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Summary

Over recent years, statistical support for the presence of genetic factors operating at the level of the
environmental variance has come from fitting a genetically structured heterogeneous variance model
to field or experimental data in various species. Misleading results may arise due to skewness of the
marginal distribution of the data. To investigate how the scale of measurement affects inferences, the
genetically structured heterogeneous variance model is extended to accommodate the family of
Box–Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in
the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior
distribution of the Box–Cox parameter. In the rabbit data, the statistical evidence for a genetic
component at the level of the environmental variance is considerably weaker than that resulting
from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the
coefficient of correlation between additive genetic effects affecting mean and variance changes sign,
compared to the results in the untransformed scale. The study confirms that inferences on variances
can be strongly affected by the presence of asymmetry in the distribution of data. We recommend
that to avoid one important source of spurious inferences, future work seeking support for a genetic
component acting on environmental variation using a parametric approach based on normality
assumptions confirms that these are met.

1. Introduction

The classical model of quantitative genetics assumes
that genotypes differ in mean but the environmental
variance (conditional variance of phenotype, given
genotype) is homogeneous across genotypes (this
model is referred to as HOM hereinafter). The as-
sumption of homogeneity may not be valid and
models with non-genetically structured departures
from variance homogeneity were introduced in the
1990s (Foulley et al., 1992; Gianola et al., 1992;
San Cristobal et al., 1993). In particular, Foulley &
Quaas (1995) proposed models of heterogeneity for
both residual and other components of variance.

A significant extension of the classical genetic
model, with implications in breeding and evolutionary
studies, posits that both mean and variability differ
between genotypes (San Cristobal-Gaudy et al., 1998).

(The extended model is labelled HET hereinafter).
In animal and plant breeding, the focus is to change
the mean of a trait by selection; the HETmodel opens
the possibility to reduce variation by selection leading
to more homogeneous products (e.g. Hill & Zhang,
2004; Mulder et al., 2007, 2008). In evolutionary bi-
ology, most of the models developed to study the
maintenance of phenotypic variation assume that en-
vironmental variance is constant and explain the levels
of variation by invoking a balance between the gain of
genetic variance by mutation and its loss by different
forms of selection and drift. Zhang & Hill (2005) dis-
cuss models where environmental variance is partly
under genetic control and study conditions for its
maintenance under stabilizing selection.

Early evidence for a genetic component affecting
environmental variation stems from comparisons of
levels of variation between inbred lines and the F1

cross between them, with inbreds showing in general
larger variance (Falconer & Mackay, 1996). More* Corresponding author. email : Sorensen@humo.dk
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recently, experimental evidence from isogenic
chromosome substitution lines inDrosophilawas pres-
ented by Mackay & Lyman (2005). Using genetic
marker information, support for genetic variance
heterogeneity has been reported also by Ordas et al.,
(2008) in maize and by Ansel et al. (2008) in yeast.
Ansel et al. (2008) work with isogenic yeast cells
and provide convincing evidence for heterogeneity
of gene expression between genotypes, and identify
three quantitative trait loci (QTLs) involved in its
control.

With the exception of the limited experimental evi-
dence specifically designed to test for genetic control
of residual variability, support for the presence of
genes acting on environmental variation can be
sought fitting the HET model to data and studying
the quality of its fit using modern computation tools.
Evidence of this kind has been reported using litter
size in pigs (Sorensen & Waagepetersen, 2003), adult
weight in snails (Ros et al., 2004), uterine capacity in
rabbits (Ibáñez et al., 2008), body weight in poultry
(Rowe et al., 2006; Wolc et al., 2009), slaughter
weight in pigs (Ibáñez et al., 2007) and litter size and
weight at birth in mice (Gutierrez et al., 2006).

In all the cases where the quality of fit of the HET
and HOM models was compared, various statistical
criteria favoured the HET model. An important issue
is to clarify whether these results are an artefact of the
scale of measurement. Under the HET model, the
skewness of the marginal distribution of the data is
directly proportional to the correlation between
additive genetic values affecting mean and variance
(Ros et al., 2004). However skewness can arise in
other ways and if it does it can cause the HET model
to fit better than the HOM model, leading to the
spurious conclusion that genetic heterogeneity is pres-
ent, when it is absent. Alternatively, genetic hetero-
geneity of variance may be present, in which case
skewness from other causes may affect inferences
about the correlation between genetic effects on mean
and variance.

These problems can be partly addressed finding the
appropriate scale on which to analyse the data using
the Box–Cox transformation parameter (Box & Cox,
1964). A large body of literature dealing with trans-
formations has developed following the classical
paper of Box & Cox (1964). Early work using trans-
formations in animal breeding are Ibe & Hill (1988)
and Gianola et al. (1990). Compelling reasons for
using the transformed model have typically been the
need to achieve additivity of parameters at the level of
the mean, constancy and homogeneity of the error
variance and normality of the distribution of observ-
ations, although a transformation may not achieve all
these goals simultaneously. Here, a transformation
is sought that induces normality and linearity at the
level of the conditional distribution of data. This is an

important modelling assumption that must be fulfilled
to avoid distorted inferences.

The main objective of this work is to investigate
whether an analysis performed under the ‘appropri-
ate ’ scale still supports the HET model, or whether
simpler models are to be preferred. The Box–Cox
transformation parameter is regarded as an unknown
to be inferred from the data, jointly, with the re-
maining parameters of the model. The model is fitted
to data on litter size in pigs and rabbits. In order to
obtain insight into the quality of inferences about the
transformation parameter when it is fitted simul-
taneously with the remaining parameters, including
the coefficient of correlation, a simulation study in-
volving sets of data that differ in the number of re-
peated records per individual is also conducted.

Implementation of the model is via McMC
(Markov chain Monte Carlo) and two steps are in-
volved. The first step aims at finding the modal value
of the marginal posterior distribution of the trans-
formation parameter. In the second step, the model is
fitted conditional on this modal value. Several McMC
strategies were investigated and the reported results
are based on a fixed scan hybrid algorithm that re-
sulted in the best mixing behaviour.

The article is organized as follows: section 2 in-
troduces the Box–Cox model with genetically struc-
tured variance heterogeneity and discusses the prior
specifications and McMC implementation. Section 3
describes briefly the simulated, the rabbit and the pig
litter size data. Section 4 contains the outcome of ap-
plying the methodology to the simulated data and to
the rabbit and pig litter size data. A discussion is
provided in section 5.

2. Methods

(i) Box–Cox model with genetically structured
variance heterogeneity

The proposed model, labelled BCHET hereinafter,
combines the HET model with a Box–Cox transfor-
mation parameter. Let y=(yi)i=1

n be the vector of re-
cords, which are assumed to be strictly positive. The
model states that conditionally on the vectors of lo-
cation and dispersion parameters, for some unknown
transformation parameter l, the distribution of the
transformed vector of phenotypic data y(l)=(yi

(l))i=1
n

satisfies the normal theory assumptions, that is,

y(l)jl, m, m*, b, a, p, b*, a*, p*
� N (1m+Xb+Za+Wp,R):

(1)

Here R, the conditional variance of the sampl-
ing model, is the diagonal matrix with exp {1m*+eXXb*+Za *+Wp* } on its diagonal, and is interpreted
as the environmental variance. The transformation is
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defined as follows (Box & Cox, 1964) :

y(l)=
ylx1

l
(ll0),

log y (l=0):

8<: (2)

Note that here the transformation parameter l is in-
troduced to guarantee normality of the conditional
distribution and linearity of the conditional expec-
tation, but not to achieve constant variance. Indeed,
R in (1) is heterogeneous due to the presence of eXXb*,
a* and p*; the last two terms being specific to each
individual.

Matrices X, eXX, Z and W are known incidence ma-
trices, the scalar m is themean, the vector b contains the
regression coefficients, the scalar exp (m*) is the mean
environmental variance, while the vector exp (b*)
contains the environment-specific scaling effects. The
vectors of genetic effects a=(ai)i=1

n1 and a*= (a*i )
n1
i=1

are assumed to jointly follow a multivariate normal
distribution

a

a*

� �
jG � N

0
0

� �
,G� A

� �
,

whereA is the known additive relationship matrix and
G is a 2r2 covariance matrix

G=
s2
a rsasa*

rsasa* s2
a*

 !
: (3)

In equation (3), r is the coefficient of genetic corre-
lation between a and a*, and sa

2 and s2
a* are the ad-

ditive genetic variances at the level of the mean
and environmental variance, respectively. Vectors p=
(pi)

n2
i=1 and p*= (p*i )

n2
i=1 represent permanent environ-

mental effects (on mean and on variance) and are as-
sumed to be independently normally distributed with

pjs2
p � N (0, s2

pI),

p*js2
p* � N (0, s2

p*I),

where I is the identity matrix, and sp
2 and sp*

2 are the
permanent environmental variances at the level of the
mean and environmental variance, respectively.

The coefficient of skewness of the marginal distri-
bution of the datum yi

(l) (marginalized over a, a*, p, p*)
under BCHET is (Ros et al., 2004)

E [(y(l)i xE (y(l)i ))
3 jl, m, m*, b, b*, s2

a, s
2
a* , r, s

2
p, s

2
p* ]

Var (y(l)i jl, m, m*, b, b*, s2
a, s

2
a*
, r, s2

p, s
2
p*
)3=2

=r
3sasa*exp (m

*+ (eXXb*)i +1
2
s2
a*+

1
2
s2
p* )

exp (m*+ (eXXb*)i +1
2
s2
a*
+1

2
s2
p*
)+s2

a+s2
p

� �3=2
,

indicating that the sign of the coefficient of skewness
is governed by r.

(ii) Conditional likelihood function

The conditional likelihood is proportional to the prob-
ability density function of the data given the para-
meters, including a, a*, p, p*. Written in terms of the
original untransformed observations, from (1), this
leads to

Rj jx1=2
exp x1

2
y(l)xE y(l)

� �� �
kRx1 (y(l)xE y(l)

� �
Þ

� �
J(l; y), (4)

where

E (y(l))=1m+Xb+Za+Wp, (5)

R and y(l) have been defined in connection with (1),
and the Jacobian of the transformation is

J(l; y)=
Yn
i=1

@y(l)i

@yi

					
					

=
Yn
i=1

ylx1
i

		 		:

(iii) Prior specifications

The general size and range of the transformed pheno-
typic data y(l) may depend strongly on l, and so would
the interpretation of the model parameters. Therefore,
the prior distributions must be carefully chosen to
avoid meaningless inferences. Here, we follow the
approach suggested in Box & Cox (1964) to establish
the conditional prior distribution, given l, whereby
the relationship between parameters is consistent un-
der different values of l. Calculations sketched out in
Appendix A show that the prior distribution of the
parameters that depend on l is

P (exp (m*)jl)P (bjl)P (exp (b*)jl)P (s2
ajl)P (s2

a* jl)P (s2
pjl)

rP (s2
p* jl)P (mjl)P (l) / llj j(2nxh1x3)

r s2
a

� �xn=2x1
exp x

l2lrnSs2
a

2s2
a


 �
r s2

a*

� �xn=2x1

rexp x
nSs2

a*

2s2
a*

( )

r s2
p

� �xn=2x1
exp x

l2lrnSs2
p

2s2
p

( )
(s2

p* )
xn=2x1

rexp x
nSs2

p*

2s2
p*

( )
=Pl: (6)

(iv) Posterior distribution

Including in (6) the prior distribution of the para-
meters conditionally independent of l, P (a, a*js2

a,
s2
a* , r) P (pjs2

p)P (p*js2
p* ), leads to the joint prior
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distribution for all model parameters. This takes the
form

P ( a , a* , p, p*, m, exp (m*), b, exp (b*), s2
a, s

2
a* , r, s

2
p, s

2
p* , l)

/ 1

(2p)n1=2 G� Aj j1=2
exp x

1

2

a

a*

� �
k
Gx1 � Ax1 a

a*

� �
 �

r
1

s2
ps

2
p*

 !n2=2

exp x
pkp
2s2

p

x
p*kp*
2s2

p*

( )
rPl: (7)

The joint posterior distribution is proportional to the
product of (4) and the prior (7).

The inferential strategy in this study is based on,
firstly, estimating the modal value of l from its mar-
ginal posterior distribution. This is done fitting jointly
all the parameters of the BCHET model, including
the correlation coefficient r. The final inferences are
based on a second implementation of the BCHET
model, where the value of l is fixed at its posterior
mode.

(v) Model comparison and model checking

Models are compared using the pseudo marginal
probability of data. This is a method of comparison
(Gelfand, 1996) based on the relative global fits of the
models. In addition, the skewness of the conditional
distribution of the data under both models is in-
vestigated using posterior predictive model checking.
This provides insight into the ability of the models to
address a specific feature of the data that is of primary
interest. In this study, one wishes to investigate whe-
ther the transformation succeeds in inducing nor-
mality at the level of the conditional distribution of
the data, which is a basic premise of the model and a
necessary condition for correct inferences. Details are
in Appendix B.

(vi) McMC algorithm

The BCHET model (1) is implemented using an
McMC algorithm, where the components in the
model are updated sequentially. The algorithm is
based on a combination of Gibbs updates, updates
based on random walk proposals and updates based
on Langevin–Hastings proposals. In addition, a re-
parameterization of the additive genetic values (a, a*)
to standard normal variates (c, c*) was performed to
improve the mixing of the algorithm.

In summary, the BCHET model (1) is implemented
using the following McMC algorithm.

’ Metropolis–Hasting steps:

1. (l, m, exp (m*),b) updated jointly using a random
walk proposal for l and fully conditional pro-
posals for (m, exp (m*),b).

2. exp (b*) and (c, c*) updated using Langevin–
Hastings proposals.

3. (p, p*) updated using a fully conditional pro-
posal for p and a Langevin–Hastings proposal
for p*.

4. (sa
2, sa*

2 ) updated using random walk proposals
(on the log scale).

5. r updated using a random walk proposal.

’ Gibbs Steps: sp
2, sp*

2 .

Convergence of the algorithm was checked informally
using traceplots. We report confidence intervals of
Monte Carlo estimates of various posterior means in
order to give an idea of the accuracy of the Monte
Carlo computations.

3. Data

(i) Simulated data

It is difficult to gain insight about the degree of iden-
tifiability of l in the marginal likelihood when it is
fitted jointly with r (together with the remaining para-
meters of the model), because the marginal likelihood
cannot be written in closed form. One can conjecture
that the number of repeated records per individual
plays an important role. Therefore, a small simulation
study was conducted to investigate how the quality of
inferences about l from its marginal posterior distri-
bution is affected with increasing number of records
per individual. A family structure based on the pedi-
gree of the rabbit litter size data was simulated, with 1,
2, 3, 5 and 10 records per individual. The true value
of l was set equal to 1, and of r equal to x0.74, in all
cases. These true values are compared with those in-
ferred from the marginal posterior distribution of
these parameters.

(ii) Rabbit litter size data

The data originate from a selection experiment for
uterine capacity in rabbits spanning 10 generations,
carried out at the Universidad Politécnica de
Valencia. Uterine capacity will be referred to as litter
size hereinafter. Details of the selection experiments
and data can be found in Argente et al. (1997) and
Ibáñez et al. (2008). The number of individuals in the
pedigree was 1281, where 929 of them had litter size
records (a maximum of four records per female), and
the total number of records was 2996. Reproduction
was organized in discrete generations.

(iii) Pig litter size data

The data originate from a large-scale selection exper-
iment for the total number of piglets born per litter
(referred to as litter size hereinafter). Details of the
selection experiments and data descriptions are pro-
vided in Sorensen et al. (2000). The number of
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individuals in the pedigree was 6437, where 4078 of
them had phenotypic records, and the total number of
litter size records was 9778.

4. Results

(i) Simulation study

The results reported for different simulated data sets
were obtained from McMC output consisting of be-
tween 1 000 000 and 3 000 000 iterations. The total
number of stored samples was 10 000 for each simu-
lated data set and these were used to infer the mar-
ginal distribution of l.

Results are shown in Table 1. The 95% posterior
intervals of l always include the true value 1 in all
simulated data sets, and inferences are sharper with
increasing number of records per individual. The pos-
terior distributions are symmetric (not shown); pos-
terior means and modes agree to two decimal figures.

Estimates of the posterior means are clearly subject
to sampling variation of the data. This frequentist
variation may be characterized by replication of the
experiment, but this was judged to be computation-
ally too demanding.

The simulation study showed that the posterior
correlation of l and r decreased with increasing num-
ber of records per individual (not shown). In the data
set mimicking the rabbit structure, this posterior cor-
relation is equal to 0.34. The results indicate that the
size of the smallest data set, corresponding to the
rabbit experiment, is adequate to arrive at satisfactory
inferences about features of the marginal posterior
distribution of l.

(ii) Analyses of litter size in rabbits and pigs

(a) The models

The models for the rabbit and pig data are similar
to those in Sorensen & Waagepetersen (2003) and
Ibáñez et al. (2008). The scalar m is the mean and the
scalar exp (m*) is the mean environmental variance. In
the rabbit data, vector b contains year–season effects

with 30 levels and parity order effects with four levels
(first, second, third and fourth or higher parities). The
vector exp (b*) contains the environment-specific
scalings effects associated with year–season and par-
ity. Vectors a and a* contain additive genetic values
with 1281 levels, and vectors p and p* contain per-
manent environmental effects with 929 levels. The
parameters of the scaled inverted chi-square distri-
butions associated with sa

2, sa*
2 , sp

2, sp*
2 , are n=5,

Ss2
a
=0�492, Ss2

a*
=0�096, Ss2

p
=0�264 and Ss2

p*
=0�072.

In the pig data, b is a vector containing the effects of
four categorical variables : parity (eight levels), season
(four levels), herd (50 levels) and type of insemination
(artificial or natural). The vector exp (b*) contains the
environment-specific scalings effects with two cat-
egorical variables : parity (eight levels) and type of
insemination (artificial or natural). Vectors a and a*
contain additive genetic effects with 6437 levels, and
vectors p and p* contain permanent environmental
effects with 4078 levels. The parameters of the scaled
inverted chi-square distributions associated with
sa
2, sa*

2 , sp
2, sp*

2 , are n=5, Ss2
a
=0�972, Ss2

a*
=0�054,

Ss2
p
=0:36 and Ss2

p*
=0�036. The hyperparameters of

the prior distributions are taken from Sorensen &
Waagepetersen (2003) and Ibáñez et al. (2008).

(b) The mode of l

Inference about the modal value of l from its mar-
ginal posterior distribution was accomplished running
the McMC algorithm with a chain length equal to
1 405 000 in the rabbit data and 750 000 in the pig
data. In the rabbit data, the Monte Carlo estimate of
the mode of l was equal to 1.41 and the 95% pos-
terior interval was (1.30, 1.51). In the pig data, the
corresponding figures are 1.39 and (1.32, 1.47). In
both cases, the posterior distribution was symmetric
(the estimated posterior means agreed with the modal
values to two decimal figures). In neither case do
the 95% posterior intervals of l contain the value 1.
This indicates that in both species the phenotypic data
are not conditionally normally distributed under
l=1.

Table 1. MC estimates of posterior means and 95% posterior interval (95% P.I.) for l and r with increasing
number of repeated records per individual

True l=1 True r=x0.74

Posterior mean 95% P.I. Posterior mean 95% P.I.

1 Record 0.89 (0.01,1.84) x0.45 (x1.00,0.20)
2 Records 1.40 (x0.80,1.97) x0.80 (x1.00,x0.51)
3 Records 0.99 (0.45,1.40) x0.84 (x1.00,x0.59)
5 Records 0.78 (0.42,1.12) x0.66 (x0.89,x0.42)
10 Records 0.93 (0.71,1.18) x0.70 (x0.80,x0.37)
Rabbit data 0.82 (0.48,1.51) x0.74 (x0.96,x0.50)
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In the rabbit data, the 95% confidence interval of
the posterior mean, reflecting Monte Carlo sampling
variation, was (1.405, 1.411) and (1.390,1.398) in the
pig data, indicating that the degree of accuracy of the
Monte Carlo computation was satisfactory.

In order to gain insight into the sensitivity of
inferences on prior assumptions, a similar analysis
was conducted with scale parameters Ss2

a
, Ss2

a*
,

Ss2
p
, Ss2

p*
set equal to 0.124, 0.024, 0.066 and 0.018 in

the rabbit data and to 0.234, 0.014, 0.090 and 0.009 in
the pig data. Under these prior assumptions, the
posterior mode of l in the rabbit data is 1.40, and
the 95%posterior interval for lwas (1.31, 1.51). In the
pig data, the corresponding figures are 1.39 and the
95% posterior interval is (1.32, 1.46) reflecting minor
differences with the original values in both cases.

(c) Variance components

Results for the rabbit data set are shown in the top
rows of Table 2. The figures report Monte Carlo
estimates of posterior means, 95% posterior intervals
and 95% Monte Carlo confidence intervals for cho-
sen parameters of BCHET under l=1 (M) and
BCHET under the modal value of l=1.41 (Ml).
Estimates of sa

2 and sp
2 increase by factors of 3 and 7,

respectively, when the data are analysed under Ml,
as expected, due to dependence on l. Despite the
lack of prior dependence of sa*

2 and sp*
2 on l, the

posterior mean of sa*
2 decreases by a factor >2 under

Ml, while sp*
2 is slightly reduced. The posterior mean

of r changes from x0.73 under M to 0.28 under Ml,
and the 95% posterior interval of r includes zero
under Ml.

Under M, the smallest posterior mean of the en-
vironmental variance (95% posterior intervals in
brackets), corresponding to year–season 30 and parity
1, was 3.28 (1.55,5.34). The corresponding largest

number, for year–season 15 and parity 3 was 8.23
(4.61, 11.92). Under Ml, the corresponding figures are
11.16 (5.72, 17.56) and 36.92 (26.39, 52.99).

Under M, there is one heritability for each combi-
nation of environment-specific scalings effects
exp (eXXb*)i at the level of the environmental variance.
The average heritability over all combinations of en-
vironmental effects is 0.12 with a minimum of 0.09
(0.04, 0.14) (year–season effect 15 and parity 3) and
a maximum of 0.18 (0.09, 0.28) (year–season effect
30 and parity 1). Under Ml, the average heritability is
0.10 with a minimum of 0.07 (0.03, 0.11) (year–season
effect 15 and parity 3) and a maximum of 0.19
(0.08, 0.31) (year–season effect 30 and parity 1), re-
flecting little change due to the transformation. It can
be shown that the prior heritability is not affected by
the transformation (to the degree of approximation
(A1)), a result that agrees with the conclusion from
Solomon & Taylor (1999), who worked with a vari-
ance homogeneous, one-way classification model.

Figure 1 shows the estimated marginal posterior
distributions of sa

2, sa*
2 , sp

2 and sp*
2 based on Ml. The

solid line superimposed on each graph represents the
densities of the scaled inverted chi-square prior dis-
tributions of sa

2, sa*
2 , sp

2 and sp*
2 . On the top of the

figure, the variance parameters sa
2, sa*

2 , sp
2 and sp*

2

are assigned scaled inverted chi-squared distributions
with degrees of freedom n=5 and scale parameters
Ss2

a
=0�492, Ss2

a*
=0�096, Ss2

p
=0�264 and Ss2

p*
=0�072,

resulting in prior modes equal to 0.35, 0.07, 0.19 and
0.05, respectively. The bottom of the figure shows
corresponding distributions obtained setting Ss2

a
=

0:124, Ss2
a*
=0�024, Ss2

p
=0�066 and Ss2

p*
=0�018, lead-

ing to prior modes equal to 0.09, 0.02, 0.05 and 0.013,
respectively, a four-fold reduction. Prior input does
not influence inferences about sa

2 and sp
2 but

sa*
2 and sp*

2 are strongly affected. In fact, the posterior
distribution of sa*

2 shows little divergence from the

Table 2. MC estimates of posterior means (first row for each model), 95% posterior intervals (second row for
each model) and of 95% Monte Carlo confidence intervals (third row for each model) of chosen parameters based
on models M and Ml, for the rabbit litter size data (top) and on models M and Ml for the pig data set (bottom).

Data Model sa
2 sa*

2 r sp
2 sp*

2

Rabbits M 0.81 0.130 x0.73 0.38 0.052
(0.48,1.22) (0.056,0.230) (x0.89,x0.50) (0.15,0.66) (0.025,0.099)
(0.79,0.82) (0.131,0.142) (x0.74,x0.72) (0.37,0.39) (0.049,0.055)

Ml 2.59 0.056 0.28 2.86 0.042
(1.47,4.20) (0.027,0.102) (x0.24,0.79) (1.53,4.22) (0.02,0.084)
(2.55,2.64) (0.055,0.058) (0.27,0.30) (2.82,2.89) (0.042,0.047)

Pigs M 1.63 0.071 x0.64 0.52 0.021
(1.24,2.05) (0.038,0.110) (x0.82,x0.45) (0.25,0.83) (0.010,0.038)
(1.60,1.65) (0.069,0.073) (x0.65,x0.63) (0.51,0.54) (0.019,0.023)

Ml 8.17 0.037 0.70 4.15 0.017
(5.90,10.63) (0.019,0.058) (0.44,0.98) (2.17,6.03) (0.008,0.026)
(8.10,8.24) (0.037,0.038) (0.70,0.71) (4.10,4.20) (0.017,0.018)
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prior distribution in both scenarios, suggesting that
there is little information in the data about this par-
ameter.

In conclusion, the analysis indicates that the support
for a genetically structured variance heterogeneous
model in the rabbit data is markedly weaker when the
data are analysed under a scale corresponding to the
modal value of l.

Estimated posterior means of dispersion para-
meters for the pig data set are shown in the bottom
rows of Table 2. The figures show a similar pattern as
for the rabbit litter size data. The posterior mean of
r changes sign from negative under M (BCHET with
l=1) to positive under Ml (BCHET conditional
on the mode of l=1.39). However, in contrast with
the rabbit data, the 95% posterior interval of r does
not include the value r=0. Thus, the analysis in the
transformed scale results in a strong, positive corre-
lation between additive genetic values affecting mean
and variance.

Under M, the smallest posterior mean of the en-
vironmental variance, corresponding to natural in-
semination and parity 1, is 5.87 (5.27, 6.53). The
largest posterior mean, corresponding to artificial

insemination and parity 2, is 9.33 (8.27, 10.42). Under
Ml, these figures are 33.01 (30.01, 36.02) and 58.06
(47.59, 69.62).

Under M, there is one heritability for each combi-
nation of the environment-specific scalings effects
exp (eXXb*)i. The average heritability is 0.16 with a
minimum of 0.14 (0.11, 0.18) (artificial insemination
and parity 2) and a maximum of 0.20 (0.16, 0.25)
(natural insemination and parity 1). Under Ml, the
average heritability is 0.14 with a minimum of 0.12
(0.08, 0.15) (artificial insemination and parity 6) and a
maximum of 0.18 (0.13, 0.23) (natural insemination
and parity 1).

Figure 2 illustrates the sensitivity of inferences to
prior assumptions for the pig data. In contrast with
the rabbit data, a five-fold reduction in prior modes
leads to very small changes in the posterior distribu-
tions, except for sp*

2 .
To give a further idea of the sensitivity of inferences

to l, the rabbit data were also analysed conditional
on the lower (l=1.30) and the upper l=1.51 cut-off
points of the 95% posterior interval for l. The pos-
terior distribution of sa*

2 was hardly affected, but the
posterior distribution of r shifted to the right with
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Figure 1. Top: Monte Carlo estimates of sa
2 and sa*

2 (left) and sp
2 and sp*

2 (right) under Ml for rabbit data. The thick lines
represent the prior scaled inverted chi-square densities with degrees of freedom n=5 and scale parameters Ss2

a
=0�492,

Ss2
a*
=0�096, Ss2

p
=0�264 and Ss2
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=0�072 under Ml. Bottom: as above, with n=5 and Ss2
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=0�018.
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increasing values of l. The posterior means and 95%
posterior intervals for l=1.30, 1.41 and 1.51 were
x0.10 (x0.55, 0.37), 0.28 (x0.24, 0.79) and 0.56
(0.13, 0.96). Although the distributions are highly
overlapping, the support at l=1.51 does not contain
the value of r=0. At the modal value l=1.41, the
residual skewness is practically zero, and the as-
sumption of conditional normality is satisfied. Lower
and higher values of l generate slight negative and
positive skewness, respectively (results not shown),
and this results in the observed pattern of r.

The 95% confidence intervals for the MC estimates
of posterior means indicate that the lengths of the
chains (sample sizes) result in adequate accuracy in
both analyses.

(d) Model comparison and posterior model checking

The Monte Carlo estimate of the pseudo marginal
probabilities of the rabbit data under M and under
Ml are equal to x3930.7 and x3919.5, respectively.
The corresponding figures for the pig data are
x23 999.0 for M and x15 269.1 for Ml. In both

cases, the best fits correspond to the analysis on the
transformed scale.

Figure 3 shows histograms of posterior realizations
of the discrepancy measure (17) under M and under
Ml in the rabbit data and M and Ml in the pig data,
designed to test skewness at the level of the con-
ditional distribution of the data. In both species, the
distribution of (17) discloses negative skewness when
the data are analysed in the original scale (first and
third histograms from left), whereas under the trans-
formed model, the mean residual skewness is zero
(second and fourth histograms from left). This
indicates that the transformation was successful in
inducing normality at the level of the conditional
distribution of the data.

Since estimates of posterior means of sa*
2 and sp*

2 in
the rabbit data were fairly small under Ml, and sen-
sitive to prior specifications, we investigated further
whether heterogeneity could be accounted solely by
systematic effects, without inclusion of random effects
at the level of the environmental variance. In this
model, labelled HMl, sa*

2 =0 and sp*
2 =0. Thegn

i=1log
(CPOi) for HMl is x3927.3 indicating a poorer
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Figure 2. Top: Monte Carlo estimates of sa
2 and sa*

2 (left) and sp
2 and sp*

2 (right) under Ml for pig data. The thick
lines represent the prior scaled inverted x2 densities with degrees of freedom n=5 and scale parameters Ss2

a
=0�972,

Ss2
a*
=0�054, Ss2

p
=0�36 and Ss2
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=0�036 under Ml. Bottom: as above, with n=5 and scale parameters Ss2
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=0�009.
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fit than the full model and thus support for sa*
2 and

sp*
2 . The corresponding figure for the pig data for

HMl isx15 297.1, indicating also support for the full
model.

Both data sets were also analysed using the classical
infinitesimal model with homogeneous variance, con-
ditional on the modal value of the Box–Cox par-
ameter. The posterior mode of l (95% posterior
interval in brackets) is 1.41 (1.33,1.49), in the rabbit
data and 1.26 (1.21,1.31) in the pig data. The gn

i=1log
(CPOi) under the classical infinitesimal model is
x4009.5 in the rabbit data and x15 337.23 in the pig
data. In the rabbit data, the result indicates that the
global fit of the infinitesimal model is worse than that
obtained fitting the genetically structured variance het-
erogeneity model Ml (and also worse than model M).
In the pig data, the global fit from the classical in-
finitesimal model is worse than that obtained fitting
the genetically structured variance heterogeneity
model Ml, but better than the M model.

The overall conclusion from the analyses of both
data sets is that the transformed model induces con-
ditional normality of the sampling distribution of the
data (as opposed to the untransformed model), and
that the transformed model is best supported in terms
of the overall fit relative to the untransformed model.
Under the transformed model there is considerably
weaker evidence in the rabbit data for a genetically
structured variance heterogeneity model than that
provided by the analysis in the original scale. In the
pig data set, the transformed model provides evidence
for the presence of genetic variation at the level of the
environmental variance, but in contrast with the re-
sults of the analysis in the original scale, the corre-
lation r between additive genetic values affecting
mean and variance is strong and positive.

5. Discussion

This work has confirmed that inferences at the level of
the residual variance are strongly affected by the scale
on which the data are analysed. This is certainly not a
surprising result, but it rather reflects the difficulties
in learning about the state of nature via a statistical
analysis of data using models that build on strong
distributional assumptions. One option is to avoid
introducing such assumptions and complex model-
ling, and instead use simple functions of the data
specifically designed to uncover the structure associ-
ated with a genetic component at the level of variance.
Uncertainty concerning the final result could be in-
corporated using resampling methods, such as per-
mutation tests or the bootstrap. A limitation of this
option is the difficulty of finding a measure that is free
from artefacts and that signals unambiguously the
existence of genetic variance on variance. Another
limitation is whether the structure in the data related
to the existence of genetic variance on variance is
strong enough to be detected by these means. For
example, we have attempted to regress sampling
variance of repeated measurements within individuals
in daughters on mothers and could not find a con-
vincing pattern. A second option, followed in this
work, is to use a fully parametric model that addresses
specifically the putative presence of a genetic compo-
nent affecting environmental variance. Support for
the model is sought by comparing the quality of its fit
with that of other models that neglect the presence of
a genetic component on the environmental variance,
using various criteria. An unambiguous favourable
comparison is interpreted as evidence for the presence
of a genetic component on the environmental vari-
ance. Spurious results can never be excluded using
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Figure 3. Histograms of posterior predictive realization of T(z(l=l0), h)xT(zrep, h), designed to test residual skewness for
the rabbit data (first two from left) and pig data (last two from left). The first and third figures correspond to analyses on
the original scale ; the second and fourth to analyses on the transformed scale.
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this approach either. The exercise reflects merely that,
among the models considered, there is one that does
better than the rest. It does not provide decisive evi-
dence.

The results of the study differ in the rabbit and pig
data. The transformed rabbit litter size data yields a
Monte Carlo estimate of the posterior mean for the
correlation (95% posterior interval in brackets) of
0.28 (x0.24, 0.79), compared to a value equal to
x0.73 (x0.89,x0.50) obtained in the untransformed
data. Further, the additive genetic variance at the
level of the environmental variance based on the
transformed data falls by a factor of 2.4, and its pos-
terior distribution is considerably affected by prior
assumptions. Thus, under the transformed scale, the
support for a genetic component at the level of the
environmental variance is markedly weaker. The pic-
ture is different for the pig litter size data. The corre-
lation changes from x0.64 (x0.82, x0.45) to 0.70
(0.44,0.98) under the transformed model, the additive
genetic variance at the level of the environmental
variance falls by a factor of <2, and its posterior
distribution is very little affected by prior input. On
the basis of these results, the statistical evidence in
favour of the genetically heterogeneous variance
model is not disputed, but in the transformed model
the correlation changes sign and its posterior distri-
bution has positive support.

There has been some controversy concerning how
inferences should be drawn using the Box–Cox family

of transformations. Bickel & Doksum (1981) show
that joint inferences of the transformation and the
remaining parameters of a linear model lead to highly
correlated estimates and the marginal variances of the
latter are much larger compared to the conditional
variances for fixed values of the transformation par-
ameter. Hinkley & Runger (1984) and Box & Cox
(1982) argue that inferences should be drawn con-
ditional on a fixed value of the transformation par-
ameter, since linear model parameters have meaning
only with reference to a particular scale. This is an
important point that argues against reporting in-
ferences marginalizing over the distribution l. The
consequences on statements of posterior uncertainty
fitting the model conditional on l do not change
the conclusions of our analysis. For example, for
the rabbit litter size data, the 95% posterior interval
of r changes from (x0.24, 0.79) for fixed l, to
(x0.36, 0.80) when the analysis is done marginalizing
over l. In the pig data, these figures are (0.44, 0.98)
and (0.36, 0.99). In the context of prediction of future
data, as in De Oliveira et al. (1997, 2002) and Lee et al.
(2005), it may be sensible that posterior intervals of
future data incorporate uncertainty about l.

The problem of scale has clearly important
implications in an animal breeding context and we
consider two scenarios. First, assume that one is
interested in selecting at the level of the mean only
(via predicted additive genetic values) and that the
‘correct ’ model is the transformed BCHET model.
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Figure 4. Left : plot of the posterior means of the vector a under M (al=1) versus the posterior means of the vector a under
Ml (al=1.393). Right : plot of the posterior means of the vector a* under M (al=1* ) versus the posterior means of the vector
a* under Ml (al=1.393* ) in pig litter size data.
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Here, the term ‘correct ’ model is to be understood as
the model under which the assumptions for the data
in question hold. Does it make any difference whether
predictions and subsequent selection decisions are
obtained via the transformed BCHET or the un-
transformed HET model? For the pig data (the rabbit
data show an almost identical pattern), the left-hand
side of Figure 4 shows that there is a very close posi-
tive association between the posterior means of addi-
tive genetic values affecting the mean under both
models, implying that approximately the same
individuals are selected when ranked on the basis of
either model. On the other hand, the right-hand side
of Figure 4 discloses no association between additive
genetic values affecting the variance under both
models. Therefore, the efficiency of selection at the
level of the variance will be impaired if selection op-
erates on the basis of the ‘ incorrect ’ model.

In the second scenario, assume again that the ‘cor-
rect ’ model is BCHET and selection under this model
(to change the mean, the variance, or both) leads to
displacements at the level of additive genetic values
affecting mean and variance. One may wish to know
how changes in the transformed scale translate into
changes in the original scale and report results in that
metric. Under the BCHET model, genetic values op-
erating on mean and variance are additive and the

correlation between them has a clear interpretation.
When transformed back to the original scale, genetic
values are no longer additive and the correlation is
difficult to define. However, the problem can be in-
vestigated by deriving the mean and variance of the
conditional distribution of the data in the original
scale, given knowledge of the transformed BCHET
model. More specifically, consider the simplified
version of the transformed BCHET model y(l)|l, m,
m*, a, a*yN (1m+Za, exp (1m*+Za*)). A Taylor ex-
pansion shows that the mean and variance in the
original scale can be approximated by

E(yi) ’ (1+l (m+ai))
1=l+1

2
exp (m*+a*i )

r(1xl)(1+l(m+ai))
1=lx2

(8)

and

Var (yi) ’ (1+l (m+ai))
2
l
x2exp (m*+a*i ), (9)

respectively. For a given value of l (and m) one can
study how the mean and variance in the original scale
change due to displacements in (a,a*|r) on the trans-
formed scale. Clearly, (a,a*|r) is non-linearly related
to both (8) and (9) and Figure 5 illustrates some spe-
cial cases. When l=1.39, the variance in the original
scale falls at a decreasing rate as ai increases and ai
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Figure 5. Relationship between variance and mean (expressions (8) and (9)) when only ai changes and ai* is kept constant
(top) and when ai* changes and ai is kept constant (bottom), for three values of l.
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kept constant (implying r=0 in the transformed
scale). The same scenario at a value of l=0.8/0.0
shows that the variance in the original scale grows at a
decreasing/increasing rate as ai increases. On the
other hand, selection for ai

* in the transformed scale,
keeping ai constant (implying again r=0 in the trans-
formed scale), leads to a negative linear relationship
between mean and variance in the original scale when
l=1.39. When l=0.8 or l=0.0, this relationship
is linear and positive, respectively. When ai and ai

*

change simultaneously (results not shown), the re-
lationship between mean and variance in the original
scale is again highly dependent on l and r. The over-
all conclusion is that it is not possible to make general
statements about how changes taking place on the
transformed scale translate into changes in the orig-
inal metric.

In this work, the Box–Cox transformation was used
to achieve normality (and not homogeneity of vari-
ance) at the level of the conditional distribution of the
sampling model. The work can be extended in an ob-
vious way by applying an unknown transformation to
the additive genetic effects to induce normally at this
level. For example under the homogeneous variance
model, if data are conditionally normally distributed,
but additive genetic effects a are not, then the mar-
ginal distribution of the data may display skewness.
This can lead to spurious r when the (incorrect) HET
model is fitted to the data. Other situations that can
lead to misleading inferences include the presence of
unaccounted mixtures, the wrong functional relation-
ship between mean and variance, the wrong model for
the sampling distribution of the data, or the presence
of an unaccounted correlation between additive gen-
etic and environmental effects. This makes it strik-
ingly clear that an attempt to understand the state of
nature via a statistical analysis of data must be re-
garded only as a first step until more fundamental
knowledge becomes available.

Appendix A

The starting point in the derivation of the prior dis-
tribution is to assume that it admits the factorization

P (m, exp (m*), b, exp (b*), a, a*, p, p*, s2
a, s

2
a* , r, s

2
p, s

2
p* , l)

=P (a, a*, p, p*js2
a, s

2
a* , r, s

2
p, s

2
p* )

P (m, exp (m*), b, exp (b*), s2
a, s

2
a* , r, s

2
p, s

2
p* jl)P (l)

=P (a, a*js2
a, s

2
a* , r)P (pjs2

p)P (p*js2
p* )P (s2

ajl)P (s2
a* jl)

rP (rjl)P (s2
pjl)P (s2

p* jl)
rP (mjl)P (exp (m*)jl)P (bjl)P (exp (b*)jl)P (l): (A1)

Let (ml, exp (ml
*), bl, exp (bl

*), sa,l
2 , sp,l

2 , s2
a*, l, s

2
p*l) be

the parameters for a given l, and hence, for l=1, the
parameters are represented by (ml=1, exp (ml=1

* ), bl=1,

exp (bl=1
* ), sa,l=1

2 , sp,l=1
2 , s2

a*, l=1, s2
p*, l=1). The

relationship between these parameters under an arbi-
trary l and l=1 are derived as follows, assuming that
the relationship between the transformed datum yi

(l)

and the untransformed datum yi
(l=1) is approximately

(Box & Cox, 1964)

y(l)i ’ kl+lly
(l=1)
i , (A2)

where

ll={J(l; y)}1=n=
Yn
i=1

@y(l)i

@yi

					
					

( )1=n

,

kl=
(lx1){J(l, y)}1=nx1

l
:

The model for the untransformed datum can be for-
mulated as

y(l=1)
i = ml=1+xkibl=1+sa, l=1N (0, 1)+sp, l=1N(0, 1)

+exp (m*
l=1)

1=2exp (~XXkib*l=1)
1=2

rexp (sa*, l=1+sp*, l=1)
1=2N(0, 1), (A3)

where Xik is an (1rh1) row vector associated with ith
observation from the matrix X with the rank h1, and
~XXki is an (1rh2) row vector associated with ith ob-
servation from the matrix eXX with the rank h2.
Substituting (A3) in (A1),

y(l)i ’ kl+llml=1+ll(xkibl=1)+llsa, l=1N(0, 1)

+llsp, l=1N(0, 1)+llexp (m
*
l=1)

1=2exp (~XXkib*l=1)
1=2

rexp (sa*, l=1+sp*, l=1)
1=2N(0, 1), (A4)

which shows that to the level of approximation (A2),
the relationship between the parameters of the trans-
formed and untransformed models is

ml � kl+llml=1, bl � llbl=1,

exp (m*
l) � l2lexp (m

*
l=1), exp (b

*
l) � exp (b*l=1),

s2
a, l � l2ls

2
a, l=1, s

2
p, l � l2ls

2
p, l=1, rl � rl=1

s2
a*, l � s2

a*, l=1, s
2
p*, l � s2

p*, l=1:
(A5)

These relationships are used together with the trans-
formation theorem to construct a conditional prior
distribution for an arbitrary l based on a specified
prior distribution for l=1.The prior distribution as-
sumptions under l=1 are as follows. Improper uni-
form distributions are assigned to ml=1, exp (ml=1

* ),
bl=1, exp (bl=1

* ) ; scaled inverted chi-squared dis-
tributions with degrees of freedom n and scale para-
meters Ss2

a
, Ss2

a*
, Ss2

p
, Ss2

p*
are assigned to the variance

parameters sa,l=1
2 , s2

a*, l=1, sp,l=1
2 , s2

p*, l=1 ; the par-
ameter rl=1 is assigned a uniform prior bounded in
(x1,1) and the parameter l is assigned a uniform
prior bounded in (x3,3).
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Appendix B

(i) Pseudo marginal probability of the data

The pseudo log-marginal probability of the data is a
measure of model comparison (Gelfand, 1996) and is
defined and computed as follows. Consider data vec-
tor yk=(yi, ykx1), where yi is the ith datum, and yx1

is the vector of data with the ith datum deleted. For
a particular model, the conditional predictive distri-
bution can be written as

P (yijyxi)=
Z

P (yijh, yxi)P (hjyxi) dh, (B1)

and can be interpreted as the likelihood of each datum
given the remainder of the data, where h is the vector
of all model parameters. The actual value of P (yi|yxi)
is known as the conditional predictive ordinate
(CPO) for the ith observation. A Monte Carlo ap-
proximation of the CPO in (B1) for observation i is
given by

P̂(yijyxi)=
1

N
gN

j=1

1

P (yijh(j))

� 
x1

, (B2)

where N is the number of McMC draws and h(j) is
the jth draw from the posterior distribution of h. In
this study, from (4), the sampling distribution of the
untransformed datum yi has density

P (yijh)=P (y(l)i jh(j), l)J(yi, l),

In (B2), P(yi|h(j)) therefore takes the form

P (y(l)i jh(j), l)jylx1
i j:

A common summary statistic based on the CPO is
gn

i=1log(CPOi), known as the pseudo log marginal
probability of the data. A larger value of gn

i=1log
(CPOi) indicates a better relative fit of a model.

(ii) Posterior predictive model checking

A technique for checking the fit of a model to ob-
served data y is to draw simulated values yrep from
the posterior predictive distributions of replicated
data and compare yrep with the observed data
(Gelman et al., 2004). Any systematic differences be-
tween the observed and the simulated data indicate
potential failings of the model. More specifically, the
idea is to define a so-called discrepancy measure
T(y,h), which depends on the data and perhaps also
on h, an unknown vector of parameters of the model
under scrutiny, called null-model below. In this work,
the null model is the model for the untransformed
data. The measure T is specifically designed to test a
particular feature of the data y that may be of scientific
relevance. Replicated data are then simulated from
the posterior predictive distribution of the null model,

given h(j) for the jth iteration, from which T (yrep,h
(j))

is constructed and compared with T (yrep,h
(j)).

Differences between the Ts may be due to sampling or
due to the inability of the null model to account for
the feature of the observed data disclosed by the dis-
crepancy measure T.

In this study, we are concerned with investigating
the residual skewness under the model with l=l0.
This is accomplished using the discrepancy measure

T(z(l=l0), h(j))=
1
n
gn

i=1(z
(l=l0)
i )3

1
n
gn

i=1(z
(l=l0)
i )2x 1

n
gn

i=1z
l=l0ð Þ
i

� �2
� �3=2

,

(B3)

where

z(l=l0)
i =

(y(l=l0)
i x (1m(j)+Xb(j) +Za(j) +Wp(j) )i )

exp (1m*+eXXb*(j)+Za*(j) +Wp*(j) )
1=2

i

:

and hk=(m, exp (m*), bk, exp (b*)k, ak , a *k, s2
a, s

2
a* , r, pk ,

p*k, s2
p, s

2
p* ). The simulated datum yrep=(yrep, i)

n
i=1 fol-

lows N(1m+Xb+Za+Wp,R), that is

zrep, i=
(yrep, ix (1m+Xb+Za+Wp)i )

exp (1m*+eXXb*+Za* +Wp* )
1=2

i

� N 0, 1ð Þ:

Therefore zrep=(zrep,i)
n
i=1 is directly simulated from a

standard normal distribution, followed by the com-
putation of T(zrep,h

(j)) and T(z(l=l0), h(j)) in each
McMC iteration. Depending on whether the null
model or the transformed model is under scrutiny,
l0=1 or l0 is equal to its posterior mode. A gra-
phical display involves plotting histograms of
T(z(l=l0), h)xT(zrep, h) for both models and for the
rabbit and pig litter size data.
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