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Problems for generalized Monge–Ampère
equations

Cristian Enache and Giovanni Porru

Dedicated to Prof. Gérard A. Philippin on the occasion of his 80th birthday

Abstract. This paper deals with some Monge–Ampère type equations involving the gradient that are
elliptic in the framework of convex functions. First, we show that such equations may be obtained by
minimizing a suitable functional. Moreover, we investigate a P-function associated with the solution
to a boundary value problem of our generalized Monge–Ampère equation in a bounded convex
domain. It will be shown that this P-function attains its maximum value on the boundary of the
underlying domain. Furthermore, we show that such a P-function is actually identically constant when
the underlying domain is a ball. Therefore, our result provides a best possible maximum principles in
the sense of L. E. Payne. Finally, in case of dimension 2, we prove that this P-function also attains
its minimum value on the boundary of the underlying domain. As an application, we will show that
the solvability of a Serrin’s type overdetermined problem for our generalized Monge–Ampère type
equation forces the underlying domain to be a ball.

1 Introduction

Throughout this paper, we assume Ω ⊂ Rn to be a bounded strictly convex domain
with a smooth boundary ∂Ω. For x ∈ Ω, we write x = (x 1 , . . . , xn). We use subscripts
to denote partial differentiation. For example, we write u i = ∂u

∂x i , u i j = ∂2 u
∂x i ∂x j , etc.

We consider smooth strictly convex functions u defined in Ω. The Monge–Ampère
operator can be written as

det(D2u) = 1
n
(T i j
(n−1)(D

2u)u i)
j
,

where D2u denotes the Hessian matrix of the function u, det(D2u) is the determinant
of D2u, and T(n−1) = T(n−1)(D2u) is the adjoint matrix of D2u (i.e., the cofactor
matrix of D2u). Here and in what follows, the summation convention from 1 to n
over repeated indices is in effect.

A useful equation is the following:

T i j
(n−1)(D

2u) = ∂det(D2u)
∂u i j

, i , j = 1, . . . , n.
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Moreover, the tensor [T i j
(n−1)(D

2u)] is symmetric and divergence-free, that is,

(T i j
(n−1)(D

2u))
j
= 0, i = 1, . . . , n.(1.1)

If I denotes the n × n identity matrix, we have

T(n−1)(D2u)D2u = I det(D2u).(1.2)

The proof of these results can be found in [14, 15].
Let g ∶ [0,∞) → (0,∞) be a smooth real function satisfying

G(s2) ∶= g(s2) + 2s2 g′(s2) > 0.(1.3)

We also suppose that g(0) = G(0) > 0 (i.e., positive and finite). Note that

G(s2) = d
ds
(g(s2)s).

Therefore, the function g(s2)s is positive and strictly increasing for s > 0. A typical
example is

g(s2) = (1 + s2)− 1
2 , G(s2) = (1 + s2)− 3

2 .

We define the g-Monge–Ampère operator as

1
n
(T i j
(n−1)(D

2u)gn(∣Du∣2)u i)
j
,

where Du denotes the gradient vector of the function u, whereas ∣ ⋅ ∣ represents the
euclidian norm, so that we have ∣Du∣2 = u i u i .

By using (1.1)–(1.3), we find

1
n
(T i j
(n−1)(D

2u)gn(∣Du∣2)u i)
j
= gn−1(∣Du∣2)G(∣Du∣2)det(D2u).(1.4)

Since the operator det(D2u) (in the framework of strictly convex functions) is elliptic,
then our g-Monge–Ampère operator is also elliptic.

A motivation for the definition of the g-Monge–Ampère operator (1.4) is the
following. Using the Kronecker delta δ i�, define the n × n matrix A = [Ai j], where

Ai j = (g(∣Du∣2)u i) j = (g(∣Du∣2)δ i� + 2g′(∣Du∣2)u i u�)u� j .

The trace of the matrix A is the familiar operator (g(∣Du∣2)u i)i . We claim that the
determinant of the matrixA coincides with our operator (1.4). Indeed, the eigenvalues
Λ1 , . . . , Λn of the n × n matrix

B = [g(∣Du∣2)δ i� + 2g′(∣Du∣2)u i u�]
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Problems for generalized Monge–Ampère equations 267

are the following:

Λ1 = ⋯ = Λn−1 = g(∣Du∣2), Λn = G(∣Du∣2).

Since detA=detB⋅det(D2u), we find

detA = gn−1(∣Du∣2)G(∣Du∣2)det(D2u).

The claim follows from the latter equation and (1.4).
Note that A is not symmetric, in general. However, since A is the product of two

symmetric matrices, it is similar to a diagonal matrix (see [9, p. 487, Theorem 7.6.4]).
This paper is organized as follows. In Section 2, we show that the solution u of the

g-Monge–Ampère problem

1
n
(T i j
(n−1)(D

2u)gn(∣Du∣2)u i)
j
= f (−u) in Ω, u = 0 on ∂Ω,

is the minimum of a suitable functional (depending on g). For g = 1, this result is well
known (see, for example, [5]).

In Section 3, we consider a boundary value problem involving our g-Monge–
Ampère operator in a bounded convex domain and introduce a P-function depending
on the solution and its derivatives. We will show that this P-function attains its
maximum value on the boundary of the underline domain. Furthermore, we will also
show that such a P-function is identically constant when the underlying domain is
a ball. Therefore, our P-function satisfies a best possible maximum principle in the
sense of L. E. Payne [4, 6, 11, 12].

In Section 4, we consider the case when n = 2. In this case, we prove a best possible
minimum principle. As a corollary, we solve a Serrin’s type overdetermined boundary
value problem (see [2, 16, 18]) for the corresponding g-Monge–Ampère equation.
Similar problems are discussed in [1, 8, 10, 13] and the references therein.

Results of existence, uniqueness, and regularity for Monge–Ampère equations can
be found in [3, 17].

2 Minimizing a functional

Define

Ψ(Ω) ∶= {u ∈ C2(Ω) ∩ C0,1(Ω) ∶ u is strictly convex in Ω and u = 0 on ∂Ω}.

Recall from [5] that a minimizer u ∈ Ψ(Ω) of the functional

inf
v∈Ψ(Ω)

∫
Ω
[ 1

n(n + 1)T i j
(n−1)(D

2v)v iv j + ∫
v

0
f (−τ)dτ]dx

satisfies the equation

1
n
(T i j
(n−1)(D

2u)u i)
j
= f (−u).

We extend the above result to our g-Monge–Ampère equation.
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268 C. Enache and G. Porru

Theorem 2.1 Let

hn(t2) = t−n−1 ∫
t

0
τn gn(τ2) dτ.(2.1)

A minimizer u ∈ Ψ(Ω) of the functional

inf
v∈Ψ(Ω)

∫
Ω
[ 1

n
T i j
(n−1)(D

2v)hn(∣Dv∣2)v iv j + ∫
v

0
f (−τ)dτ]dx(2.2)

satisfies

1
n
(T i j
(n−1)(D

2u)gn(∣Du∣2)u i)
j
= f (−u).

Proof By integration by parts, we can write the integral in (2.2) as

∫
Ω
[−v

n
(T i j
(n−1)(D

2v)hn(∣Dv∣2)v i)
j
+ ∫

v

0
f (−τ)dτ]dx .(2.3)

Arguing as in the proof of (1.4), we find

1
n
(T i j
(n−1)(D

2v)hn(∣Dv∣2)v i)
j
= hn−1(∣Dv∣2)H(∣Dv∣2)det(D2v),(2.4)

where

H(s2) = h(s2) + 2s2h′(s2).

In view of (2.4), the expression in (2.3) reads as

∫
Ω
[(−v)hn−1(∣Dv∣2)H(∣Dv∣2)det(D2v) + ∫

v

0
f (−τ)dτ]dx .(2.5)

If u is a minimizer of (2.5), we have

d
dt ∫Ω

[(−u − tv)hn−1(∣Du + tDv∣2)H(∣Du + tDv∣2)det(D2u + tD2v)

+ ∫
u+tv

0
f (−τ)dτ]dx∣

t=0
= 0.

By computation, we find

∫
Ω
(−v)hn−1(∣Du∣2)H(∣Du∣2)det(D2u) dx

+ ∫
Ω
(−u)(hn−1(∣Du∣2)H(∣Du∣2))

′

2Du ⋅ Dv det(D2u) dx

+ ∫
Ω
(−u)hn−1(∣Du∣2)H(∣Du∣2)trace(T(n−1)(D2u)D2v) dx(2.6)

+ ∫
Ω

f (−u)v dx = 0.
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Let us compute

∫
Ω
(−u)hn−1(∣Du∣2)H(∣Du∣2)trace(T(n−1)(D2u)D2v) dx

= ∫
Ω
(−u)hn−1(∣Du∣2)H(∣Du∣2)T i j

(n−1)(D
2u)v i j dx

= ∫
Ω
(u hn−1(∣Du∣2)H(∣Du∣2)T i j

(n−1)(D
2u))

j
v i dx

= ∫
Ω

hn−1(∣Du∣2)H(∣Du∣2)T i j
(n−1)(D

2u)v i u j dx

+ ∫
Ω

u (hn−1(∣Du∣2)H(∣Du∣2))
′

2u jhuh T i j
(n−1)(D

2u)v i dx .

Integrating by parts and recalling (1.2), from the latter equation, we find

∫
Ω
(−u)hn−1(∣Du∣2)H(∣Du∣2)trace(T(n−1)(D2u)D2v) dx

= ∫
Ω
(−v)(hn−1(∣Du∣2)H(∣Du∣2)T i j

(n−1)(D
2u)u j)

i
dx(2.7)

+ ∫
Ω

u (hn−1(∣Du∣2)H(∣Du∣2))
′

2Du ⋅ Dv det(D2u) dx .

Insertion of (2.7) into (2.6) yields

∫
Ω
(−v)hn−1(∣Du∣2)H(∣Du∣2)det(D2u) dx

+ ∫
Ω
(−v)(hn−1(∣Du∣2)H(∣Du∣2)T i j

(n−1)(D
2u)u j)

i
dx = ∫

Ω
(−v) f (−u) dx .

Since v is arbitrary, we find

hn−1(∣Du∣2)H(∣Du∣2)det(D2u)

+ (hn−1(∣Du∣2)H(∣Du∣2)T i j
(n−1)(D

2u)u j)
i
= f (−u).(2.8)

Arguing as in the proof of (1.4), one proves that

hn−1(∣Du∣2)H(∣Du∣2)det(D2u) = 1
n
(T i j
(n−1)(D

2u)hn(∣Du∣2)u i)
j
.

On using the latter equation and the symmetry of T i j
(n−1)(D

2u), from (2.8), we find

1
n
([hn(∣Du∣2) + nhn−1(∣Du∣2)H(∣Du∣2)]T i j

(n−1)(D
2u)u i)

j
= f (−u).

Finally, recalling that H(s2) = h(s2) + 2s2h′(s2), by (2.1), we find

hn(∣Du∣2) + nhn−1(∣Du∣2)H(∣Du∣2) = gn(∣Du∣2).
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Hence,

1
n
(T i j
(n−1)(D

2u)gn(∣Du∣2)u i)
j
= f (−u).

The theorem follows. ∎

3 A best possible maximum principle

Let u be a solution to some boundary value problem in a domain Ω. Following Payne
[11], we say that a function P(x), depending on u and its derivatives, satisfies a best
possible maximum principle if it satisfies a maximum principle for every convex
domain Ω and, in addition, it is a constant for some special domain Ω (a ball in our
case).

For a discussion on the best possible maximum principles related to second-
order linear (or quasi-linear) elliptic equations, we refer to [12]. Concerning Monge–
Ampère equations, we recall a special case of Theorem 2.3 of [8]. Let u be a strictly
convex smooth solution to the problem

1
n
(T i j
(n−1)(D

2u)u i)
j
= 1 in Ω, u = 0 on ∂Ω,

and let

P(x) = 1
2
∣Du∣2 − u.

By Theorem 2.3 of [8], P(x) attains its maximum value on ∂Ω; furthermore, in case
Ω is a ball, P(x) is a constant.

We are going to extend this result to our g-Monge–Ampère equation. Consider the
problem

1
n
(T i j
(n−1)(D

2u)gn(∣Du∣2)u i)
j
= 1 in Ω, u = 0 on ∂Ω,(3.1)

and define the P-function

P(x) = ∫
∣Du∣

0
G(t2)t dt − u,(3.2)

where G is defined as in (1.3). We note that our result is already proved in [13] by
using a quite complicate argument. We give here a different and more clean proof.
Moreover, our method allows us to prove that if P(x) is identically constant, then Ω
must be a ball.

Theorem 3.1 Let u be a strictly convex smooth solution to Problem (3.1). If P(x) is
defined as in (3.2), we have the following.
(i) If Ω is a ball, then P(x) is identically constant.
(ii) For any convex Ω, P(x) attains its maximum value on ∂Ω.
(iii) If P(x) is identically constant in Ω, then Ω must be a ball.
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Proof (i) If Ω is a ball, u(x) is radial. If v(r) = u(x) for ∣x∣ = r, we have

P(r) = ∫
v′

0
G(τ2)τ dτ − v .

Differentiation yields

P′(r) = G((v′)2)v′v′′ − v′ .(3.3)

On using (1.4), we can write the equation in (3.1) (in the radial case) as

gn−1((v′)2)G((v′)2)det(D2v) = 1.

Since

det(D2v) = v′′(v′

r
)

n−1

,

we find

gn−1((v′)2)G((v′)2)(v′)n−1v′′ = rn−1 .

Since

G(s2) = d
ds
(g(s2)s),

we can write the previous equation as

(g((v′)2)v′)
n−1 d

dr
(g((v′)2)v′) = rn−1 ,

or, equivalently,

1
n

d
dr
(g((v′)2)v′)

n

= rn−1 .

Recalling that g is continuous on [0, r) and that v′(0) = 0, we integrate the above
identity over (0, r), to find

(g((v′)2)v′)
n

= n∫
r

0
tn−1 = rn ,

or, equivalently,

g((v′)2)v′ = r.

Differentiation yields

G((v′)2)v′′ = 1.

By (3.3) and the latter equation, we find

P′(r) = v′[G((v′)2)v′′ − 1] = 0.

It follows that P(r) is identically constant.
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(ii) Let Ω be a bounded convex domain. Arguing by contradiction, let x̃ ∈ Ω be a
point such that

P(x̃) = ∫
∣Du(x̃)∣

0
G(t2)t dt − u(x̃) > max

x∈∂Ω
∫
∣Du(x)∣

0
G(t2)t dt.

Choose 0 < τ < 1 close enough to 1 so that

∫
∣Du(x̃)∣

0
G(t2)t dt − τu(x̃) > max

x∈∂Ω
∫
∣Du(x)∣

0
G(t2)t dt.

Then, also the function

P̄(x) = ∫
∣Du(x)∣

0
G(t2)t dt − τu(x)

attains its maximum value at some point x̄ ∈ Ω. At the point x̄, we have either Du = 0
or ∣Du∣ > 0. Consider first the case Du = 0. Then,

P̄i = G(∣Du∣2)u i huh − τu i .

Further differentiation and computation at Du = 0 yields

P̄i i = G(0)u i hu i h − τu i i , i = 1, . . . , n.

Let us make a rigid rotation around the point x̄ so that

D2u = diag{u11 , . . . , unn}.(3.4)

Then,

P̄i i = G(0)u i i u i i − τu i i , i = i , . . . , n.(3.5)

Clearly, if (D2u)−1 is the inverse of D2u, also (D2u)−1 will be diagonal, and

(D2u)−1 = diag{u11 , . . . , unn},

where u i j is the (i , j)-entry of the matrix (D2u)−1 . Multiplying (3.5) by u i i and adding
from i = 1 to i = n, we find

u i i P̄i i = G(0)Δu − τn.(3.6)

On the other hand, from equations (3.1) and (1.4), we find (recall that g(0) = G(0))

det(D2u) = 1
Gn(0) .

By using this equation, from (3.6), we find

u i i P̄i i =
Δu

(det(D2u))
1
n
− τn.(3.7)
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Finally, since the matrix D2u is diagonal and positive definite, we have (we also use
the arithmetic–geometric mean inequality)

(det(D2u))
1
n

= (u11⋯unn)
1
n ≤ Δu

n
.

By the latter inequality and (3.7), we find

u i i P̄i i ≥ n(1 − τ) > 0.

Hence, P̄ cannot have a maximum point at x̄ with Du(x̄) = 0.
Let x̄ ∈ Ω be a point of maximum for P̄, and let ∣Du∣ > 0 at x̄. We have

P̄i = G(∣Du∣2)u i huh − τu i ,(3.8)

and

P̄i i = 2G′(u i huh)2 +Gu i i huh +Gu i hu i h − τu i i , i = 1, . . . , n.

Let us make a rigid rotation around the point x̄ so that (3.4) holds. Then (for i fixed),
we have

P̄i i = 2G′u2
i i u2

i +Gu i i huh +Gu2
i i − τu i i .

Multiplying by u i i and adding from i = 1 to i = n, we find

u i i P̄i i = 2G′u i i u2
i +Gu i i u i i huh +GΔu − nτ.(3.9)

By using (1.4), let us write the equation in (3.1) as

det(D2u) = 1
gn−1(∣Du∣2)G(∣Du∣2) .(3.10)

Differentiation with respect to xh yields

T i j
(n−1)(D

2u)u i jh = −
1

(gn−1G)
2 [(n − 1)gn−2 g′G + gn−1G′]2uhkuk .(3.11)

Since T(n−1)(D2u)D2u = det(D2u)I, on using (3.10) and recalling that u i j is the
(i , j)-entry of the matrix (D2u)−1 , we get

T i j
(n−1)(D

2u) = u i j

gn−1G
, i , j = 1, . . . , n.

Therefore, recalling that D2u has a diagonal form, from (3.11), we find

u i i u i i h = −[(n − 1) g′

g
+ G′

G
]2uhhuh .

Insertion of this equation into (3.9) leads to

u i i P̄i i = 2G′u i i u2
i − [(n − 1) g′G

g
+G′]2uhhu2

h +GΔu − nτ.
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Simplifying, we find

u i i P̄i i = −2(n − 1) g′G
g

uhhu2
h +GΔu − nτ,(3.12)

Since x̄ is assumed to be a point of maximum, we have P̄i = 0, and from (3.8), we
find

Guhhu2
h = τ∣Du∣2 .(3.13)

Insertion of (3.13) into (3.12) yields

u i i P̄i i = 2(1 − n) g′

g
τ∣Du∣2 +GΔu − nτ.(3.14)

If A = [Ai j] with Ai j = (g(∣Du∣2)u i)
j
, we know that

detA = gn−1(∣Du∣2)G(∣Du∣2)det(D2u).

Therefore, by (1.4), the equation in (3.1) can be written as

detA = 1.

On the other hand, since A is positive definite, by the Hadamard inequality (see
Theorem 7.8.1 of [9]) and the arithmetic–geometric mean inequality, we have

1 = (detA)
1
n

≤ (A11⋯Ann)
1
n

≤ A11 +⋯+Ann

n
,

with equality sign if and only if

A11 = ⋯ = Ann , and Ai j = 0 ∀i /= j.(3.15)

Therefore,

A11 +⋯+Ann ≥ n

and

(g(∣Du∣2)u i)
i
≥ n.

Recalling that D2u has a diagonal form, this inequality can be written as

gΔu + 2g′u i i u2
i ≥ n.

On using (3.13), the latter inequality reads as

gΔu + 2 g′

G
τ∣Du∣2 ≥ n,

from which we find

GΔu + 2 g′

g
τ∣Du∣2 ≥ n G

g
= n + 2n g′

g
∣Du∣2 .
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Hence,

GΔu + 2(τ − n) g′

g
∣Du∣2 ≥ n.

Inserting this estimate into (3.14), we find

u i i P̄i i ≥ n(1 − τ) + g′

g
∣Du∣22n(1 − τ)

= n(1 − τ)(1 + g′

g
2∣Du∣2)

= n(1 − τ)G
g
> 0.

It follows that P̄ cannot have a maximum point at x̄ with ∣Du(x̄)∣ > 0. We conclude
that P must attain its maximum value on the boundary ∂Ω.

(iii) If P(x) is a constant, we have

u i i Pi i = 0 in Ω.

Therefore, by the argument used to prove (ii), all equations in (3.15) must hold. This
means that

(g(∣Du∣2)u1)
1
= ⋯ = (g(∣Du∣2)un)

n
, and (g(∣Du∣2)u i)

j
= 0, ∀i /= j.

Then, for some x0 ∈ Ω, we have

g(∣Du∣2)u i = x i − x i
0 , i = 1, . . . , n,

g2(∣Du∣2)u2
i = (x i − x i

0)2 ,

g2(∣Du∣2)
n
∑

1
u2

i =
n
∑

1
(x i − x i

0)2 = r2 ,

g2(∣Du∣2)∣Du∣2 = r2 ,
g(∣Du∣2)∣Du∣ = r.

Since g(s2)s is strictly increasing, ∣Du∣must be radially symmetric around the point
x0. Finally, since

∫
∣Du∣

0
G(t2)t dt − u = c,

also u will be radially symmetric. Statement (iii) follows.
The theorem is proved. ∎

Remark From Theorem 3.1, we get the following estimate:

−um ≤ ∫
∣Du∣M

0
G(t2)t dt,
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where

um =min
Ω

u(x), ∣Du∣M =max
∂Ω
∣Du∣.

Note that this estimate is sharp, in the sense that the equality sign holds when Ω is a
ball.

4 The case n = 2

Here, we prove a minimum principle for our P-function, which extend the result
obtained in the particular case g ≡ 1 in [7].

Theorem 4.1 Let u be a strictly convex smooth solution to Problem (3.1) in case n = 2,
and let P(x) be defined as in (3.2). Then P attains its minimum value on the boundary
∂Ω.

Proof Arguing by contradiction, let x̃ ∈ Ω be a point such that

P(x̃) = ∫
∣Du(x̃)∣

0
G(t2)t dt − u(x̃) < min

x∈∂Ω∫
∣Du(x)∣

0
G(t2)t dt.

Choose τ > 1 close enough to 1 so that

∫
∣Du(x̃)∣

0
G(t2)t dt − τu(x̃) < min

x∈∂Ω∫
∣Du(x)∣

0
G(t2)t dt.

Then, also the function

P̄(x) = ∫
∣Du(x)∣

0
G(t2)t dt − τu(x)

attains its minimum value at some point x̄ ∈ Ω. We may have either ∣Du(x̄)∣ > 0 or
Du(x̄) = 0. Consider first the case ∣Du(x̄)∣ > 0. By the same computations as in the
proof of Theorem 3.1, we find (3.12) with n = 2, that is,

u i i P̄i i = −2 g′G
g

uhhu2
h +GΔu − 2τ.(4.1)

As in the proof of Theorem 3.1, we assume that (3.4) holds at x̄. Since x̄ is a point
of minimum, we have P̄i = 0, and from (3.8), we find

Guhhu2
h = τ∣Du∣2 .(4.2)

Insertion of (4.2) into (4.1) yields

u i i P̄i i = −2 g′

g
τ∣Du∣2 +GΔu − 2τ.(4.3)

Since ∣Du∣ > 0, we have either u1 /= 0 or u2 /= 0. If u1 /= 0, by (3.8), we have

u11 =
τ
G

.
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Since n = 2, equation (3.1) at x̄ reads as gGu11u22 = 1, and then, by our last equation,
we find

u22 =
1

τg
.

Hence,

Δu = τ
G
+ 1

τg
.(4.4)

Note that (4.4) continues to holds if u1 = 0 and u2 /= 0. Insertion of (4.4) into (4.3)
leads to

u i i P̄i i =
G
g
( 1

τ
− τ) < 0.

It follows that P̄ cannot have a minimum point at any x ∈ Ω with ∣Du∣ > 0.
Consider now the case Du(x̄) = 0. At x̄, we have

P̄kk = Gu2
kk − τukk ≥ 0, k = 1, 2.(4.5)

Since x̄ is a point of minimum (also) for u, we have u11 ≥ 0 and u22 ≥ 0. But since

u11u22 =
1

g(0)G(0) > 0,

we must have u11 > 0 and u22 > 0. Hence, (4.5) implies that

Gu11 − τ ≥ 0 and Gu22 − τ ≥ 0.

It follows that

G2u11u22 ≥ τ2 .(4.6)

On the other hand, our equation at x̄ (where Du = 0, so g = G) reads as

G2u11u22 = 1,

in contradiction with (4.6) because τ > 1.
We have proved that P̄ cannot have a minimum point at x̄ with ∣Du(x̄)∣ = 0. We

conclude that P must attain its minimum value on the boundary ∂Ω. The theorem is
proved. ∎

Corollary 4.2 Let u be a strictly convex smooth solution to Problem (3.1) in case n = 2.
If u satisfies the additional condition

∣Du∣ = c on ∂Ω,

then Ω must be a ball.

Proof By Theorems 3.1(ii) and 4.1, the function P(x)defined as in (3.2) is a constant
in Ω. Hence, the corollary follows by Theorem 3.1(iii). ∎
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