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Abstract

Objective: To signal key issues for harmonising approaches for establishing
micronutrient recommendations by explaining observed variation in recom-
mended intakes of folate, vitamin B12, Fe and Zn for adults and elderly people.
Design: We explored differences in recommended intakes of folate, vitamin B12,
Fe and Zn for adults between nine reports on micronutrient recommendations.
Approaches used for setting recommendations were compared as well as emi-
nence-based decisions regarding the selection of health indicators indicating
adequacy of intakes and the consulted evidence base.
Results: In nearly all reports, recommendations were based on the average
nutrient requirement. Variation in recommended folate intakes (200–400 mg/d)
was related to differences in the consulted evidence base, whereas variation in
vitamin B12 recommendations (1?4–3?0 mg/d) was due to the selection of different
CV (10–20%) and health indicators (maintenance of haematological status or
basal losses). Variation in recommended Fe intakes (men 8–10 mg/d, pre-
menopausal women 14?8–19?6 mg/d, postmenopausal women 7?5–10?0 mg/d)
was explained by different assumed reference weights and bioavailability factors
(10–18%). Variation in Zn recommendations (men 7–14 mg/d, women
4?9–9?0 mg/d) was also explained by different bioavailability factors (24–48 %) as
well as differences in the consulted evidence base.
Conclusions: For the harmonisation of approaches for setting recommended
intakes of folate, vitamin B12, Fe and Zn across European countries, standardised
methods are needed to (i) select health indicators and define adequate biomarker
concentrations, (ii) make assumptions about inter-individual variation in
requirements, (iii) derive bioavailability factors and (iv) collate, select, interpret
and integrate evidence on requirements.
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Adequate nutrient intakes are critical to health maintenance

and contribute to the prevention of chronic diseases and

functional decline(1–13). Many countries and organisations

across Europe provide micronutrient recommendations that

serve as a basis for good health(14). Although different terms

are used to express such recommendations, e.g. Population

Reference Intakes, Recommended Intake, Recommended

Daily Allowance, they all refer to the daily intake level that

is sufficient to fulfil the requirements of nearly all healthy

individuals in a defined population(14,15).

There are two main approaches for establishing

micronutrient recommendations: the requirement-based

approach and the intake-based approach. The first approach

evaluates evidence across intervention and observational

studies on the relationship between intake and selected

health indicators. These health indicators indicate the ade-

quacy of intake to fulfil physiological needs and may include

physiological, biochemical and functional measures, equili-

brium maintenance and disease incidence(16). Based on the

distribution of nutrient requirements both the Average

Nutrient Requirement (ANR), also referred to as the Average

Requirement or Estimated Average Requirement, and the

Recommended Intake can be derived (ANR1 2SD).

The intake-based approach is used when evidence

needed to estimate the distribution of nutrient require-

ments is lacking or incomplete. Consequently, recom-

mendations are based on the lowest level of intake

estimated to be sufficient for nearly all healthy people within

the population, also referred to as Adequate Intake (AI).

Micronutrient recommendations serve as an important

basis for public health nutrition policy. If the distribution

of requirements can be estimated, the ANR can be used to

assess the prevalence of adequate intakes within a popu-

lation. Furthermore, if the prevalence of adequate intakes is
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not satisfactory, recommended intakes can be used for

planning interventions to improve the situation(17–19).

Currently, there is considerable variation in micro-

nutrient recommendations between countries and this

can cause confusion among policy makers, consumers,

the food industry and health professionals(14,20–22). This

variation may be due to differences between populations,

e.g. in bioavailability from national diets, but it may also

be due to differences in approaches used for establishing

recommendations (ANR 1 2SD v. AI)(23) and eminence-

based decisions regarding the selection of relevant health

indicators and data underlying recommendations(16,19,23,24).

Harmonisation of the process for establishing micronutrient

recommendations will increase transparency, objectivity

and reliability of recommendations and contribute to

aligned nutrition policy across Europe(19,23).

The present paper aims to contribute to the under-

standing of the variation in recommendations and to

signal key issues for harmonising approaches for estab-

lishing recommended intakes for adults and elderly

people of four micronutrients (folate, vitamin B12, Fe and

Zn) that were prioritised by the Network of Excellence

EURRECA(25–27). First we explored differences in current

recommendations between reports from key European and

non-European countries/organisations. Second we exam-

ined whether the approaches used and the eminence-

based decisions made for establishing recommendations

contribute to the observed variation.

Methods

Collection and comparison of recommended

micronutrient intakes

By the end of 2007, and early 2008, the latest reports on

micronutrient recommendations were collected from

thirty-one European countries and organisations in col-

laboration with local key informants involved in setting

these recommendations, as described elsewhere(14).

Eight European countries, clusters of countries or

organisations provided reports on micronutrient recom-

mendations based on a review of the available literature

on nutrient requirements(14): United Kingdom (GB)(28),

Netherlands (NL)(29,30), France (FR)(31), Latvia(32), Germany–

Austria–Switzerland (DACH)(33), Norway–Sweden–Finland–

Denmark–Iceland (NNR)(34), European Community (EC)(35)

and WHO/FAO(36). The latter two defined recommenda-

tions to be used in an international perspective. Seven of

these reports were included in the present study: the Latvian

report was excluded because no information was available

on the approaches and eminence-based decisions under-

lying recommendations.

In other European countries, micronutrient recom-

mendations were adopted from at least one of the reports

mentioned above or from guidance provided in the USA/

Canada(14,37,38). Therefore, we also included the report of

USA/Canada (US/CA) in the present study. In addition the

report of Australia/New Zealand (AU/NZ)(39) was inclu-

ded, because it includes an extensive evaluation of the

recommendations previously published in USA/Canada

and considers the literature up to 2003.

From the nine reports, we extracted recommended

intakes of folate, vitamin B12, Fe and Zn for adults and

elderly people (age $18 years). To quantify the extent of

heterogeneity between reports the ratio of the highest to

the lowest recommendation observed per gender was

calculated. Within-report comparisons were used to

identify differences between men and women and

between younger and older adults.

Collection and comparison of approaches

From each report we retrieved information on the

approach used for establishing the recommendations of

interest (ANR 1 2SD, or AI). If an ANR 1 2SD was reported,

we obtained the ANR and inter-individual variation

coefficient (CV 5 100 3 SD/ANR). In case the ANR or CV was

not explicitly reported, the missing value was calculated

based on the following equation: ANR 1 2SD 5 ANR 3

(1 1 2 3 CV/100). We evaluated whether variation in

ANR 1 2SD was more strongly related to between-report

differences in ANR or CV. For each combination of two

reports with a different ANR 1 2SD, we checked in what

way applying the same CV would change the difference

between the recommendations.

Collection and comparison of eminence-based

decisions

In general there are two ways to establish an ANR: (i) based

on intake–health associations or (ii) based on physiological

needs estimated by basal losses (i.e. factorial approach).

If intake–health associations are used, the ANR is estimated

by the mean intake needed to reach a specified cut-off level

of the selected health indicator. The factorial approach

includes the summation of basal losses via skin, faeces,

urine and additional needs for accretion. By correcting total

needs for bioavailability from the usual diet, the ANR

is estimated (ANR5 mean physiological needs3 100/

bioavailability factor). To explain potential variation in ANR

between reports we collected and compared health indi-

cators and cut-off levels or basal losses and bioavailability

factors depending on the method used to establish the ANR.

Finally, to assess the data underlying recommendations

the references that were given greatest weight by the

authors of the reports were compared between reports

that used similar methods for deriving an ANR or AI.

Results

Recommended intakes of folate, vitamin B12, Fe and

Zn for adults ($18 years) from European countries,

US/CA and AU/NZ are presented in Tables 1 and 2.

Variability in recommended micronutrient intakes 907
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Table 1 Recommended intakes of folate and vitamin B12 for adults (age $18 years) and underlying approaches

Method for estimating ANR/AI

Year Recommended intake (mg)* Approach ANR (mg) CV (%) Health indicator (cut-off level)- Daily losses

Folate
GB(28) 1991 200 ANR 1 2SD 150 15 Folate levels in liver (.3 mg/g)

Erythrocyte folate (.327 nmol/l)
EC(35) 1993 200 ANR 1 2SD 140 20 Serum folate (n.a.)

Erythrocyte folate (.327 nmol/l)
DACH(33) 2000 400 ANR 1 2SD n.a. 10–15 Plasma homocysteine (n.s.)

Correct deficiency symptoms (100–200 mg)
FR(31) 2001 male: 330, female: 300 AI x x Plasma homocysteine (,10 mmol/l)
NL(30) 2003 300 ANR 1 2SD 200 25 Serum folate (.10 nmol/l) Compensate losses (n.a.)

Erythrocyte folate (.300 nmol/l)
Plasma homocysteine (,15 mmol/l)

NNR(34) 2004 300 ANR 1 2SD 200 25 Serum folate (.6?8 nmol/l)
Erythrocyte folate (.317 nmol/l)

US/CA(37)
-

-

1998 400 ANR 1 2SD 320 10 Serum folate (.7 nmol/l)
Erythrocyte folate (.305 nmol/l)

Plasma homocysteine (,16 mmol/l)
Vitamin B12

GB(28) 1991 1?5 ANR 1 2SD 1?25 10 Haematological status-

-

(1?0 mg)
Total vitamin B12 stores (n.s.)

EC(35) 1993 1?4 ANR 1 2SD 1?0 20 Haematological status-

-

(1?0 mg)
Serum vitamin B12 (.113 pmol/l)

DACH(33) 2000 3?0 ANR 1 2SD n.a. 10–15 Haematological status-

-

0?1 % of total stores (2–5 mg)
Plasma vitamin B12 (n.s.)

FR(31) 2001 2?4 ANR 1 2SD 2?0 10 0?8 mg
NL(30) 2003 2?8 ANR 1 2SD 2?0 20 0?2 % of liver stores (500 mg)
NNR(34) 2004 2?0 ANR 1 2SD 1?4 15 Haematological statusy (0?7 mg)

Serum vitamin B12 (n.a.)
Total vitamin B12 stores (1000 mg)

US/CA(37)
-

-

1998 2?4 ANR 1 2SD 2?0 10 Haematological status-

-

(1?0 mg)
Serum vitamin B12 ($150 pmol/l)

ANR, Average Nutrient Requirement; AI, Adequate Intake; GB, United Kingdom; EC, European Community; DACH, Germany–Austria–Switzerland; FR, France; NL, Netherlands; NNR, Norway–Sweden–Finland–
Denmark-Iceland; US/CA, USA/Canada; n.a., not available in report; x, not available because the intake-based approach was used; n.s., not specified.
Values in italics could not be retrieved from the reports, but were calculated: CV 5 0?5 3 [(recommendation/ANR) 2 1].
*Recommended folate intakes were expressed as dietary folate equivalents (DFE): 1 DFE 5 1 mg food folate 5 0?6 mg folic acid from fortified foods 5 0?5 mg folic acid from supplements.
-Bold text indicates the primary indicator used to estimate the ANR, whereas the text not in bold indicates a secondary health indicator.
-

-

WHO/FAO and Australia/New Zealand (AU/NZ) adopted recommendations from US/CA; therefore the reports of WHO/FAO and AU/NZ were not considered separately.
yHaematological status as measured by stable Hb, normal mean cell volume and normal reticulocyte response.
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Table 2 Recommended intakes of iron and zinc for adults (age $18 years) and underlying approaches

Method for estimating ANR/AI: daily losses

Recommended intake (mg/d) ANR (mg)/50th pct CV (%) Component losses (mg/d) Total losses (mg/d)

Year m f pre f post Approach m f pre f post m 1 f Faeces Urine Sweat Menstrual m f pre f post Bioav (%)

Iron
GB(28) 1991 8?7 14?8 8?7 ANR 1 2SD 6?7 11?4 6?7 15 0?76 0?1 n 0?7 0?86 1?56 0?86 15
EC(35) 1993 9?1 19?6jj 7?5 ANR 1 2SD** 7 9 5?8 15** n 1?05 1?46 0?87 15
DACH(33) 2000 10 15 10 ANR 1 2SD n.a. n.a. n.a. 10–15 1?0 1?5 1?0 10–15
FR(31) 2001 9 16 9 AI x x x x 0?6 0?2–0?3 0?1 0?4–0?5 0?9–1?0 1?3–1?5 0?9–1?0 10
NL(29) 1992 9- 15- 8 ANR 1 2SD 8 13 7 20 0?8 0?9 1?6 0?8 12
NNR(34)] 2004 9 15z 9 ANR 1 2SD** 7 9 5?8 15** n 1?05 1?46 0?87 15
WHO/FAO(36) 2004 9?1-

-

19?6-

-

7?5-

-

ANR 1 2SD** 7 9 5?8 15** n 1?05 1?46 0?87 15-

-

US/CA(38)* 2001 8 18 8 ANR 1 2SD 6?0 8?1 5?0 n.a.-- 0?51 1?08 1?40 0?90 18

m f D m–f m f Faeces Urine Sweat Semen m f

Zinc
GB(28) 1991 9?5 7 2?5 ANR 1 2SD 7?3 5?5 15 2?2 1?6 30
EC(35) 1993 9?5 7 2?6 ANR 1 2SD 7?5 5?5 15 2?2 1?6 30
DACH(33) 2000 10 7 3 ANR 1 2SD n.a. n.a. 10–15 2?2 1?6 30
FR(31) 2001 9-

-

,y 7-

-

,y 2 AI x x x n.a. n.a. 30-

-

NL(29) 1992 10 9 1?2 ANR 1 2SD 7?6 6?8 20 0?3–0?5 0?3–0?7 0?5 0?27 1?3–1?9 1?1–1?7 25
NNR(34) 2004 9 7 0?9 ANR 1 2SD 6?4 5?7 15 1?4 Urine 1 sweat 1 semen: m: 1?27, f: 1?0 1?4 1?0 30
WHO/FAO(36) 2004 7-

-

4?9-

-

2?2 ANR 1 2SD 4?7 3?2 25 2?67 2?4 40-

-

US/CA(38) 2001 11 8 3?1 ANR 1 2SD 9?4 6?8 10 m: 2?57, f: 2?3 0?63 0?54 0?10 3?84 3?3 m: 41, f: 48
AU/NZ(39) 2005 14 8 6?6 ANR 1 2SD 12 6?5 10 m: 1?54, f: 1?06 0?63 0?54 0?10 2?81 1?96 m: 24, f: 31

m, males; f, females; pre, premenopausal; post, postmenopausal; pct, percentile; ANR, Average Nutrient Requirement; AI, Adequate Intake; bioav, bioavailability; GB, United Kingdom; EC, European Community, DACH,
Germany–Austria–Switzerland; FR, France; NL, Netherlands; NNR, Norway–Sweden–Finland–Denmark–Iceland; US/CA, USA/Canada; AU/NZ, Australia/New Zealand; n.a., not available in report; x, not available
because the intake-based approach was used; n, negligible.
Values in italics could not be retrieved from the reports, but were calculated: CV 5 0?5 3 [(recommended intake/ANR) 2 1].
*AU/NZ adopted recommendations from US/CA; therefore the report of AU/NZ was not considered separately.
-A separate recommended Fe intake was provided for men and women aged 19–21 years, m: 11?0 mg, f: 16?0 mg.
-

-

Recommended intakes of Fe and Zn were also available for other bioavailability coefficients (WHO/FAO: 5, 10 and 12 % for Fe, 15 and 50 % for Zn, FR: 20 % for Zn).
yFor men and women aged $75 years, the recommended Zn intake was 8?0 mg.
jjEC also presents the 90th percentile of intakes to fulfil physiological requirements, 15?8 mg.
zThe recommended Fe intake was set at the 90th percentile of Fe requirements.
**Not applicable for premenopausal women: the distribution of requirements was skewed and recommended Fe intake could therefore not be derived as ANR 1 2SD.
--Distribution of Fe requirements for both men and women was based on the median and variability in body weights recorded in the third National Health and Nutrition Examination Survey.
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Since recommendations were similar across adult ages,

for each report we only present one recommendation per

gender. Due to the diminished Fe needs after onset of

menopause, all reports provided recommended Fe

intakes for pre- and postmenopausal women separately.

WHO/FAO and FR provided recommended intakes of

Fe and Zn for different bioavailability factors. In our

comparison, we included the recommendations esti-

mated with the bioavailability factor most frequently used

in the other reports (Fe 15 %, Zn 30 %).

Variation in recommendations

Between-report ratios of highest to lowest recommenda-

tions were about 2?0 for folate (200–400 mg), vitamin B12

(1?3–3?0 mg) and Zn (men 7–14 mg, women 4?9–9?0 mg),

whereas for Fe the variation was less with a ratio of about

1?3 (men 8–10 mg, premenopausal women 14?8–19?6 mg,

postmenopausal women 7?5–9?0 mg).

Within reports, we observed no gender differences for

folate and vitamin B12; only FR recommended a higher

folate intake for men (130 mg). For Fe, higher recom-

mendations were established for premenopausal compared

with postmenopausal women (13mg to 112mg), whereas

recommendations for men and postmenopausal women

were similar or slightly different (EC, NL, WHO/FAO; max-

imum difference 1?6mg). For Zn all reports provided higher

recommendations for men than for women (11 to 16mg).

In general few differences existed between recom-

mendations for younger and older adults, due to limited

knowledge of the effects of the ageing process on utili-

sation and absorption of folate, vitamin B12, Fe and Zn.

However, all reports, except the one from GB, indicated

that consumption of vitamin B12 via fortified foods or

supplements is recommended for elderly people suffer-

ing from food-bound malabsorption. Due to the high

prevalence of atrophic gastritis among elderly people

(10–30 %), US/CA applied this recommendation for all

those aged 51 years and older.

Both for folate and vitamin B12 we observed a clear

difference in recommended intakes between reports of

GB and EC published until 1993 (folate 200 mg, vitamin

B12 1?4–1?5 mg) and the other reports published since

1998 (folate 300–400 mg, vitamin B12 2?0–3?0 mg).

Variation in approaches

In general, reports suggested that recommendations were

established using the requirements-based approach

(ANR 1 2SD); only FR indicated providing an AI for folate,

Fe and Zn (Tables 1 and 2).

To derive recommended Fe intakes for premenopausal

women, five reports (EC, NNR, WHO/FAO, US/CA, GB)

used an alternative approach since the distribution of

menstrual Fe losses was found to be skewed. EC, NNR,

WHO/FAO and US/CA estimated the distribution of Fe

requirements for this population group as the convolution

of the distributions of menstrual and basal Fe losses and

subsequently derived recommended Fe intakes as the

90th (EC, NNR), 95th (EC, WHO/FAO) or 97?5th (US/CA)

percentile of Fe requirements. EC and NNR argued that

considering a usual diet, Fe intake fulfilling requirements of

95% of the population would be unrealistically high for the

majority of premenopausal women. GB derived an ANR for

Fe as the sum of mean basal losses and the 75th percentile

of menstrual Fe losses corrected for the bioavailability factor.

The ANR 1 2SD was estimated by applying a CV of 15%.

Between reports CV varied from 10 to 20 % (vitamin B12

and Fe) or 10 to 25 % (folate and Zn). Part of the observed

between-report differences in ANR 1 2SD can be explained

by variation in CV. In general for folate, Zn and Fe,

between-report differences in ANR contributed more to

the variation in recommendations than differences in CV,

as between-report differences in ANR 1 2SD stayed similar,

decreased only slightly or even increased after applying

the same CV (data not shown). The variation in CV only

fully explained the differences in ANR 1 2SD for vitamin B12

established by FR, NL and US/CA, and differences in

ANR 1 2SD for Zn established by NL and US/CA. In these

cases, ANR were the same in all specified reports and

only CV varied. For Zn, some variation in ANR 1 2SD was

more strongly related to between-report differences in CV

than in ANR both for men (GB–NL, EC–NL) and women

(NL–AU/NZ).

Variation in eminence-based decisions

For folate and vitamin B12, the maintenance of blood or

tissue levels at a concentration not accompanied by

deficiency symptoms was generally considered as health

indicator for establishing an ANR (Table 1). For folate all

countries/organisations used at least one biomarker of

folate status as primary health indicator for establishing

an ANR. Cut-off levels indicating adequate concentrations

of biomarkers showed some variation between reports:

erythrocyte folate .300–340 nmol/l, serum folate

.6?8–10?0 nmol/l, serum homocysteine ,10–16 mmol/l.

EC, NL, NNR and US/CA all used adequate serum and

erythrocyte folate as health indicators, but ANR varied

from 140 to 320 mg. All four reports referred to the same

depletion–repletion study by Sauberlich et al.(40). In

addition, EC based their ANR on two older depletion–

repletion studies(41,42), and NL, NNR and US/CA on a more

recent depletion–repletion study(43) and a balance study(44).

NL and US/CA also considered the randomised controlled

trial by O’Keefe et al.(45). However, NL did not use the latter

study for estimating the ANR because requirements based

on the results of that study were much higher than those in

other studies. In contrast, in the report of US/CA the

O’Keefe study was given greatest weight, as subjects in the

other depletion–repletion studies would have received

more folate than reported due to underestimation of the

folate content in food.

GB based recommended folate intakes on observa-

tional data on the relationship between long-term folate

910 EL Doets et al.
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intake and adequate concentrations of folate in liver and

erythrocytes(43).

An optimal concentration of homocysteine was selec-

ted as health indicator for folate in reports of FR(46) and

DACH(47,48), which was explained as the level at which

the risk for CVD is minimised. On the contrary, NL, NNR

and US/CA reported that available evidence on minimis-

ing CVD risk by lowering homocysteine concentrations is

not strong enough to take this biomarker into account for

estimating folate requirements.

For vitamin B12, GB, EC, NNR and US/CA selected the

maintenance of adequate haematological status as pri-

mary health indicator for estimating the ANR (1?0–2?0 mg).

EC, NNR and US/CA mainly based the ANR of vitamin B12

on Darby et al.(49), studying the effects of various intra-

muscular doses of vitamin B12 on subjects with pernicious

anaemia. NNR and US/CA corrected these levels for

reabsorption of biliary vitamin B12 as occurs in healthy

people(50–52). EC did not perform these corrections, but

assumed that adjustments for reabsorption will cancel out

adjustments needed for incomplete absorption from the

diet. Studies in vegetarians were used as supportive

data(53). In GB (ANR: 1?25 mg) studies given largest weight

were different(53–57).

FR and NL estimated the ANR for vitamin B12 following

the factorial approach using estimates of basal losses

(0?8–1?0 mg) and a bioavailability of 40 and 50%, respec-

tively. Estimations of basal losses were based on different

studies (FR(51,58), NL(50,52)), but ANR were similar (2?0 mg).

The DACH report mentioned several health indicators,

but from the information provided we could not deduce

which indicator and data were used to estimate an ANR.

For Fe and Zn all reports used the factorial approach to

estimate the ANR (Table 2).

For Fe, the maximum difference between reports in

basal losses was 0?3 mg (premenopausal women DACH v.

NL). All reports, except GB and NL, stated that basal Fe

losses were based on physiological needs per kilogram of

body weight, namely 14 mg/kg per d. Reference body

weights selected for estimating an ANR varied between

reports (men 74?0–77?4 kg, women 59–64 kg). Using the

highest or lowest observed reference weight would result

in a difference in ANR of #1?2 mg.

In most countries/organisations, basal Fe losses were

based on a single experimental study by Green et al.(59)

using radio-labelled Fe to measure losses from different

body compartments. US/CA reported that Green’s was

the only study with reliable quantitative data for basal Fe

losses in human subjects. A previous report on recom-

mendations published by FAO(60) was also indicated

three times as an important reference.

In contrast, FR, DACH and NL did not refer to the

experimental study by Green et al.(59): FR referred to the

FAO report(60), NL used data from other balance, turnover

and depletion–repletion studies(61–63) and DACH did not

provide information on their evidence base.

For estimates of menstrual Fe losses, all reports, except

FR and NL, referred to the same study from year 1966(64).

Although the evidence base used in FR and NL was

different, their estimated basal losses were similar to

estimates provided in the other reports.

Bioavailability factors for Fe varied between reports

from 5 to 18 %. They were mainly based on studies

investigating bioavailability from diets with ratios of haem

Fe to non-haem Fe representative of national (NL, FR,

NNR, US/CA) or Western/mixed diets (GB, DACH, WHO/

FAO, EC) in Fe-replete subjects with minimal or normal

Fe stores. FR applied a bioavailability factor of 10 %, but

indicated that in subjects without Fe stores bioavailability

could reach 15–20 %, whereas US/CA estimated an ANR

for those with normal Fe status but minimal stores and

applied a factor of 18 %.

For Zn, total losses varied substantially (men:

1?3–3?8 mg; women: 1?0–3?3 mg); on intestinal losses in

particular there was no agreement (men: 0?3–2?57mg;

women: 0?3–2?3mg). All countries/organisations used dif-

ferent combinations of studies to estimate the ANR, but all

except FR and NNR refer to the balance study by Milne

et al.(65). Other important sources of evidence reported in at

least three reports were a depletion–repletion study(66) (NL,

NNR, WHO/FAO), the study by Hess et al.(67) measuring Zn

excretion in young women on low Zn intakes (NNR, WHO/

FAO, US/CA, AU/NZ), a book chapter(68) (GB, EC, DACH)

and a cohort study(69) (WHO/FAO, US/CA, AU/NZ).

Bioavailability factors for Zn varied between reports

from 15 to 50 %. US/CA and AU/NZ applied higher

bioavailability factors for women than for men, which

contributed to observed gender differences in ANR

(respectively 2?6 mg and 5?5 mg). More recent reports

(NNR, US/CA, AU/NZ) based bioavailability factors on the

relationship between the amount of Zn absorbed and that

excreted via the intestine based on mixed diets. AU/NZ

estimated their factor with results from the International

Zinc Nutrition Consultative Group(70), which was lower than

factors provided by NNR and US/CA (40–48%). The other

reports based bioavailability factors on studies investigating

absorption efficiency from different types of diets. Although

the evidence base varied between reports bioavailability

factors in these reports were similar (25–30%).

Discussion

Based on our comparisons of approaches and eminence-

based decisions underlying the establishment of recom-

mended intakes of folate, vitamin B12, Fe and Zn, we

identified explanations for the variation in current

recommendations. For folate selected health indicators

were similar between reports and the variation was

mainly related to differences in the underlying data. In

contrast, for vitamin B12 variation in CV and selected

health indicators (maintenance of haematological status
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or basal losses) seemed to contribute most to the

observed variation. For Fe, differences in reference

weights and bioavailability factors were the main expla-

natory factors for the variation in recommendations as the

underlying data and consequently the estimates of basal

losses were similar in most reports. For Zn the variation

in recommended intakes was related to differences in

CV, bioavailability factors and the large variation in the

evidence base.

Although the reports that we considered were pub-

lished over 13–14 years, access to new data and changes

in concepts of nutrition did not seem to have altered the

estimates made by the newer panels, except for folate.

Recommended folate intakes published until year 1993

(GB and EC) were based on older studies as compared

with the other reports published since 1998.

The present paper describes the situation at the

beginning of 2008. Since then several countries have pub-

lished updates for one or more micronutrients. However, for

the countries/organisations, micronutrients and age groups

included in the comparison herein, no updates were iden-

tified. All most recent recommendations and ANR provided

by European countries and organisations are collated in

EURRECA’s web-based tool Nutri-RecQuest(71).

In general, the requirements-based approach was used

to establish recommendations. Only FR indicated providing

an AI for folate, Fe and Zn, although the type of health

indicators and data selected as the basis for recommenda-

tions were similar to other reports providing an ANR 1 2SD.

Apparently there is no consensus on the use of this term.

In 2007, a working group of international experts

reviewed the harmonisation of approaches for develop-

ing recommendations on nutrient intakes. They proposed

new terminology and developed a new statistical

approach for establishing recommendations. With this

new approach, recommendations do not necessarily

reflect ANR12SD covering the needs of 97?5% of the

population, but lower levels in the distribution of require-

ments may also be chosen when this is more likely to be

achieved with current nutrition policies(23). Clearly, estimates

of inter-individual variation depend on the health indicator

selected to be most reflective of meeting nutritional needs.

However, for folate, vitamin B12 and Zn, CV varied largely

between reports using the same health indicators, as data on

inter-individual variation in requirements are unavailable,

inadequate or inconsistent and therefore assumptions are

made based on variation in metabolic rates, variation in

bioavailability and/or the level of uncertainty in the ANR

estimate. More research is needed to define CV, but as long

as appropriate data are lacking, international consensus on

how to make assumptions regarding inter-individual varia-

tion in requirements of folate, vitamin B12 and Zn will help to

harmonise approaches for setting recommendations.

Health indicators selected for estimating requirements

for folate, vitamin B12, Fe and Zn varied between reports

and included biomarker concentrations rather than

associations between intake and health outcomes such as

organ function or chronic disease risk. Cut-off levels

indicating adequate concentrations of biomarkers were

based on the prevention of deficiency symptoms,

whereas their predictive value for health outcomes was

not often considered. Moreover, along with the observa-

tion that similarities in the consulted evidence base often

lead to different ANR of folate and vitamin B12, the

example on optimal concentrations of homocysteine for

the prevention of CVD illustrates that methods used for

the selection, evaluation and integration of data were not

consistent between reports. The Institute of Medicine

developed an analytical framework for setting nutrient

reference values for optimal health based on associations

between dietary exposure (intake) and clinical health

outcomes (chronic diseases)(72). The use of standard

systematic review methodology including meta-analyses

for evaluating data on these associations will contribute to

increased transparency of the decision-making process

and could therefore be an important step in harmonising

approaches for setting micronutrient recommenda-

tions(72,73). However, the use of chronic disease outcomes

for setting recommended micronutrient intakes may be

challenging due to the lack of data on associations

between intake and such clinical outcomes and due to the

multifactorial nature of chronic diseases including factors

such as genetics, age, diet, environment and lifestyle(73).

In addition, it could be questioned whether establishing

an ANR based on associations between intake and

chronic disease risk would be possible as it seems very

challenging to estimate the intake at which 50 % of the

population is at risk and 50% is not. Setting an AI seems

more feasible as it represents the intake level that resulted

in the greatest reduction of risk of disease(72,74). As data

on direct associations between intake and clinical out-

comes are often lacking, biomarkers that correlate both

with intake and a disease or physiological state may be

used as an intermediary between intake and health(72,73).

Recently, within the scope of the EURRECA Network of

Excellence, best practice methods for assessing

intake(75,76) and best practice biomarkers have been

evaluated for all nutrients of interest(11,77–79) by means of

standardised systematic review methodology(80). Up to

now, these best practice biomarkers have not yet been used

for estimating requirements, except for folate (erythrocyte

folate and serum/plasma folate). Currently within EURRECA,

systematic reviews including meta-analyses are carried out

to evaluate the strength and quality of dose–response rela-

tionships between intake and status of the priority micro-

nutrients and between micronutrient intake or status and

various health outcomes. Following standardised protocols,

these reviews will make transparent what evidence is

available addressing populations and outcomes of interest

and they may enhance the selection of health indicators(73).

Dose–response relationships for Fe and Zn might be

especially difficult to estimate due to a lack of sensitive
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and specific biomarkers reflecting status and due to the

strong homeostatic regulation of body Fe and Zn(81). The

factorial approach may therefore be the most appropriate

way of estimating ANR on both minerals assuming

a certain level of bioavailability. Bioavailability of Fe and

Zn is influenced by the composition of the diet as well

as individual characteristics including micronutrient sta-

tus, age, genotype and clinical conditions influencing

absorption and utilisation(81–83). Absorption of Fe depends

on the form of Fe (haem or non-haem) and the presence of

factors enhancing or inhibiting absorption like vitamin C

and phytate(81,84). In addition, homeostatic adaptations

occur, increasing or decreasing fractional absorption when

intake or status is low or high(81). For Zn, bioavailability is

also influenced by factors enhancing or inhibiting absorp-

tion, by individual Zn intake and status, and it may also be

influenced by ageing(85). Variation in bioavailability factors

between reports was related both to differences in diet

composition between countries and differences in meth-

odologies for deriving bioavailability factors. To align

methods of deriving bioavailability factors for Fe and Zn,

agreement is needed on how to estimate the effects of

meal composition and individual characteristics such as

micronutrient status, genetic variation (single nucleotide

polymorphisms) and age on bioavailability(83,86,87).

In conclusion, for the harmonisation of approaches for

setting recommended intakes of folate, vitamin B12, Fe

and Zn across European countries, standardised methods

are needed to: (i) select health indicators and define

adequate biomarker concentrations; (ii) make assump-

tions about inter-individual variation in requirements;

(iii) derive bioavailability factors; and (iv) collate, select,

interpret and integrate evidence on requirements.
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