotient bundle EI(g)∗/Lie(PI

θ)∗. Therefore, the condition “no P-reduction
EI

P
is of the minus 1 type” can be formulated in terms of vanishing of Gromov–Witten

numbers. ∎

Thus, Theorem 1.0.2 gives verifiable criteria for points in Δss to lie in Δs .
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