Images of mod p Galois Representations Associated to Elliptic Curves

Amadeu Reverter and Núria Vila

Abstract. We give an explicit recipe for the determination of the images associated to the Galois action on p-torsion points of elliptic curves. We present a table listing the image for all the elliptic curves defined over (\mathbb{O}) without complex multiplication with conductor less than 200 and for each prime number p.

Introduction

Let E be an elliptic curve defined over a number field K. Let \bar{K} be an algebraic closure of K. Let p be a prime number and let $E[p]$ denote the group of p-torsion points of E. The action of the absolute Galois group $G_{K}=\operatorname{Gal}(\bar{K} / K)$ of K on the group $E[p]$ defines a $\bmod p$ Galois representation

$$
\rho_{E, p}: G_{K} \longrightarrow \operatorname{Aut}(E[p]) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

As is well known, Serre [4] has shown that whenever E is an elliptic curve without complex multiplication this representation is surjective for all but finitely many prime numbers p.

Let $K(E[p])$ denote the number field generated by the coordinates of the p-torsion points of E. The Galois extension $K(E[p]) / K$ has Galois group

$$
\operatorname{Gal}(K(E[p]) / K) \cong \rho_{E, p}\left(G_{K}\right) \subseteq \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)
$$

In this paper we study the Galois groups of $K(E[p]) / K$, i.e., the images of the $\bmod p$ Galois representation associated to E. We analyze the relationship between the image $\rho_{E, p}\left(G_{K}\right)$, the existence of isogenies for E of degree p defined over K and of non-trivial p-torsion points of E defined over K. We determine the image $\rho_{E, p}\left(G_{K}\right)$ for a large family of elliptic curves having an isogeny defined over K of degree p. For $p=3$ we describe the images of $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ in terms of explicit conditions on the polynomial Ψ_{3}^{E} whose roots are the x-coordinates of the 3-torsion points of an elliptic curve E / \mathbb{O}). Our main concern is to compute the Galois $\operatorname{group} \operatorname{Gal}(\mathbb{O})(E[p]) / \mathbb{O})$ for each prime p and for each elliptic curve E defined over (\mathbb{O}) without complex multiplication and with conductor $N \leq 200$, Theorem 3.2 of Section 3 summarizes the results obtained.

[^0]
1 Images and Isogenies

Let E / K be an elliptic curve defined over a field K of characteristic 0 . Let p be a prime number and let χ_{p} be the $\bmod p$ cyclotomic character. Let $\rho_{E, p}$ be the mod p Galois representation associated to the p-torsion points $E[p]$ of the elliptic curve E. By the Weil pairing we have that $\operatorname{det} \rho_{E, p}(\sigma)=\chi_{p}(\sigma)$, for all $\sigma \in G_{K}$. Observe that the elliptic curve E / K admits an isogeny of degree p defined over K if and only if the image $\rho_{E, p}\left(G_{K}\right)$ is contained in a Borel subgroup. If E_{1} / K and E_{2} / K are related by an isogeny defined over K of degree prime to p, then this isogeny induces a G_{K}-module isomorphism from $E_{1}[p]$ to $E_{2}[p]$ and the subgroups $\rho_{E_{1}, p}\left(G_{K}\right)$ and $\rho_{E_{2}, p}\left(G_{K}\right)$ of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ are conjugate for all primes p not dividing the degree of the isogeny.

Moreover, we have:
Lemma 1.1 Let $E_{1} / K, E_{2} / K$ be two elliptic curves and $\phi: E_{1} \rightarrow E_{2}$ be a K-isogeny of degree p. Then the following conditions are equivalent:
(i) There exists a one-dimensional G_{K}-stable subspace of $E_{1}[p]$ not annihilated by ϕ.
(ii) $\rho_{E_{1}, p}\left(G_{K}\right)$ is contained in a split Cartan subgroup of $\mathrm{GL}_{2}\left(E_{1}[p]\right)$.
(iii) There exists an elliptic curve E_{3} / K non- K-isomorphic to E_{2} and a K-isogeny ϕ^{\prime} : $E_{1} \rightarrow E_{3}$ of degree p.
Proposition 1.2 Let E / K be an elliptic curve with non-trivial p-torsion points defined over K. Then there exists a basis of $E[p]$ such that

$$
\rho_{E, p}\left(G_{K}\right)= \begin{cases}\left(\begin{array}{cc}
1 & * \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right), & \text { if E has only one K-isogeny of degree } p \\
\left(\begin{array}{cc}
1 & 0 \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right), & \text { otherwise. }\end{cases}
$$

Proof We can take a basis such that the image satisfies

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right) \subseteq \rho_{E, p}\left(G_{K}\right) \subseteq\left(\begin{array}{cc}
1 & * \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right)
$$

Proposition 1.3 Let $E_{1} / K, E_{2} / K$ be two elliptic curves and $\phi: E_{1} \rightarrow E_{2}$ be a K-isogeny of degree p. Assume that
(i) $\chi_{p}\left(G_{K}\right) \neq\{1\}$.
(ii) E_{1} and E_{2} have non-trivial K-rational p-torsion points.
(iii) The image $\rho_{E_{1}, p}\left(G_{K}\right)$ is conjugate to $\left(\begin{array}{l}1 \\ 0 \\ \chi_{p}\left(G_{K}\right)\end{array}\right)$.

Then the image $\rho_{E_{2}, p}\left(G_{K}\right)$ is conjugate to $\left(\begin{array}{ll}1 & 0 \\ 0 & \chi_{p}\left(G_{K}\right)\end{array}\right)$.
Proof $\phi\left(E_{1}[p]\right)$ is a G_{K}-stable line in $E_{2}[p]$ on which G_{K} acts via χ_{p}, and $E_{2}[p]$ also contains a G_{K}-stable line on which G_{K} acts trivially, by assumption (ii). The result follows from (i).
Proposition 1.4 Let $E_{1} / K, E_{2} / K$ be two elliptic curves and $\phi: E_{1} \rightarrow E_{2}$ be a K-isogeny of degree p. Assume that $E_{2}(K)[p]=\{0\}$. Then, the curve E_{1} has non-trivial K rational p-torsion points if and only if $\rho_{E_{2}, p}\left(G_{K}\right)$ is conjugate to $\left(\begin{array}{cc}\chi_{p}\left(G_{K}\right) & * \\ 0 & 1\end{array}\right)$.

Proof Assume that $E_{1}(K)[p] \neq\{0\}$. By Proposition 1.2 there exists a \mathbb{F}_{p}-basis $\{P, Q\}$ of $E_{1}[p]$, such that

$$
\rho_{E_{1}, p}\left(G_{K}\right)=\left(\begin{array}{cc}
1 & * \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
1 & 0 \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right) .
$$

Since $E_{2}(K)[p]=\{0\}$, we have $\operatorname{ker} \phi=\langle P\rangle$ and $\phi(Q) \neq 0$. Let $P^{\prime} \in E_{2}[p]$ be such that $\left\{\phi(Q), P^{\prime}\right\}$ is a \mathbb{F}_{p}-basis of $E_{2}[p]$.

Then it is easy to see that $\rho_{E_{2}, p}\left(G_{K}\right)=\left(\begin{array}{cc}\chi_{p}\left(G_{K}\right) & * \\ 0 & 1\end{array}\right)$. Conversely, let $\{P, Q\}$ be a \mathbb{F}_{p}-basis of $E_{2}[p]$ such that $\rho_{E_{2}, p}\left(G_{K}\right)=\left(\begin{array}{cc}\chi_{p}\left(G_{K}\right) & * \\ 0 & 1\end{array}\right)$. Consider $\widehat{\phi}: E_{2} \rightarrow E_{1}$ the dual isogeny to ϕ. By Lemma $1.1, \widehat{\phi}(P)=0$, hence $\widehat{\phi}(Q) \neq 0$ is a K-rational p-torsion point of E_{1}.

Definition Let E / K be an elliptic curve and let $p \geq 3$ be a prime number. We will say that E is a p-exceptional elliptic curve over K if it satisfies the following conditions:
(i) The elliptic curve E has no non-trivial K-rational p-torsion points.
(ii) There exists an elliptic curve E^{\prime} / K and a K-isogeny $\phi: E \rightarrow E^{\prime}$ of degree p.
(iii) Every elliptic curve $E^{\prime} K$-isogenous to E with isogeny of degree p has no nontrivial K-rational p-torsion points.

Remark From the 722 elliptic curves without complex multiplication with conductor ≤ 200, listed in the Antwerp tables [1], only 39 are 3-exceptional over $(\mathbb{O}), 27$ are 5-exceptional over $(\mathbb{O}), 8$ are 7 -exceptional over $(\mathbb{O}$, 4 are 11 -exceptional over (\mathbb{O}) and 4 are 13 -exceptional over (\mathbb{O}); if $p>13$ all elliptic curves are non- p-exceptional over (\mathbb{O}).

The image of the mod p Galois representation attached to p-exceptional elliptic curves must be studied individually. Using Propositions 1.2 and 1.4 we can give the images of the $\bmod p$ Galois representation attached to non- p-exceptional elliptic curves which admit a K-isogeny of degree p.
Theorem 1.5 Let E / K be a non-p-exceptional elliptic curve over K. Assume that E admits a K-isogeny of degree p.
(i) If $E(K)[p] \neq\{0\}$ and E admits only one K-isogeny of degree p, then there exists a basis of $E[p]$ such that

$$
\rho_{E, p}\left(G_{K}\right)=\left(\begin{array}{cc}
1 & * \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right) .
$$

(ii) If $E(K)[p] \neq\{0\}$ and E admits more than one K-isogeny of degree p, then there exists a basis of $E[p]$ such that

$$
\rho_{E, p}\left(G_{K}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right)
$$

(iii) If $E(K)[p]=\{0\}$, then there exists a basis of $E[p]$ such that

$$
\rho_{E, p}\left(G_{K}\right)=\left(\begin{array}{cc}
\chi_{p}\left(G_{K}\right) & * \\
0 & 1
\end{array}\right) .
$$

Remark Professor Gerhard Frey has pointed out to us that if E is a non- p-exceptional elliptic curve over K having a K-isogeny of degree p, the twisted curves E_{D} by the quadratic character χ_{D} are, in fact, p-exceptional over K, but we can determine the image of the attached $\bmod p$ Galois representation in this case, since $\rho_{E_{D}, p}=$ $\rho_{E, p} \otimes \chi_{D}$ (cf. Theorem 3.2).
$2 \rho_{E, p}\left(G_{\mathbb{O}}\right)$, for $p \leq 3$
For $p=2$ it is known that the image of the mod 2 Galois representation associated to an elliptic curve can be determined in terms of the discriminant and the K-rational two-torsion points of E (cf. [4, 5.3]). We note that the non-split Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ is $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)\right\}$, the cyclic subgroup of order 3 , and the cyclic subgroups of order 2 are the conjugated Borel subgroups $\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right)$ of $\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$.

Proposition 2.1 Let E / K be an elliptic curve. Then

$$
\rho_{E, 2}\left(G_{K}\right)= \begin{cases}\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right), & \text { if } E(K)[2]=\{0\} \text { and } \Delta_{E} \notin K^{2} \\ C_{3}, & \text { if } E(K)[2]=\{0\} \text { and } \Delta_{E} \in K^{2} \\ C_{2}, & \text { if } E(K)[2] \neq\{0\} \text { and } \Delta_{E} \notin K^{2} \\ \{\mathrm{id}\}, & \text { if } E(K)[2] \neq\{0\} \text { and } \Delta_{E} \in K^{2} .\end{cases}
$$

In the case $p=3$, we will describe the image $\rho_{E, 3}\left(G_{\mathbb{O}}\right)$ through the polynomial Ψ_{3}^{E} whose roots are the x-coordinates of the 3 -torsion points of an elliptic curve E / \mathbb{O}).

Proposition 2.2 Let $E /\left(\mathbb{O}\right.$) be an elliptic curve given by the equation $Y^{2}=4 X^{3}-g_{2} X-$ g_{3}. Let $x_{0}, x_{1} \in \overline{\mathbb{O}}$ be two different roots of the polynomial $\Psi_{3}^{E}=3 X^{4}-\frac{3}{2} g_{2} X^{2}-3 g_{3} X-$ $\frac{1}{16} g_{2}^{2}$. Then

$$
\mathbb{O}(E[3])= \begin{cases}\mathbb{O}\left(x_{0}, x_{1}, \sqrt{-x_{0}}, \sqrt{-x_{1}}\right), & \text { if } g_{2} \neq 0 \\ \mathbb{O}\left(\sqrt[3]{g_{3}}, \sqrt{-g_{3}}, \sqrt{3 g_{3}}\right), & \text { if } g_{2}=0\end{cases}
$$

Proof Assume $g_{2} \neq 0$. Let $P, Q \in E[3]$ be such that $x_{0}=x(P), x_{1}=x(Q)$. We can consider $\{P, Q\}$ as a \mathbb{F}_{3}-basis of $E[3]$. Let $\Psi_{3}^{E}=3\left(X-x_{0}\right) q(X)$. Since $q\left(x_{1}\right)=0$, we have that

$$
y_{1}=y(Q)= \pm 2\left(x_{1}+\frac{4 x_{0}^{2}-g_{2}}{8 x_{0}}\right) \sqrt{-x_{0}}
$$

and

$$
y_{0}=y(P)= \pm 2\left(x_{0}+\frac{4 x_{1}^{2}-g_{2}}{8 x_{1}}\right) \sqrt{-x_{1}} .
$$

Using addition formulae we can explicitely compute $x_{2}=x(P+Q), x_{3}=x(P-Q)$, $y_{2}=y(P+Q)$ and $y_{3}=y(P-Q)$. We verify that $x_{2}, x_{3}, y_{2}, y_{3} \in \mathbb{O}\left(x_{0}, x_{1}, y_{0}, \sqrt{-x_{0}}\right)$. In the case $g_{2}=0$, we have $\Psi_{3}^{E}=3 X\left(X^{3}-g_{3}\right), Y^{2}=4 X^{3}-g_{3}$ and $\mathbb{O}(E[3])=$ (O) $\left(\sqrt[3]{g_{3}}, \sqrt{-g_{3}}, \sqrt{3 g_{3}}\right)$.

Theorem 2.3 Let E / \mathbb{O} be an elliptic curve given by the equation $Y^{2}=4 X^{3}-g_{2} X-g_{3}$ and let $\Psi_{3}^{E}=3 X^{4}-\frac{3}{2} g_{2} X^{2}-3 g_{3} X-\frac{1}{16} g_{2}^{2}$.
(a) Assume that $g_{2} \neq 0$.
(i) If Ψ_{3}^{E} has two rational roots x_{0}, x_{1}, then there exists a basis of $E[3]$ such that

$$
\rho_{E, 3}\left(G_{\mathbb{Q}}\right)= \begin{cases}\left(\begin{array}{ll}
1 & 0 \\
0 & *
\end{array}\right), & \text { if }-x_{0} \in(\mathbb{O})^{*^{2}} \text { or }-x_{1} \in(\mathbb{O})^{*^{2}} \\
\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right), & \text { otherwise. }\end{cases}
$$

(ii) If Ψ_{3}^{E} has only one rational root x_{0}, let $x_{1} \neq x_{0}$ be a root of Ψ_{3}^{E}, then there exists a basis of $E[3]$ such that

$$
\rho_{E, 3}\left(G_{\mathbb{Q}}\right)= \begin{cases}\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right), & \text { if } E(\mathbb{O}))[3]=\{0\} \text { and } \sqrt{-x_{0}} \notin \mathbb{O}\left(x_{1}, y_{0}\right) \\
\left(\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right), & \text { if } E((\mathbb{O})[3] \neq\{0\} \\
\left(\begin{array}{ll}
* & * \\
0 & 1
\end{array}\right), & \text { otherwise. }\end{cases}
$$

(iii) If Ψ_{3}^{E} has no rational roots then
(1) If $\Delta_{E} \notin(\mathbb{O})^{*^{3}}$ then $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$.
(2) If $\Delta_{E} \in(\mathbb{O})^{*^{3}}$ and Ψ_{3}^{E} splits as a product of two irreducible polynomials of degree 2 over (\mathbb{O}), then there exists a basis of $E[3]$ such that $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)=$ $\left\{\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right),\left(\begin{array}{cc}0 & \pm 1 \\ \pm 1 & 0\end{array}\right)\right\}$.
(3) If $\Delta_{E} \in()_{1}^{3}$ and Ψ_{3}^{E} is irreducible, then $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is contained in the normalizer of a non-split Cartan subgroup.
(b) Assume that $g_{2}=0$. Then there exists a basis of $E[3]$ such that

$$
\rho_{E, 3}\left(G_{\mathbb{Q}}\right)= \begin{cases}\left(\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right), & \text { if } \left.g_{3} \notin \mathbb{O}\right)^{*^{3}},-g_{3} \in(\mathbb{O})^{*^{2}} \\
\left(\begin{array}{ll}
* & * \\
0 & 1
\end{array}\right), & \text { if } \left.g_{3} \notin \mathbb{O}_{2}^{*^{3}}, 3 g_{3} \in \mathbb{O}\right)^{*^{2}} \\
\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right), & \text { if } g_{3} \in \mathbb{O}_{2}^{*^{3}},-g_{3} \notin\left(\mathbb{O} 2^{*^{2}}, 3 g_{3} \notin\left(\mathbb{O} 2^{*^{2}}\right.\right. \\
\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right), & \text { if } g_{3} \notin(\mathbb{O})^{*^{3}},-g_{3} \notin(\mathbb{O})^{*^{2}}, 3 g_{3} \notin(\mathbb{O})^{*^{2}} \\
\left(\begin{array}{ll}
1 & 0 \\
0 & *
\end{array}\right), & \text { if } g_{3} \in \mathbb{O} \mathbb{O}^{*^{3}},-g_{3} \text { or } 3 g_{3} \in \mathbb{O} \mathbb{R}^{*^{2}} .\end{cases}
$$

Proof First we note that if $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ of order 2 it is conjugate to $\left(\begin{array}{cc}1 & 0 \\ 0 & *\end{array}\right)$, if $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ of order 4 it is conjugate to $\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right)$ and if $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is a subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$ of order 6 it is conjugate to $\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)$ or to $\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)$.
(a) Assume $g_{2} \neq 0$.
(i) If $-x_{0} \in \mathbb{O}^{*^{2}}$, then by Proposition $\left.2.2 \mathbb{O}(E[3])=\mathbb{O}\right)\left(\sqrt{-x_{1}}\right)$, hence $-x_{1} \notin$ $(\mathbb{O})^{*^{2}}$, since the determinant is surjective. If $-x_{0}$ and $-x_{1} \notin(\mathbb{O})^{*^{2}}$, then $E(\mathbb{O})[3]=\{0\}$ and $\left[\mathbb{O}\left(\sqrt{-x_{0}}, \sqrt{-x_{1}}\right):(\mathbb{O})\right]=4$.
(ii) Assume that Ψ_{3}^{E} has only one rational root x_{0}. If $E(\mathbb{O})[3]=\{0\}$ and $-x_{0} \in$ $\mathbb{O}_{2} *^{2}$ then $\mathbb{O}(E[3])=\left(\mathbb{O}\left(x_{1}, \sqrt{-x_{1}}\right)\right.$ has degree 6 over \mathbb{O}_{2} and $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)$. If $-x_{0} \notin(\mathbb{O})^{*^{2}}$ and $\left.\sqrt{-x_{0}} \in \mathbb{O} 2\left(x_{1}, y_{0}\right)=\mathbb{O}\right)\left(x_{1}, \sqrt{-x_{1}}\right)$, we obtain the same, $\mathbb{O}_{2}(E[3])=\mathbb{O}\left(x_{1}, \sqrt{-x_{1}}\right)$ and $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)$. If $E(\mathbb{O})[3]=\{0\},-x_{0} \notin(\mathbb{O})^{*^{2}}$ and $\sqrt{-x_{0}} \notin \mathbb{O}\left(x_{1}, y_{0}\right)$, then $(\mathbb{O})(E[3])$ has degree 12 over (\mathbb{O}) and $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{c}* \\ 0 \\ 0\end{array}\right)$. If $E(\mathbb{O})[3] \neq\{0\}$ then $y_{0} \in \mathbb{O}$) and $\mathbb{O}(E[3])=\mathbb{O}\left(x_{1}, \sqrt{-x_{0}}\right)$. Since $\left(\mathbb{O}(E[3]):(\mathbb{O}) \neq 3,-x_{0} \notin(\mathbb{O})^{*^{2}}\right.$ and $(\mathbb{O})(E[3]):(\mathbb{O})=6$. Then $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{ll}1 & * \\ 0 & *\end{array}\right)$.
(iii) Assume that Ψ_{3}^{E} has no rational roots. Then Ψ_{3}^{E} is irreducible or factors as a product of two irreducible polynomials of degree two.
Using the identification between $\operatorname{Aut}(E[3]) /\{ \pm 1\} \simeq \operatorname{PGL}_{2}\left(\mathbb{F}_{3}\right)$ and the symmetric group S_{4}, we have that $\Delta_{E} \in\left(\mathbb{O}^{*^{3}}\right.$ if and only if $3 \nmid \# \rho_{E, 3}\left(G_{\mathbb{Q}}\right)$. As a consequence, if $\Delta_{E} \notin(\mathbb{O})^{*^{3}}$ we have that $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ must be $\mathrm{GL}_{2}\left(\left(\mathbb{F}_{3}\right)\right.$, since it is not contained in a Borel subgroup. If $\Delta_{E} \in(\mathbb{O})^{3}$ then $3 \nmid \# \rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ and we have that $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is contained in the normalizer of a Cartan subgroup, taking into account the complex conjugation and cardinality arguments. The polynomial Ψ_{3}^{E} factors as a product of two irreducible polynomials of degree two if and only if the Cartan subgroup is split.
(b) Assume $g_{2}=0$. By Proposition 2.2, $\left.\mathbb{O}\right)(E[3])=\left(\mathbb{O}\left(\sqrt[3]{g_{3}}, \sqrt{-g_{3}}, \sqrt{3 g_{3}}\right)\right.$, in each case we compute the degree of $(\mathbb{O})(E[3])$ over $\mathbb{O})$ and we obtain the result.

3 Determination of $\rho_{E, p}\left(G_{\mathbb{Q}}\right), N_{E} \leq 200$

We recall some conditions for obtaining surjectivity for the $\bmod p$ Galois representation attached to elliptic curves, which we will use to determine the image $\rho_{E, p}\left(G_{\mathbb{Q}}\right) \subseteq$ $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, for $p \geq 5$ prime.

Let E / \mathbb{O}) be an elliptic curve. It is well known, that if the order of $\rho_{E, p}\left(G_{\mathbb{Q}}\right)$ is divisible by p then $\rho_{E, p}\left(G_{\mathbb{Q}}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ or $\rho_{E, p}\left(G_{\mathbb{Q}}\right)$ is contained in a Borel subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Then, if E does not have any (\mathbb{O})-isogeny of degree $p, \rho_{E, p}$ is surjective. On the other hand, by Mazur's results [2], $\rho_{E, p}$ is surjective or $\rho_{E, p}\left(G_{\mathbb{Q}}\right)$ is contained in the normalizer of a Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ or $p \leq 19$ or $p=37,43,67$, or 163.

If the invariant j_{E} is not an integer and $p \nmid v_{\ell}\left(j_{E}\right)<0$, for some prime ℓ, the action of the inertia group on the Tate curve gives an element in $\rho_{E, p}\left(G_{\mathbb{Q}}\right)$ of order p (cf. [3, IV, A.1.5]). Then we have:

Proposition 3.1 Let $E /(\mathbb{O}$) be an elliptic curve without (\mathbb{O})-isogenies of degree $p>2$ and $p \nmid v_{\ell}\left(j_{E}\right)<0$, for some prime ℓ. Then $\rho_{E, p}\left(G_{\mathbb{Q}}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.

If $E /\left(\mathbb{O}\right.$) has semistable reduction at $p \neq 5$, then $\rho_{E, p}$ is surjective or the image of $\rho_{E, p}$ is contained in the normalizer of a Cartan subgroup or in a Borel subgroup. For $p=5$ we obtain the same result if there exists an element $s \in \rho_{E, p}\left(G_{\mathbb{Q}}\right)$ such that $\operatorname{tr}(s)^{2} / \operatorname{det}(s)=3(c f .[4,2.7,2.8])$. Moreover, if $E /(\mathbb{O})$ is semistable $\rho_{E, p}$ is surjective for $p \geq 11$ (cf. [2, Th. 4]).

If the invariant j_{E} is an integer we will use Serre-Tate's results (cf. [5]) concerning the subgroups Φ_{ℓ}, for some prime $\ell \neq p$. The action of the inertia group I_{ℓ} on $E[p]$ factors through the finite quotient Φ_{ℓ} and it is injective. Moreover, they prove that the group Φ_{ℓ} is isomorphic to a subgroup of the automorphism group of the reduced curve $\widetilde{E}_{\ell} / \overline{\mathbb{F}}_{\ell}$. Then we have the following three cases:
(a) If $\ell \neq 2,3$ then the group Φ_{ℓ} is the cyclic group of order $2,3,4$, or 6 , depending on the reduction of the special fiber of the Neron model at ℓ :
(i) $\# \Phi_{\ell}=2$ if and only if $v_{\ell}\left(\Delta_{E}\right) \equiv 6(\bmod 12)$.
(ii) $\# \Phi_{\ell}=3$ if and only if $v_{\ell}\left(\Delta_{E}\right) \equiv 4$ or $8(\bmod 12)$.
(iii) $\# \Phi_{\ell}=4$ if and only if $v_{\ell}\left(\Delta_{E}\right) \equiv 3$ or $9(\bmod 12)$.
(iv) $\# \Phi_{\ell}=6$ if and only if $v_{\ell}\left(\Delta_{E}\right) \equiv 2$ or $10(\bmod 12)$.
(b) If $\ell=2$ then Φ_{2} is isomorphic to a subgroup of $\mathrm{SL}_{2}\left(\mathbb{F}_{3}\right)$, of order $2,3,4,6,8$ or 24 and $\# \Phi_{2} \cdot v_{2}\left(\Delta_{E}\right) \equiv 0(\bmod 12)$.
(c) If $\ell=3$ then Φ_{3} is cyclic of order 2, 3, 4 or 6 or a semidirect product of a cyclic group of order 4 and a normal subgroup of order 3 .

Now, we can add a new column to the Antwerp tables [1] with the following information: For each elliptic curve E without complex multiplication and for each prime
p, the image $\rho_{E, p}\left(G_{\mathbb{Q}}\right) \subseteq \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, of the attached Galois representation, i.e., the Galois groups of $\mathbb{O}(E[p]) / \mathbb{O}$, for all primes p, and all elliptic curves without complex multiplication with conductor $N \leq 200$. We summarize:

Theorem 3.2 If $E /(\mathbb{O}$ is an elliptic curve without complex multiplication with conductor $N \leq 200$, then:
(i) The image $\rho_{E, p}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$, for all prime numbers $p>13$.
(ii) The image $\rho_{E, 13}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathrm{~F}_{13}\right)$, except for the curves $147 A, 147 B, 147 I$ and 147J, whose image is contained in a Borel subgroup.
(iii) The image $\rho_{E, 11}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathbb{F}_{11}\right)$, except for the curves $121 F, 121 \mathrm{G}, 121 \mathrm{H}$ and 121I, whose image is contained in a Borel subgroup.
(iv) The image $\rho_{E, 7}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$, except for the curves $26 \mathrm{D}, 26 E, 162 A, 162 B, 162 C$, $162 \mathrm{D}, 162 \mathrm{G}, 162 \mathrm{H}, 162 \mathrm{I}, 162 \mathrm{~J}, 174 \mathrm{G}$ and 174 H .
The image $\rho_{E, 7}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{c}* \\ 0 \\ 0\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$, for the curves $162 A, 162 B$, $162 \mathrm{C}, 162 \mathrm{D}, 162 \mathrm{G}, 162 \mathrm{H}, 162 \mathrm{I}$ and 162 J.
The image $\rho_{E, 7}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$, for 26D and $174 G$.
The image $\rho_{E, 7}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{7}\right)$, for $26 E$ and $174 H$.
(v) The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}1 & * \\ 0 & *\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$, for the curves $11 A, 38 A$, $38 C, 50 A, 50 B, 57 F, 58 B, 75 C, 110 C, 123 A, 155 D$ and $175 A$.
The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathrm{~F}_{5}\right)$, for the curves $11 C, 38 B$, $38 E, 50 C, 50 D, 57 G, 58 C, 66 K, 66 L, 75 D, 110 D, 118 C, 123 B, 155 E$ and $175 B$.
The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}1 & 0 \\ 0 & *\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$, for the curves $11 B$ and $38 D$.
The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & *\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$, for the curves $99 D, 121 B$ and $176 E$.
The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc} \pm 1 & * \\ 0 & *\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$, for the curves $99 C, 121 \mathrm{~A}$, 171 I and $176 D$.
The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}* & * \\ 0 & \pm 1\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{5}\right)$, for the curves $99 E, 121 C$, 171 J and 176 F.
The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left\{\left(\begin{array}{cc} \pm 1 & * \\ 0 & 1\end{array}\right),\left(\begin{array}{cc} \pm 2 & * \\ 0 & -1\end{array}\right)\right\}$, for the curves $50 E, 50 F$, $75 \mathrm{~A}, 150 \mathrm{G}, 150 \mathrm{H}$ and 175 F .
The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left\{\left(\begin{array}{cc}1 & * \\ 0 & \pm 1\end{array}\right),\left(\begin{array}{cc}-1 & * \\ 0 & \pm 2\end{array}\right)\right\}$, for the curves $50 G$, $50 H, 75 B, 150 E, 150 F$ and $175 G$.
The image $\rho_{E, 5}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathrm{~F}_{5}\right)$ otherwise.
(vi) The image $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}1 & 0 \\ 0 & *\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, for the curves $14 C, 14 D$, 19B, 26B, 35B, 37C, 54A, 54E, 77D, 91C, 126C, 126D, 158B, 171B, 182B, 189D and 189F.
The image $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}1 & * \\ 0 & *\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, for the curves $14 A, 14 B$, $19 A, 20 A, 20 B, 26 A, 30 A, 30 B, 30 D, 30 E, 34 A, 34 B, 35 A, 37 B, 44 A, 50 E, 50 G$, $51 A, 54 B, 54 D, 66 A, 66 B, 77 C, 84 C, 84 D, 90 A, 90 B, 90 G, 90 J, 90 K, 90 L, 90 M$, $90 N, 91 B, 92 A, 102 A, 102 B, 106 B, 106 E, 110 A, 110 E, 114 A, 114 B, 116 A, 124 B$, $126 E, 126 F, 130 E, 130 F, 138 G, 138 H, 140 A, 142 C, 153 B, 156 A, 156 B, 158 A$, $158 \mathrm{H}, 162 \mathrm{~A}, 162 \mathrm{D}, 162 \mathrm{E}, 162 \mathrm{G}, 162 \mathrm{I}, 162 \mathrm{~J}, 162 \mathrm{~K}, 170 \mathrm{D}, 170 F, 170 \mathrm{H}, 170 \mathrm{I}$, 171C, 172A, 174I, 178A, 180C, 180D, 182A, 186B, 187A, 189A, 189H, 190A, 196C, 198A, 198B, 198G, 198H, 198M and $198 N$.

The image $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}* \\ 0 & * \\ 0\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, for the curves $14 E, 14 F$, 19C, 20C, 20D, 26C, 30C, 30F, 30G, 30H, 34C, 34D, 35C, 37D, 44B, 50F, $50 H$, 51B, 54C, 54F, 66C, 66D, 77E, 84E, 84F, 90C, 90D, 90E, 90F, 90H, 90I, 90O, 90P, $91 D, 92 B, 102 C, 102 D, 106 C, 106 F, 110 B, 110 F, 114 C, 114 D, 116 B, 124 C$, $126 \mathrm{~A}, 126 \mathrm{~B}, 130 \mathrm{G}, 130 \mathrm{H}, 138 \mathrm{I}, 138 \mathrm{~J}, 140 \mathrm{~B}, 142 \mathrm{D}, 153 \mathrm{~A}, 156 \mathrm{C}, 156 \mathrm{D}, 158 \mathrm{C}$, 158I, 162B, 162C, 162F, 162H, 162L, 170E, 170G, 170 J, 170K, 171A, 172B, $174 \mathrm{~J}, 178 \mathrm{~B}, 180 \mathrm{~A}, 180 \mathrm{~B}, 182 \mathrm{C}, 186 \mathrm{C}, 187 B, 189 E, 189 G, 190 B, 196 D, 198 C$, 198D, 198E, 198F, 1980 and 198P.
The image $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}* & 0 \\ 0 & *\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, for the curves $98 C, 98 D$, $112 G, 112 \mathrm{H}$ and 175 D .
The image $\rho_{E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{c}* * \\ 0 \\ 0\end{array}\right) \subset \mathrm{GL}_{2}\left(\mathbb{F}_{3}\right)$, for the curves $50 \mathrm{~A}, 50 \mathrm{~B}$, 50C, 50D, 80A, 80B, 80C, 80D, 98A, 98B, 98E, 98F, 100A, 100B, 100C, 100D, $112 E, 112 F, 112 I, 112 J, 150 I, 150 J, 150 K, 150 L, 150 M, 150 N, 150 O, 150 P$, 175C, 175E, 176A, 176B, 196A and 196B.
The image $\rho_{E, 3}\left(G_{\mathbb{O}}\right)$ is $\mathrm{GL}_{2}\left(\mathrm{~F}_{3}\right)$ otherwise.
(vii) The image $\rho_{E, 2}\left(G_{\mathbb{Q}}\right)$ is $\{\mathrm{id}\}$ for the curves $15 B, 15 C, 15 E, 17 B, 17 C, 21 B, 21 D$, $24 B, 24 C, 30 B, 30 F, 33 B, 39 B, 40 B, 42 B, 42 C, 45 B, 45 C, 45 E, 48 B, 48 C, 55 B$, 56D, 57B, 62B, 63B, 63D, 66F, 70B, 72B, 75F, 75G, 75I, 78B, 80F, 90F, 90 J, 96A, 96E, 98 F, 99I, 102H, $102 \mathrm{~J}, 105 B, 112 B, 114 H, 117 B, 120 B, 120 F, 120 H$, $126 \mathrm{H}, 126 \mathrm{I}, 129 \mathrm{~B}, 130 \mathrm{~B}, 130 \mathrm{~F}, 138 B, 141 B, 144 F, 144 \mathrm{G}, 147 \mathrm{D}, 147 \mathrm{~F}, 150 \mathrm{~J}$, $150 N, 153 F, 154 F, 161 B, 168 A, 168 F, 171 E, 174 B, 182 F, 192 B, 192 F, 192 G$, 192L, 192M, 192R, 195B, 195D, 195E, 198 J and 200 H .
The image $\rho_{E, 2}\left(G_{\mathbb{Q}}\right)$ is C_{3} for the elliptic curves of conductor 196.
The image $\rho_{E, 2}\left(G_{\mathbb{Q}}\right)$ is $\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ for the elliptic curves of conductor $11,19,26,35$, $37,38,43,44,50,51,54,58,61,67,76,79,83,88,89,91,92,100,101,104,106$, $109,110,115,118,121,122,123,124,131,135,139,140,143,149,152,162$, 163, 166, 172, 175, 176, 179, 186, 187, 189, 190, 197 and for the elliptic curves 57E, $57 F, 57 G, 75 A, 75 B, 75 C, 75 D, 77 C, 77 D, 77 E, 77 F, 99 C, 99 D, 99 E, 116 A$, 116B, 116E, 129E, 141E, 141H, 141I, 142C, 142D, 142E, 142F, 142G, 147A, 147B, 147I, 147J, 153A, 153B, 153C, 153D, 155C, 155D, 155E, 158A, 158B, $158 C, 158 D, 158 E, 158 H, 158 I, 170 C, 170 D, 170 E, 170 F, 170 G, 171 A, 171 B$, $171 \mathrm{C}, 171 \mathrm{H}, 171 \mathrm{I}, 171 \mathrm{~J}, 174 \mathrm{E}, 174 \mathrm{~F}, 174 \mathrm{G}, 174 \mathrm{H}, 174 \mathrm{I}, 174 \mathrm{~J}, 178 \mathrm{~A}, 178 B$, 182A, 182B, 182C, 182D, 182I, 182 J, 184A, 184B, 184C, 185A, 185D, 195I, 195 J, 195K, 200A and 200B.
The image $\rho_{E, 2}\left(G_{\mathbb{Q}}\right)$ is C_{2} otherwise.
For $p=2$ or 3 , we use the results of Section 2 . For $p \geq 5$, we use the results of Section 1 if E has a $(\mathbb{O}$-isogeny of degree p and is non- p-exceptional, otherwise we use the results of the beginning of this section. In the case of 5-exceptional and 7-exceptional elliptic curves it is necessary to study each curve individually. As an example we will examine the images of the $\bmod p$ Galois representation attached to the 5-exceptional curve 50E, for all prime p.
$50 E: Y^{2}+X Y+Y=X^{3}-X-2 . \Delta_{E}=-2 \cdot 5^{4}$. Since $\ell=2$ is a multiplicative reduction prime and $v_{2}\left(j_{E}\right)=-1<0$, then $\rho_{50 E, p}$ is surjective, or the image is contained in a Borel subgroup, for all primes p. On the other hand, $50 E$ only has $\left(\mathbb{O}\right.$-isogenies of degree 3 and 5. Then $\rho_{50 E, p}$ is surjective, for all primes $p \neq 3,5$. For
$p=3$, since $50 E(\mathbb{O})[3]=\{0,(2,1),(2,-4)\}$ and $50 E$ admits only one (\mathbb{O})-isogeny of degree 3, we have, by Theorem 1.5, that $\rho_{50 E, 3}\left(G_{\mathbb{Q}}\right)$ is conjugate to $\left(\begin{array}{cc}1 & * \\ 0 & *\end{array}\right)$.

For $p=5$, the elliptic curve $50 E$ is 5-exceptional. Let $K=(\mathbb{O}(\sqrt{5})$, we have $K \subseteq$ $\mathbb{O}_{2}\left(\zeta_{5}\right) \subseteq \mathbb{O}(E[5])$, for all elliptic curves E. So, the index $\left(\rho_{E, 5}\left(G_{\mathbb{Q}}\right): \rho_{E, 5}\left(G_{K}\right)\right)=2$ and $\chi_{5}\left(G_{K}\right)=\operatorname{det} \rho_{E, 5}\left(G_{K}\right)=\mathbb{F}_{5}^{* 2}=\{ \pm 1\}$. By Theorem 1.5 there exists a basis $\{P, Q\}$ of $50 A[5]$ such that $\rho_{50 A, 5}\left(G_{\mathbb{O}}\right)=\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right)$ and $\rho_{50 A, 5}\left(G_{K}\right)=\left(\begin{array}{cc}1 \\ 0 & \pm 1\end{array}\right)$. Let ϕ the (\mathbb{O})-isogeny of degree 5 between $50 A$ and $50 C$, there exists a basis $\left\{\phi(Q), P^{\prime}\right\}$, such that $\rho_{50 C, 5}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)$. Computations on the polynomial $\Psi_{5}^{50 C}$ of 5-torsion points give that $50 C[5](K)=\{0\}$. Then in the basis $\left\{\phi(Q), P^{\prime}\right\}$,

$$
\left(\begin{array}{cc}
\pm 1 & * \\
0 & 1
\end{array}\right)=\rho_{50 C, 5}\left(G_{K}\right) \subseteq \rho_{50 C, 5}\left(G_{\mathbb{Q}}\right)=\left(\begin{array}{cc}
* & * \\
0 & 1
\end{array}\right)
$$

Since $50 C$ and $50 E$ are twisted curves over K, we can consider the K-isomorphism h : $50 C \rightarrow 50 E$. Then, $\left\{h(\phi(Q)), h\left(P^{\prime}\right)\right\}$ is a \mathbb{F}_{5}-basis of $50 E[5]$. Let $\sigma \in G_{\mathbb{Q}}$, since $h^{\sigma} \circ h^{-1} \in \operatorname{Aut}(50 E)=\{ \pm \mathrm{id}\}$, we have that $\rho_{50 E, 5}\left(G_{\mathbb{Q}}\right)$ is a group of order 20 and

$$
\left(\begin{array}{cc}
\pm 1 & * \\
0 & 1
\end{array}\right)=\rho_{50 E, 5}\left(G_{K}\right) \subseteq \rho_{50 E, 5}\left(G_{\mathbb{Q}}\right) \subseteq\left(\begin{array}{cc}
* & * \\
0 & \pm 1
\end{array}\right)
$$

By Proposition 1.4, $\rho_{50 E, 5}\left(G_{\mathbb{Q}}\right) \nsubseteq\left(\begin{array}{cc}* & * \\ 0 & 1\end{array}\right)$. Since $\left(\begin{array}{cc} \pm 1 & * \\ 0 & 1\end{array}\right) \subseteq \rho_{50 E, 5}\left(G_{\mathbb{Q}}\right)$, we have that there exists $a \in \mathbb{F}_{5}^{*}$ such that $\left(\begin{array}{cc} \pm a & * \\ 0 & -1\end{array}\right) \subseteq \rho_{50 E, 5}\left(G_{\mathbb{Q}}\right)$. But $\operatorname{det} \rho_{50 E, 5}\left(G_{\mathbb{Q}}\right)=\mathbb{F}_{5}^{*}$, so $a= \pm 2$. Consequently,

$$
\rho_{50 E, 5}\left(G_{\mathbb{Q}}\right)=\left\{\left(\begin{array}{cc}
\pm 1 & * \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\pm 2 & * \\
0 & -1
\end{array}\right)\right\} .
$$

References

[1] B. Birch and W. Kuyk (eds.), Modular Functions of One Variable IV. Lecture Notes in Math. 476, Springer-Verlag, 1972.
[2] B. Mazur, Rational isogenies of prime degree. Invent. Math. 44(1978), 129-162.
[3] J.-P. Serre, Abelian ℓ-Adic Representations and Elliptic Curves. W. A. Benjamin, Inc., 1968.
[4] Propriétés galoisiennes des points d'ordre fini des courbes elliptiques. Invent. Math. 15(1972), 259-331.
[5] J.-P. Serre and J. Tate, Good reduction of abelian varieties. Ann. of Math. 88(1968), 492-517.

Departament de Matemàtiques	Departament d'Àlgebra i Geometria
I.E.S. Bellvitge	Facultat de Matemàtiques
Avda Amèrica, 99	Universitat de Barcelona
E-08907 L'Hospitalet de Llobregat	Gran Via de les Corts Catalanes, 585
Spain	E-08007 Barcelona
email: areverte@pie.xtec.es	Spain
	email: vila@cerber.mat.ub.es

[^0]: Received by the editors August 5, 1999; revised April 20, 2000.
 This research has been partially supported by DGES grant PB96-0970-C02-01.
 AMS subject classification: 11R32, 11G05, 12F10, 14K02.
 Keywords: Galois groups, elliptic curves, Galois representation, isogeny.
 (c)Canadian Mathematical Society 2001.

