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We study spaces of continuous functions and sections with domain a paracompact
Hausdorff k -space X and range a nilpotent CW complex Y , with emphasis on
localization at a set of primes. For mapφ(X, Y ), the space of maps with prescribed
restriction φ on a suitable subspace A ⊂ X, we construct a natural spectral sequence
of groups that converges to π∗(mapφ(X, Y )) and allows for detection of localization

on the level of E2. Our applications extend and unify the previously known results.
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1. Introduction

Let map(X, Y ) denote the space of continuous maps X → Y where Y has the
homotopy type of a nilpotent CW complex, and let l : Y → Y(P ) denote localization
at the set of primes P . The induced map

l∗ : map(X,Y ) → map(X,Y(P )) (1.1)

is known to be localization at P on each path component under various assumptions
on X. By the classical results of Hilton, Mislin, Roitberg and Steiner [13, Theorems
A and B], X can be a homologically finite CW complex. The more recent results of
Klein, Schochet, and Smith [16] (and [26]) show that this also holds whenever X is
a compact metric space and one knows, a priori, that the function spaces involved
are nilpotent. Similar results hold for spaces of sections (see Møller [24] for the
case of a CW domain, and [16] for the case of a compact metric domain). Here we
address the question of nilpotency and localization for function and section spaces
with more general paracompact domains by a unified approach; the case of a locally
compact subspace of a Euclidean space has served as a particular motivation.

To achieve our goal, we need a good grip on the homotopy groups of map(X, Y ).
Federer [10] constructed a spectral sequence of groups, arising from an exact couple,
converging to π∗(map(X, Y )) for a finite-dimensional CW complex X and a simple
CW complex Y (see also [27] for a based rational version). Dyer [8] generalized
Federer’s spectral sequence to the case of a paracompact Hausdorff space of finite
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2 J. Smrekar

covering dimension X. The method was to represent X as an inverse limit of poly-
hedra and take the direct limit of Federer’s exact couples. Analogous approaches
were those of Dror Farjoun and Schochet [7] and Klein, Schochet and Smith [16].

Here, we take the dual approach (as in [13] and [24]), and express the nilpotent
CW complex Y as a weak limit of the refined Postnikov tower of principal fibrations
Yq → Yq−1. We note that, similarly as in the case of a CW complexX, the associated
tower of maps map(X, Yq) → map(X, Yq−1) is also one of principal fibrations under
reasonable conditions. Of course, there is the spectral sequence of Bousfield and Kan
[5] associated to any tower of fibrations, but that involves sets and groups acting
on sets, and is not ready-made for localization. We observe that Federer’s method
admits an abstract generalization to any tower of principal fibrations and obtain a
spectral sequence of groups (arising from an exact couple) and a slightly tweaked
version thereof that contains sufficient information to detect localization of the
limiting homotopy groups at the E2-level. It seems that these observations are novel.
To state our main result, we first let mapφ(X, Y ) denote the subspace of map(X, Y )
consisting of maps whose restriction to the closed subspace A ⊂ X is a prescribed
map φ : A→ Y . Further let X be a paracompact Hausdorff k -space; we will be
using the shorthand X ∈ PHK. (The obvious examples are metric spaces, compact
Hausdorff spaces, and CW complexes.) Assume that Y is a CW approximation
to the inverse limit of successive principal fibrations with fibres K(πq, nq) where
1 = n1 � n2 � . . . . Let Ȟ∗(X, A;π) denote Čech cohomology with coefficients in
the abelian group π. Additionally, assume one of the following.

(i) φ = consty0 where y0 is nondegenerate; we use mapA→y0(X, Y ) in this case.

(ii) A ↪→ X is a closed Hurewicz cofibration (for example, A may be empty).

(iii) (X, A) is a proper pair (see definition 1.5) and Y is an ANR, i.e., an absolute
neighbourhood retract for metric spaces.

Theorem 1.1. Take f ∈ mapφ(X, Y ). There exists an upper half-plane homology
type spectral sequence of groups where E2

−p,q is isomorphic with Ȟnq−q+p(X, A;πq)
for 1 � q � p � 0 and trivial otherwise. The n-th differential consists of morphisms
dn−p,q : En−p,q → En−p−n,q+n−1.

Assume also that Y has only finitely many nontrivial homotopy groups or that
dimX (respectively dim(X, A) under (iii) above) is finite. Then mapφ(X, Y ) is
nilpotent and the spectral sequence converges to πk(mapφ(X, Y ), f) for k � 1.

The spectral sequence is natural with respect to maps of pairs (X, A) → (X ′, A′)
over Y and with respect to maps Y → Y ′ induced by maps of classifying spaces
K(πqY , nq + 1) → K(πqY ′ , nq + 1). Let En−p,q → E′n

−p,q be the associated map in any
of the two cases and let πk → π′

k be the associated morphism of homotopy groups
of mapping spaces. Assume that both En and E′n converge and that

• E2
−p,q → E′2

−p,q P-localizes for q > p � 0, and

• the torsion in E′2
−q,q is P-local and E2

−q,q → E′2
−q,q is P-injective for q > 0.

Then πk → π′
k are P-localizations for all k � 1.
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Spaces of functions and sections with paracompact domain 3

If Y is connected and simple in all dimensions, we obtain a second-quadrant
sequence with non-zero E2-terms given by E2

−p,q ∼= Ȟp(X, A;πq(Y )) for q � p � 0.
The theorem is proved in § 5 as a consequence of theorem 3.1 and the results in

§ 4; theorem 3.1 also contains a precise description of the first differential in terms
of the k-invariants of Y . We emphasize that in the absolute case (i.e., A = ∅), the
result always depends only on the homotopy type of Y , while if A is nonempty and
not cofibred in X, then the topology of Y will play a role (§ 7 contains details for
the ‘twisted’ relative case). For example, Y is an ANR if it is a smooth manifold or
a locally finite CW complex.

The nilpotency of mapφ(X, Y ) and convergence of the spectral sequence are auto-
matic if Y is a Postnikov section; this is a feature of our approach. The applications
of [16] include cases where Y = K(0) is the rationalization of a finite CW complex
K; if K is rationally elliptic, then Y will be a Postnikov section, guaranteeing
convergence for any X ∈ PHK. (Compare also with [7, Theorem A].)

The following is a formal consequence of the naturality in theorem 1.1.

Corollary 1.2. Assume the conditions for convergence in theorem 1.1. If the
canonical morphisms Ȟi(X, A;πq) → Ȟi(X, A;πq ⊗ Z(P )) are localizations at P
for all q and all i � nq, then mapφ(X, Y ) → mapφ(X, Y(P )) localizes homotopy
groups at all basepoints. (Here, Y(P ) is required to be an ANR if Y is.)

Universal coefficients for Čech cohomology of compact spaces immediately imply

Corollary 1.3. Suppose that X is compact Hausdorff and Y has the homotopy
type of a nilpotent CW complex. If dimX <∞ or Y is a Postnikov section, the
induced map (1.1) is localization on each path component.

Example 1.4. In [15], D. S. Kahn constructed a compact metric space X with triv-
ial integral Čech cohomology groups Ȟq(X; Z) for q > 1 but with essential maps
X → S3. Let Y = BS3 be the classifying space of the sphere S3 with basepoint y0.
Then π1(map(X, Y ), consty0) ∼= π1(map∗(X, Y ), consty0) ∼= [X, ΩBS3] is nontriv-
ial. Therefore, the spectral sequence associated to map(X, Y ) cannot converge to
π∗(map(X, Y )). In particular, X is infinite-dimensional (as noted by Kahn).

We need to impose restrictions on a noncompactX for map(X, Y ) to be amenable
to our methods. Presumably, it would be sufficient to have a regular complete lattice
of zero sets onX that determines the topology and is generated by compact zero sets
(see [28, pp. 1 and 2] for the definition of a regular lattice). To avoid technicalities,
we content ourselves with the ‘countable case’ as follows.

Definition 1.5. A topological pair (X, A) will be called proper if A ∈ PHK and X
is the union of an ascending chain of subspaces A = X0 ⊂ X1 ⊂ X2 ⊂ . . . (called
an admissible chain) such that for all i � 1 there is a pushout

Si Xi−1

Ci Xi

�γi|Si

�

�

�

�
�γi

(1.2)
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where Si is a zero set in the compact Hausdorff space Ci and X has the weak
(colimit) topology with respect to {Xi}. Each Xi is paracompact and it follows that
X ∈ PHK by Michael [21, Theorem 8.2]. Also, the Xi are zero sets in X.

We call X a proper space if (X, ∅) is a proper pair. In this case, the Xi are
compact Hausdorff. Examples include countable CW complexes and proper metric
spaces (i.e. closed balls are compact). Also, locally compact subspaces of Euclidean
spaces Rd are proper. More generally, if X is a Hausdorff k-space that admits a
proper function φ : X → [0, ∞) (the preimages of compact sets are compact), then
one sees that X is proper by setting Xi = φ−1([0, i]).

Observe that if (X, A) is a proper pair with admissible chain {Xi} and B is a
zero set in X, then (X, A ∪B) is a proper pair with admissible chain {Xi ∪B}. In
particular, if X is a proper space, then (X, B) is a proper pair for any zero set B.

A proper pair (X, A) will be called locally finite-dimensional if the Ci have finite
covering dimension. Every countable relative CW complex is then a locally finite-
dimensional proper pair. We write dim(X, A) � d if dimCi � d for all i and call
such a pair finite-dimensional.

Any admissible chain of a compact proper space (or pair) is essentially finite. In
particular, a locally finite-dimensional compact proper space is finite-dimensional.

Hilton, Mislin, Roitberg, and Steiner pointed out in [13] that the natural class of
CW complexes X for which (1.1) always localizes is that of globally homologically
finite ones; X is such when ⊕∞

n=0Hn(X) is finitely generated. From our point of
view, that is precisely because a CW complex X is globally homologically finite if
and only if map(X, Y ) has the homotopy type of a CW complex for every nilpotent
CW complex Y . (For sufficiency, use [28, Proposition 2.6.4] and [30, Corollary 1.2].
For necessity, use the proof of [28, c. of Theorem 4.5.3].) Thus in this case, (1.1) is
actually localization in the category of nilpotent spaces of CW homotopy type.

The following is a generalization of Theorems A and B of [13].

Theorem 1.6. Let (X, A) be a proper pair and let Y be a nilpotent CW complex.
Fix a map φ : A→ Y . If mapφ(X, Y ) and maplφ(X, Y(P )) have CW homotopy type,
then they are nilpotent and (1.1) is CW localization at P on path components.

It turns out that the question of whether or not map(X, Y ) has CW homotopy
type is intimately related to the behaviour of the spectral sequence of theorem 1.1.

Definition 1.7. Let A be a closed subspace of X ∈ PHK. The pair (X, A) is
quasi-finite, (X, A) ∈ QF , if for each abelian group G and all n � 1, the space
mapA→∗(X, K(G, n)) has the homotopy type of a CW complex. (We assume
K(G, n) to be well-pointed.) We call X quasi-finite if (X, ∅) is a quasi-finite pair.

By [28, Theorem 4.5.3, a.], a CW complex belongs to QF if and only if all its
homology groups are finitely generated.

Proposition 1.8. Let (X, A) be a quasi-finite and locally finite-dimensional proper
pair, and let Y have the homotopy type of a nilpotent CW complex; if A is nonempty
and not cofibred in X, we assume that Y is an ANR. Let φ : A→ Y be any map.
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If mapφ(X, Y ) has the homotopy type of a CW complex, then the spectral
sequence of theorem 1.1 converges to π∗(mapφ(X, Y ), f) for any f ∈ mapφ(X, Y ).

We note that if (X, A) is a skeleton-finite relative CW pair, then it is a quasi-finite
and locally finite-dimensional proper pair.

For proper pairs, quasi-finiteness is actually a cohomological property as follows.
Recall that a tower of groups · · · → G2 → G1 is Mittag-Leffler if for each i, the
images of Gj → Gi stabilize for all big enough j � i.

Proposition 1.9. Let (X, A) be a proper pair with an admissible chain {Xi}. Then
(X, A) ∈ QF if and only if for each abelian group G, the towers of abelian groups

· · · → Ȟk(X3, A;G) → Ȟk(X2, A;G) → Ȟk(X1, A;G)

are Mittag-Leffler for 0 � k <∞ and, in addition, for each k there exists i such
that restriction Ȟk(X, A;G) → Ȟk(Xi, A;G) is injective.

We turn to spaces of sections.
Let X be connected and let Q→ X be a Hurewicz fibration with space of sections

Γ(X, Q) ⊂ map(X, Q). Assume that Q→ X is a pullback of a fibration p : E → B
of spaces of CW homotopy type where B is connected and the typical fibre of
p, call it Y , is nilpotent. Let P be a set of primes and let � : E → E(P ) be the
fibrewise localization at P over B. By pulling back, we obtain a fibrewise localization
� : Q→ Q(P ) over X. Note that � induces a map

�∗ : Γ(X,Q) → Γ(X,Q(P )). (1.3)

In [26], the authors studied the effect of �∗ for compact X provided Γ(X, Q) is
known, a priori, to be nilpotent. We give conditions for nilpotency and enhance
their localization result [26, Theorem 3] as follows.

Theorem 1.10. Suppose X is a connected proper space and assume that, in
addition, X is locally finite-dimensional or Y is a Postnikov section.

(a) If X is compact, then Γ(X, Q) and Γ(X, Q(P )) are nilpotent spaces of CW type
and (1.3) is CW localization at P on each path component.

(b) If Γ(X, Q) has CW type, then Γ(X, Q) and Γ(X, Q(P )) are nilpotent and (1.3)
localizes at P on path components. If, in addition, Y is a Postnikov section,
also Γ(X, Q(P )) has CW type and (1.3) is CW localization at P .

A relative version for sections prescribed on A ⊂ X, which also generalizes the
main results of [24], is stated in § 7.

Underlying categories and techniques. Our results are valid in the category
K of k-spaces and in the category Top of all topological spaces (see [20, Sections
1.1 and 4.1]). There are the underlying Strø m closed model category structures
on K and Top with Hurewicz fibrations, closed Hurewicz cofibrations, and homo-
topy equivalences (called h-equivalences in [20]). While for some of our results,
Serre fibrations would be sufficient, we also lean on the results of Stasheff [33] and

https://doi.org/10.1017/prm.2023.117 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.117


6 J. Smrekar

Brown and Heath [4] that require Hurewicz fibrations, so we stick to the latter.
Our mapping spaces, which have the (k-ified) compact open topology, are homo-
topy metrizable in case of a proper domain, and remarks of [29, Section 2.3] apply.
Some of our key technical results have been obtained by replacing the target space
with a homotopy equivalent absolute neighbourhood retract; Milnor [22] proved
that ANRs and CW complexes contain the same homotopy types. The fact that
ANRs together with homotopy equivalences and Hurewicz fibrations form a fibra-
tion category in the sense of Baues [2] (see Miyata [23] as well as remark 7.1) is of
importance.

2. A generalized Federer’s spectral sequence

Assume a tower of Hurewicz fibrations

· · · → Zn → Zn−1 → · · · → Z1 → Z0 → Z−1 = {point} . (2.1)

We consider a spectral sequence converging to the homotopy groups of the inverse
limit, taking on the approach of Federer [10]. He considered only the special case
where Zi = map(X(i), Y ) is the space of maps from the i-skeleton of a CW complex
X to a simple CW complex Y , and the maps Zi → Zi−1 are restriction fibrations.
However, his treatment applies to a fairly general setting as we proceed to explain.

Let the space Z∞, together with projections P i : Z∞ → Zi, be the (topological)
inverse limit of (2.1). Let R : Z → Z∞ be a map of another space Z into Z∞ and
denote Ri = P i ◦R : Z → Zi. In our applications, Z → Z∞ typically would not be
a homotopy equivalence (i.e., it would not have a homotopy inverse), but it will
induce isomorphisms on homotopy groups in favourable circumstances.

Finally, pick ζ ∈ Z and set ζi = Ri(ζ) for all i. Let Z ′
i denote the path component

of ζi in Zi, and let F ′
i denote the fibre of Z ′

i → Z ′
i−1 over ζi−1. Note that F ′

i may
be disconnected. In such a setting, Federer defines a generalized exact couple

A A

C

�r

���∂

���
i

(2.2)

where Ap,q = πp(Z ′
q, ζq) are groups (generally noncommutative for p = 1), and

Cp,q = πp(F ′
q, ζq) are abelian groups for all p � 0. When p < 0 or q < 0, everything

is trivial. Morphisms r, ∂, and i arise from the long exact sequences of fibrations

· · · → πp(F ′
q, ζq)

i−→ πp(Z ′
q, ζq)

r−→ πp(Z ′
q−1, ζq−1)

∂−→ πp−1(F ′
q, ζq) → · · · (2.3)

and are morphisms of groups throughout. Federer notes that the theory of ‘abelian’
exact couples carries over to this setting. We recall that the differential is d = ∂ ◦ i;
we set (C(0), d(0)) = (C, d) and let C(n) be the homology of (C(n−1), d(n−1)).

In the following lemma we provide a sufficient condition for the existence of a
Federer’s exact couple in the setting of a tower of fibrations (2.1), and give an
abstract identification of the groups Cp,q and the first differential.
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Lemma 2.1. Assume that for each q � 0, the fibration Zq → Zq−1 is princi-
pal, obtained as the pullback of a fibration ELq → BLq along a classifying map
lq : Zq−1 → BLq where ELq is contractible and BLq is a not necessarily connected
space with abelian fundamental group (in each component). (For example, BLq may
be an H-group.) By taking Ap,q = πp(Z ′

q, ζq) and Cp,q = πp(F ′
q, ζq) with morphisms

(2.3), one obtains an exact couple (2.2) in the sense of Federer.
In the associated spectral sequence we have that Cp,q ∼= πp+1(BLq, lq(ζq−1)) if

p, q � 1, and that C0,q is isomorphic with a subgroup of π1(BLq, lq(ζq−1)) for q > 0.
If q � 0 or p < 0, then Cp,q = 0. Under those isomorphisms, the first differential
d : Cp,q → Cp−1,q+1 for p � 1 corresponds to the composite

πp+1(BLq, lq(ζq−1))
δq−→ πp(Fq, ζq)

i−→ πp(Zq, ζq)
(lq+1)∗−−−−→ πp(BLq+1, lq+1(ζq))

(2.4)
where δq can be identified with the connecting morphism in the homotopy exact
sequence of the fibration ELq → BLq.

Remark 2.2. As Z−1 = {point}, Z0 is assumed to be a loop space of BL0. Also,
when p = 1, the codomain of (2.4) has to be understood as the image of (lq+1)∗.

Remark 2.3. Under πp+1(BLq, lq(ζq−1)) ∼= πp(Ω(BLq, lq(ζq−1)), constlq(ζq−1)),
the morphism δq from (2.4) is induced by a continuous map Ω(BLq, lq(ζq−1)) → Fq
(taking constlq(ζq−1) to ζq) if ELq → BLq is a regular fibration (i.e. stationary
homotopies can be lifted to stationary homotopies).

Remark 2.4. The spectral sequence is natural with respect to maps of towers
induced by maps of the classifying spaces BLq. This holds also for the identification
of the first differential (2.4).

Addendum 2.5. Starting with C0,q � C̃0,q = π0(Fq, ζq) ∼= π1(BLq, lq(ζq−1)) with

incoming differential d̃ : C1,q−1
d−→ C0,q � C̃0,q, each derived group C

(n)
0,q is

a subgroup of the group C̃
(n)
0,q = C̃

(n−1)
0,q / im d̃(n−1) with incoming differential

d̃(n) : C(n)
1,q−n−1

d(n)

−−→ C
(n)
0,q � C̃

(n)
0,q . Moreover, C̃(n)

0,q and d̃(n) are natural with respect
to morphisms of towers induced by maps of classifying spaces BLq. The exact cou-
ple (A, C) together with natural subgroup inclusions C(n)

0,q � C̃
(n)
0,q will be called an

augmented Federer’s exact couple and denoted (A, C, C̃).

Proof. As Zq → Zq−1
lq−→ BLq is a homotopy fibration, ∂ : πp+1(Zq−1, ζq−1) →

πp(F ′
q, ζq) = Cp,q can be viewed as (lq)∗ : πp+1(Zq−1, ζq−1) → πp+1(BLq, lq(ζq−1)).

Moreover, C0,q can be identified with the image of (lq)∗ in π1(BLq, lq(ζq−1))
which is abelian by our assumption on BLq. This provides the identification of
Cp,q and that of ∂ in the differential ∂ ◦ i : Cp,q → Cp−1,q+1. More precisely, as
the fibration Zq → Zq−1 is principal, Fq is homotopy equivalent to the loop-space
Ω(BLq, lq(ζq−1)), and the connecting morphism in the homotopy exact sequence
of ELq → BLq induces the isomorphism δq : πp+1(BLq, lq(ζq−1)) → πp(Fq, ζq).
Noting that ∂ = (δq)−1 ◦ (lq)∗ : πp+1(Zq−1, ζq−1) → πp(Fq, ζq) completes the proof
of the main statement.
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For remark 2.3, consider a general fibration f : E → B and let f(e0) = b0 be any
coherent pair of basepoints. The connecting morphism π∗(ΩB, constb0) → π∗(F, e0)
is induced by a map Ω(B, b0) → F which is most easily constructed by means of
a lifting function that continuously lifts loops at b0 to paths in E beginning at e0
and takes the end point (in F ). A regular fibration admits a lifting function sending
constant paths to constant paths, forcing constb0 to map to e0.

To prove the addendum by induction, note that if d̃(n−1) : C(n−1)
1,q−n → C̃

(n−1)
0,q is

just d(n−1) followed by the inclusion C
(n−1)
0,q � C̃

(n−1)
0,q , the images of d̃(n−1) and

d(n−1) in C̃(n−1)
0,q coincide, yielding subgroup inclusion C(n)

(0,q) = C
(n−1)
0,q / im d(n−1) �

C̃
(n−1)
0,q / im d̃(n−1) = C̃

(n)
(0,q). �

Let Gp,q denote the kernel of the induced morphism Rq∗ : πp(Z, ζ) → Ap,q =
πp(Z ′

q, ζq) and consider the normal chain for πp(Z, ζ):

πp(Z, ζ) = Gp,−1 � Gp,0 � Gp,1 � . . . (2.5)

The question of convergence is covered by the following proposition which is a
straightforward generalization of the argument of Federer (see [10, pp. 351–352]).

Proposition 2.6. Suppose that for each pair (p, q), where p � 1, there exists an
integer j(p, q) � q for which the images of

πp(Zj(p,q), ζj(p,q)) → πp(Zq, ζq) and Rq∗ : πp(Z, ζ) → πp(Zq, ζq)

coincide. Then for n � max {j(p, q) + 1 − q, q}, the derived terms C(n)
p,q are stable:

Gp,q−1/Gp,q ∼= C(n)
p,q . � (2.6)

Corollary 2.7. Fix p � 1. If, in addition to the assumption of proposition 2.6,
Gp,q is trivial for q � Q = Q(p), then the normal chain (2.5) terminates and its
successive quotients are given by (2.6) for all n � max {j(p, Q), Q}. In this sense
the spectral sequence converges classically to πp(Z, ζ).

In practice, it is difficult to verify the assumptions of proposition 2.6 and corollary
2.7 (when they are not ‘automatic’). The entire § 4 is devoted to verifying those
assumptions in a particular case, while proposition 1.8 shows they are implied by
strong assumptions on homotopy type.

Routine diagram chasing coupled with exactness properties of localization of
nilpotent groups yield the following theorem and its corollary.

Theorem 2.8. Assume an abstract morphism of augmented Federer’s exact couples
(A, C, C̃) → (A′, C ′, C̃ ′). Fix a set of primes P (allowed to be the set of all primes).
Assume that the following two conditions hold for some n � 1.

(i) The morphisms C(n−1)
p,q → C

′(n−1)
p,q are localizations at P for p, q � 1.

(ii) The torsion in C̃
′(n−1)
0,q is P-local and the morphisms C̃(n−1)

0,q → C̃
′(n−1)
0,q are

P-injective for q > 0.
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Then the same holds on level n. �

Corollary 2.9. Assume that C(n)
p,q and C

′(n)
p,q converge to successive quotients of

finite normal chains Gp,q and G′
p,q as in (2.5). If the assumptions of theorem 2.8

hold, then the morphisms Gp,−1 → G′
p,−1 are P-localizations for p � 1.

3. The homotopy spectral sequence of a function space

In this section, we associate to the function space mapφ(X, Y ) a tower of principal
fibrations as studied above. We carry out the construction of the ensuing spectral
sequence and the identification of the first differential. The questions of convergence
and nilpotency will be addressed in the following sections.

Let Ȟi(X, A;G) denote the i-th Čech cohomology group of the pair (X, A) with
coefficients in the discrete group G. We refer to Dowker [6] and Bredon [3] for
properties of Čech cohomology.

Let Y have the homotopy type of a connected nilpotent CW complex. Assume
that Y is approximated (up to weak homotopy type) with the inverse limit of succes-
sive principal fibrations with fibres K(πq, nq) where 1 = n1 � n2 � . . . . Precisely,
we assume a tower of fibrations

· · · → Yq
ηq−→ Yq−1 → · · · → Y2 → Y1 → Y0 = {∗} (3.1)

where Y1 = K(π1, 1) =: K1 for an abelian group π1, and each map ηq : Yq → Yq−1

is a principal fibration obtained from the k-invariant kq : Yq−1 → K(πq, nq + 1) =
BKq where πq is abelian. This is to say that Yq → Yq−1 is obtained by pulling back
the path fibration ε : P (BKq) → BKq along kq. We also assume that the BKq and
consequently P (BKq) are ANRs; it follows that so are Yq (see [23] and remark 7.1).
There are compatible maps ηq : Y → Yq whose connectivity tends to infinity with q.
These induce a continuous map η : Y → Y∞ where Y∞ is the inverse limit of the
tower. The map η is a weak homotopy equivalence.

Let (X, A) be a pair where X is a Hausdorff k -space and let φ : A→ Y be a map.
Set φq = ηq ◦ φ : A→ Yq; the maps φq induce a continuous map φ∞ : A→ Y∞. We
may form an associated tower as follows.

· · · → mapφq
(X,Yq)

(ηq)∗−−−→ mapφq−1
(X,Yq−1) → · · · → mapφ1

(X,Y1) → {∗} (3.2)

Using the fact that the ηq are regular fibrations, the proof of [29, Lemma A.4]
may be amended to render (3.2) a tower of fibrations (without conditions on A).
The maps ηq : Y → Yq induce compatible maps Rq : mapφ(X, Y ) → mapφq

(X, Yq)
and thus a limit map R : mapφ(X, Y ) → limq mapφq

(X, Yq) = mapφ∞(X, Y∞). Set
Zq = mapφq

(X, Yq) and Z = mapφ(X, Y ). Pick ζ ∈ Z and let ζq = Rq(ζ) for all q.
Finally assume that, in addition, A ↪→ X is a closed cofibration or (X, A) is a

proper pair. One can use [29, Lemma A.2] in the first case and proposition 6.1 in
the second to infer that restrictions map(X, T ) → map(A, T ) are fibrations for all
T , respectively all T which are ANRs.

Theorem 3.1. The tower {Zi} satisfies the assumptions of lemma 2.1. In the
associated spectral sequence we have that Cp,q ∼= Ȟnq−p(X, A;πq) if p, q � 1, and
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C̃0,q
∼= Ȟnq (X, A;πq) for q > 0. If q � 0 or p < 0, then Cp,q = C̃0,q = 0. These

identifications are natural in (X, A) (i.e. with respect to maps over Y ) as well
as with respect to maps of towers (3.1) induced by maps K(πq(1), nq + 1) →
K(πq(2), nq + 1) for q � 1.

Proof. There are induced pullback diagrams as follows. (Amend [29, Lemma A.3].)

mapφq
(X,Yq) mapψq

(X,P (BKq))

mapφq−1
(X,Yq−1) mapεψq

(X,BKq)

�

�
(ηq)∗

�
ε∗

�(kq)∗

(3.3)

Here, ψq denotes the composite A
φq−→ Yq → P (BKq). Also, let Ψq denote the

composite X
ζq−→ Yq → P (BKq). Note that εψq = kqφq−1 and εΨq = kqζq−1. As

mentioned above, the vertical arrows in (3.3) are fibrations. As P (BKq) is
contractible, map(X, P (BKq)) → map(A, P (BKq)) is a fibration and homotopy
equivalence. Thus ELq = mapψq

(X, P (BKq)), its fibre over ψq, is also contractible,
rendering (ηq)∗ in diagram (3.3) a principal fibration. Set BLq = mapεψq

(X, BKq).
Assuming an H-group multiplication on BKq with strict unit 1, we get induced
H-group structures on map(X, BKq) and map(A, BKq) and, therefore, an induced
map of fibrations as follows.

map(X,BKq) map(X,BKq)

map(A,BKq) map(A,BKq)

�ξ �→ξ·(εΨq)

� �
�α�→α·(εψq)

(3.4)

The horizontal arrows are homotopy equivalences and by coglueing homotopy equiv-
alences (see [4, Corollary 1.5] or [19, Lemma 2.2.4]), so are the maps on the fibres.
In particular,

mapA→1(X,BKq) → mapεψq
(X,BKq) (3.5)

is a homotopy equivalence. This shows that, in fact, BLq is an H-group and
so lemma 2.1 can be applied. The identification of Cp,q as (a subgroup of)
Ȟnq−p(X, A;πq) comes via (3.5) through the obvious homeomorphism of loop
spaces

Ωk
(
mapA→1(X,BKq), const1

)
≈ map

(
(X,A), (Ωk(BKq,1), const1

)

and representability of Čech cohomology over paracompact Hausdorff pairs (see
[14] and [11]). The reader may check that this identification is natural with respect
to maps of pairs (X, A) → (X ′, A′) over Y.
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For full naturality with respect to maps of towers (3.1), we assume that

K(πq(1), nq + 1) → K(πq(2), nq + 1) (3.6)

are strict H-maps of ANR H-groups with strict units. To achieve that, we deloop
a given homotopy representative for (3.6) to a based map K(πq(1), nq + 2) →
K(πq(2), nq + 2) between ANRs and take the induced map between the associated
Moore loop spaces (which will also be ANRs). �

Addendum 3.2. The first differential Cp,q → Cp−1,q+1 for p � 1 is obtained by
applying πp to the composite of (based) continuous maps

Ω
(
mapA→1(X,BKq), const1

)
→ Ω

(
mapkqφq−1

(X,BKq), kqζq−1

)
→

{f | ηqf = ζq−1} ⊂ mapφq
(X,Yq)

(kq+1)∗−−−−−→ mapkq+1φq
(X,BKq+1)

(3.7)

The first map is induced by the self-homotopy equivalence mapA→1(X, BKq) →
mapkqφq−1

(X, BKq) sending the map const1 to kqζq−1 that is in turn induced by an
H-group multiplication on BKq with strict unit 1. The following 3 maps correspond
to the sequence (2.4) in conjunction with remark 2.3. This identification of the
differential is natural in (X, A) and Y.

4. An auxiliary result for finite-dimensional domain

The results of this section will be used in § 5 to establish the convergence of the
spectral sequence of theorem 1.1 in case of a finite dimensional domain.

In [16], the authors establish natural isomorphisms colimj πk(map(Xj , Y ), fj) →
πk(map(X, Y ), f) where X is a compactum and {Xj} an inverse system of compact
polyhedra with limit X. They use a method of Spanier [32, Theorem 13.4] and a
clever trick to show validity for any map f : X → Y as basepoint.

We note that a generalization to any paracompact spaceX (pair, even) is possible,
using methods of Barratt (see [1, Section 12]) and the same trick to allow for general
basepoints in map(X, Y ). To begin, let X be a paracompact Hausdorff space with
closed subset A. For each locally finite open covering λ of X, let Nλ denote the
nerve of λ and Lλ the subcomplex of Nλ obtained by the embedding of the nerve of
λ ∩A. A simplicial map pμλ : Nμ → Nλ exists whenever μ refines λ, and partitions
of unity provide for maps hλ : X → Nλ. Finally, we assume that (Y, y0) has the
homotopy type of a pointed CW complex and allow for an additional compact
Hausdorff parameter space T . Our auxiliary result is the following.

Theorem 4.1. Product maps hλ × idT and pλμ × idT yield a natural bijection

colimλ[(Nλ × T,Lλ × T ), (Y, y0)] → [(X × T,A× T ), (Y, y0)].

Essentially, this follows by an application of [1, Theorem 12.32] to the codomain
(map(T, Y ), consty0), which has the homotopy type of a pointed CW complex if
(Y, y0) has, and the exponential law. Barratt’s restriction to locally finite targets
is not necessary (the straight-line homotopy used implicitly in his Lemma 12.31
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should be replaced with one in the sense of [25, Proposition 4.9.7]). Note that if A
is empty, we do not need a basepoint in Y.

To apply theorem 4.1, let PnY be the n-th Postnikov section (up to homotopy)
together with the projection p : Y → PnY (pointed if Y is pointed).

Proposition 4.2. If dimX � d < n, then p∗ : map(X, Y ) → map(X, PnY ) and
p∗ : mapA→y0(X, Y ) → mapA→y0(X, P

nY ) are (n− d+ 1)-equivalences.

Proof. The dimension assumption guarantees a cofinal subfamily {λ} with
dimNλ � d. Let Nλ be such and let T be a compact k-dimensional polyhedron.
Consider

[Nλ × T, Y ] → [Nλ × T, PnY ]. (4.1)

By relative cellular approximation, (4.1) is a surjection if k + d � n+ 1 and an
injection if k + d � n. By theorem 4.1, [X × T, Y ] → [X × T, PnY ] has the same
properties. In particular, taking T = {∗} we infer that [X, Y ] → [X, PnY ] is a
bijection. Let f : X → Y be a basepoint in map(X, Y ) and let ∗ denote a basepoint
in the sphere Sk. Making use of the projection retraction X × Sk → X × {∗} ≡ X
as in the proof of [16, Theorem 6.4], we infer that

[X × Sk, Y ]f → [X × Sk, Y ] → [X,Y ] (4.2)

is a split short exact sequence of pointed sets. Here, [X × Sk, Y ]f is the set of
homotopy classes of maps X × Sk → Y that restrict to f : X × {∗} → Y . Applying
naturality of (4.2) to p : Y → PnY , a diagram chase shows that p∗ : [X × Sk, Y ]f →
[X × Sk, PnY ]pf , which can clearly be identified with p∗ : πk(map(X, Y ), f) →
πk(map(X, PnY ), pf), is bijective for k < n− d+ 1 and surjective for k = (n−
d+ 1).

For p∗ : mapA→y0(X, Y ) → mapA→p(y0)(X, P
nY ), use pairs everywhere. �

We apply proposition 4.2 to the relative case as follows. Let A be closed in X
and let φ : A→ Y be a map. Consider the induced map

mapφ(X,Y ) → mappφ(X,P
nY ). (4.3)

Corollary 4.3. Assume that n is big enough.

(i) If dimX � d and A is cofibred in X, then (4.3) is an (n− d)-equivalence.

(ii) If (X, A) is a proper pair with dim(X, A) � d, then (4.3) is a weak (n− d−
1)-equivalence if Y and PnY are ANRs.

We call a map a weak n-equivalence if it induces an injection on π0, isomorphisms
on πk for 1 � k < n, and epimorphisms on πn for all choices of basepoint.

Proof. Case (i) follows from proposition 4.2 applied to the morphism of the
homotopy exact sequences of fibrations map(X, Y ) → map(A, Y ) and
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map(X, PnY ) → map(A, PnY ). For (ii), consider the pullback diagrams induced
by (1.2):

mapφ(Xi, Y ) map(Ci, Y )

mapφ(Xi−1, Y ) map(Si, Y )
�

�

�
�

(4.4)

Using proposition 6.1, it follows that the vertical arrows in (4.4) are fibrations.
Reasoning as in case (i), it follows that the mapping induced on the fibres of

map(Ci, Y ) map(Ci, PnY )

map(Si, Y ) map(Si, PnY )
�

�

�
�

is an (n− d)-equivalence. By naturality of (4.4) in Y,

mapφ(Xi, Y ) → mappφ(Xi, P
nY )

is a weak (n− d)-equivalence for all i. Now mapφ(X, Y ) is the inverse limit of{
mapφ(Xi, Y )

}
(see corollary 6.2) and there are the associated lim1 − lim short

exact sequences (see [5, Chapter IX] and also [17, p. 178, Theorem 1]). By natu-
rality in Y , we get morphisms of those exact sequences identifying the morphisms
πk(mapφ(X, Y ), f) → πk(mapφ(X, PnY ), pf). From those we infer (ii). �

5. Convergence, nilpotency and localization

Definition 5.1. A topological space Z (not necessarily of CW homotopy type) is
nilpotent if, for any choice of basepoint z0, the fundamental group π1(Z, z0) is
nilpotent and operates nilpotently on all higher homotopy groups πn(Z, z0), n � 2.

Proof of theorem 1.1. Assume the notation of theorem 3.1. Diagram (3.3) exhibits
mapφq

(X, Yq) as the homotopy fibre of (kq)∗ : mapφq−1
(X, Yq−1) → BLq where

BLq is an H-group and hence nilpotent. As mapφ0
(X, Y0) = {∗}, it follows by induc-

tion that mapφq
(X, Yq) are nilpotent for all q (see [12, Theorem II.2.2] together

with the final remark of the proof, as well as the proof of [13, Theorem A]).
Case 1. Y has finitely many nontrivial homotopy groups. Then Y → Yq is a

homotopy equivalence for some q. This finishes the proof if A = ∅ or if φ maps
the entire A to a nondegenerate y0 ∈ Y , for then we have homotopy equivalences
map(X, Y ) → map(X, Yq) and mapA→y0(X, Y ) → mapA→ηq(y0)(X, Yq). (See the
proof of (1) in the discussion on page 7.)

Suppose that A ↪→ X is a cofibration or (X, A) is a proper pair and Y is an ANR.
Then we have restriction fibrations map(X, Y ) → map(A, Y ) and map(X, Yq) →
map(A, Yq) (note Yq is an ANR by construction), and a morphism between them
induced by the homotopy equivalence Y → Yq. By [4, Corollary 1.5], we get the

https://doi.org/10.1017/prm.2023.117 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.117


14 J. Smrekar

homotopy equivalence mapφ(X, Y ) → mapφq
(X, Y ) between the fibres. Thus in

Case 1, the assumptions of proposition 2.6 and corollary 2.7 are met trivially.
Case 2. Y has infinitely many nontrivial homotopy groups. By proposition 4.2

and corollary 4.3, the connectivity of mapφ(X, Y ) → mapφq
(X, Yq) tends to infinity

with q, implying nilpotency of mapφ(X, Y ) as well as the assumptions of proposition
2.6 and corollary 2.7.

Finally, we set E2
−k,q = Cq−k,q for k < q and E2

−q,q = C̃0,q to obtain the upper
half-plane spectral sequence with homology-type differentials as claimed. Localiza-
tion on the level of E2 implies localization in the limit in case of convergence by
theorem 2.8. �

Example 5.2. By way of example, Federer [10] studied the rationalized higher
homotopy groups of map∗(X, Sn) for a finite-dimensional CW complex X. To
illustrate the usefulness of addendum 3.2, we also treat map∗(X, Sn(0)) where Sn(0)
is the rationalized sphere. Our treatment is valid for X ∈ PHK; by corollary 1.3,
map∗(X, Sn) → map∗(X, Sn(0)) is rationalization on path components when X is
compact of finite covering dimension.

The interesting case is of an even n > 2. Then, Y = Sn(0) can be represented as
the homotopy fibre of a single Postnikov invariant k : K(Q, n) → K(Q, 2n) whose
associated cohomology class in H2n(K(Q, n); Q) is the square of the fundamental
class ιn ∈ Hn(K(Q, n); Q).

First we consider [X, Y ]∗. To this end, we investigate the Puppe sequence

. . .
Ωk#−−−→ [X,ΩK(Q, 2n)]∗ ⇒ [X,Y ]∗ → [X,K(Q, n)]∗

k#−−→ [X,K(Q, 2n)]∗.

Here, ⇒ is employed to imply that the group [X, K(Q, 2n− 1)]∗ acts on the set
[X, Y ]∗, and that [X, Y ]∗ → [X, K(Q, n)]∗ collapses precisely the orbits.

By definition, k#[f ] = [k ◦ f ] which we may view as f∗(ι2n) = (f∗(ιn))2. There-
fore, k# : [X, K(Q, n)]∗ → [X, K(Q, 2n)]∗ translates into the squaring operation
Ȟn(X, ∗; Q) → Ȟ2n(X, ∗; Q). This holds for any X, implying that Ωk# is trivial
as it corresponds, by adjunction, to squaring in a suspension

[SX,K(Q, n)]∗
k#−−→ [SX,K(Q, 2n)]∗.

This gives the short exact sequence

0 → Ȟ2n−1(X) ⇒ [X,Y ]∗ →
(
ker Sq: Ȟn(X, ∗) → Ȟ2n(X, ∗)

)
→ ∗.

We consider the path component of a map ζ : X → Y . Diagram (3.3) reads

map∗(X,Y ) map∗
(
X,PK(Q, 2n)

)

map∗
(
X,K(Q, n)

)
map∗

(
X,K(Q, 2n)

)

�

�
p∗

�
�k∗

(5.1)

We assume that K(Q, n) and K(Q, 2n) are well-pointed and that k is a
fibration between well-pointed spaces. Next we assume that μ : K(Q, n) ×
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K(Q, n) → K(Q, n) is an H-group multiplication with strict unit 1. By virtue of
the homotopy lifting property, we may also assume that kpζ is the constant map.

For our spectral sequence, we assume that Yi = ∗ for 1 � i � n− 1, next Yn =
Ω(K(Q, n+ 1), ∗) = K(Q, n), then Yi = Yn for n+ 1 � i � 2n− 2, and finally
Y = Y2n−1 is the homotopy fibre of k : Yn → K(Q, 2n). The only nontrivial differen-
tial is d(n−1). The fibre Fn is equal to map∗(X, Ω(K(Q, n+ 1), ∗)) = map∗(X, Yn)
(with basepoint ζn = p ◦ ζ). In this sense, δn in (2.4) can be viewed as the
identity morphism, and therefore d(n−1) is obtained by applying πp( , p ◦ ζ) to
k∗ : map∗(X, K(Q, n)) → map∗(X, K(Q, 2n)) (see also (3.7)). For our identifica-
tion Cp,q ∼= Ȟq−p(X, ∗;πq), we need to precompose k∗ with the natural homotopy
equivalence map∗(X, K(Q, n)) → map∗(X, K(Q, n)), induced by μ, that sends
the path component of const1 to that of p ◦ ζ. Thus, the nontrivial differential
corresponds to the map induced on πp( , const1) by

map∗(X,K(Q, n)) → map∗(X,K(Q, 2n)), f �→ k ◦ μ ◦ (f, pζ).

We view the latter as the morphism [Sp ∧X, K(Q, n)]∗ → [Sp ∧X, K(Q, 2n)]∗
between sets of pointed homotopy classes. In light of the isomorphism Ȟ∗(Sp ∧
X, ∗; Q) ∼= Ȟ∗(Sp ×X, Sp ∨X; Q) and the split short exact sequence

0 → Ȟ∗(Sp ×X,Sp ∨X; Q) → Ȟ∗(Sp ×X; Q) → Ȟ∗(Sp ∨X; Q) → 0

we consider the composite

[(Sp ×X,Sp ∨X), (K(Q, n), ∗)] → [Sp ×X,K(Q, n)] → [Sp ×X,K(Q, 2n)].
(5.2)

The cross product with a generator Ep ∈ Ȟp(Sp, ∗; Q) = [Sp, K(Q, p)]∗ real-
izes the iterated suspension isomorphism [X, K(Q, n− p)]∗ → [(Sp ×X, Sp ∨
X), (K(Q, n), ∗)], hence we compute the effect of (5.2) on Ep| × x| where
Ep| ∈ Ȟp(Sp; Q) and x| ∈ Ȟn−p(X; Q) are restrictions. For general A : Sp ×X →
K(Q, n) with A(Sp ∨X) = {1}, the class of A maps to [k ◦ μ ◦ (A, pζ ◦ prX)]; the
latter can be viewed as

(A, pζ ◦ prX)∗(μ∗(ιn))2 = (A, pζ ◦ prX)∗(1 × ι2n + 2(ιn × 1) ∪ (1 × ιn) + ι2n × 1)

= pr∗X(pζ)∗(ι2n) + 2 ·A∗(ιn) ∪ pr∗X(pζ)∗(ιn) +A∗(ι2n).

Here, (pζ)∗(ι2n) corresponds to [k ◦ pζ] which is trivial. Finally, if A∗(ιn) = Ep| × x|,
we have A∗(ι2n) = (Ep| × x|)2 = 0. Setting In = p∗(ιn) ∈ Ȟn(Y ; Q), we express

A∗(ιn) ∪ pr∗X(pζ)∗(ιn) = (Ep| × x|) ∪ (1 × ζ∗(In)) = Ep| ×
(
x| ∪ ζ∗(In)

)
.

Thus, d(n−1) : Ȟn−p(X, ∗; Q) → Ȟ2n−p(X, ∗; Q) reads ξ �→ 2ξ ∪ ζ∗(In); termina-
tion after d(n−1) yields exact sequences

Ȟn−p−1(X) d(n−1)

−−−−→ Ȟ2n−p−1(X) → πp → Ȟn−p(X) d(n−1)

−−−−→ Ȟ2n−p(X)

where all cohomology is based with rational coefficients and πp = πp(map∗(X, Y ); ζ).
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6. Proper domain

A useful approach to studying mapping spaces map(X, Y ) where X is a CW com-
plex is to view map(X, Y ) as the inverse limit of the system {map(K, Y )} where
K ranges over the finite subcomplexes of X and restriction mappings

map(L, Y ) → map(K,Y ) (6.1)

are associated to subcomplex inclusionsK � L. As the latter are closed cofibrations,
the restriction mappings (6.1) are Hurewicz fibrations for any space Y .

We cannot expect a general paracompact domain space X to be expressible as
colimit of a suitable system of cofibrations. However, since we are interested in
the homotopy type of map(X, Y ), it is enough to replace the target space Y with
a homotopy equivalent space in a way that renders restrictions (6.1) Hurewicz
fibrations for sufficiently general compact pairs (L, K). To this end, we replace Y
with a homotopy equivalent ANR; for example, we may take a simplicial complex
with the metric topology. This can be done by Milnor [22, Theorem 2].

We say that A ⊂ X is P -embedded if continuous pseudo-metrics on A extend
to X. If, in addition, A is a zero set, then it is called P0-embedded. We refer to
Stramaccia [34] for more details; we need P -embeddings in the context of Morita’s
homotopy extension theorem used in the proof of proposition 6.1.

Recall that an absolute retract, with shorthand AR, is a contractible ANR.

Proposition 6.1. Let (X, A) be a compact proper pair and let Y be an ANR.

(i) Restriction R : map(X, Y ) → map(A, Y ) is a Hurewicz fibration.

(ii) Further let B be an AR, f : X → B a given map, and p : Y → B a Hurewicz
fibration. For L ⊂ X denote Γ(L) = {s : L→ Y | p ◦ s = f |L} ⊂ map(L, Y ).
Then R|Γ(X) : Γ(X) → Γ(A) is a Hurewicz fibration.

Proof. As R and R|Γ(X) are maps between metrizable spaces, it suffices to prove
the homotopy lifting property for metrizable spaces (see [9, XX.2.3]).

To prove (i), we take a metric space Z. The solid part of the lifting diagram

Z × {0} map(X,Y )

Z × [0, 1] map(A, Y )

�

� ���
��

���

�

(6.2)

induces a map η : Z ×X × {0} ∪ Z ×A× [0, 1] → Y . Being the product of a para-
compact and a compact space, Z ×X is paracompact (Barratt [1, Lemma 12.43])
and hence collection-wise normal. Therefore its P0-embedded subsets are precisely
its zero sets ([34, Examples 1.2]). Thus, Z ×A is P0-embedded in Z ×X, and
Morita’s extension theorem (see [34, Theorem 2.2]) yields a map Z ×X × [0, 1] →
Y extending η. Its adjoint is the lifting sought in (6.2).
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We turn to (ii). The lifting problem analogous to (6.2) but with map(X, Y ) and
map(A, Y ) replaced by, respectively, Γ(X) and Γ(A), is equivalent to

Z ×X × {0} ∪ Z ×A× [0, 1] Y

Z ×X × [0, 1] B

�η

� �
p

��
��

��
���

�f◦prX

(6.3)

By the proof of (i), η extends to a map η̄ : Z ×X × [0, 1] → Y . We remedy the
possible difference between p ◦ η̄ and f ◦ prX (where prX is projection onto X) as
follows. Let a partial map into B be defined by p ◦ η̄ on Z ×X × [0, 1] × {0} and f ◦
prX on Z ×X × [0, 1] × {1} ∪ (Z ×X × {0} � Z ×A× [0, 1]) × [0, 1]. This partial
map is defined on a zero (hence P0-embedded) set in Z ×X × [0, 1] × [0, 1] and
since B is an AR, there exists an extension over all Z ×X × [0, 1] × [0, 1] (see [34,
Theorem 2.1]). We consider the lifting problem

Z ×X × [0, 1] × {0} Y

Z ×X × [0, 1] × [0, 1] B

�η̄

� �

p

��
��

����

�
By construction, the homotopy into B is stationary on Z ×X × {0} ∪ Z ×A×
[0, 1]. By regularity of p (see [9, XX.2.4]), the lifting into Y can also be assumed
to be stationary there. Level 1 of that lifting is a map Z ×X × [0, 1] → Y that
extends η and projects to f ◦ prX by p, and thus it constitutes the lifting sought
in (6.3). �

Corollary 6.2. Let (X, A) be a proper pair with an admissible chain A = X0 ⊂
X1 ⊂ X2 ⊂ . . . , let Y be an ANR, and let φ : A→ Y be a map. The induced tower

· · · → mapφ(X2, Y ) → mapφ(X1, Y ) → mapφ(A, Y )

is one of Hurewicz fibrations and the terms mapφ(Xi, Y ) have CW homotopy type.
Restrictions Ri : mapφ(X, Y ) → mapφ(Xi, Y ), which are also Hurewicz fibrations,
exhibit mapφ(X, Y ) as the inverse limit.

Proof. The canonical inverse limit is the subspace Z ′ ⊂
∏∞
i=1 mapφ(Xi, Y ) con-

sisting of compatible sequences of maps fi : Xi → Y with fi|A = φ. Restrictions
Ri furnish the obvious homeomorphism R : mapφ(X, Y ) → Z ′; it is an embedding
since the Xi dominate compact sets in X and onto because X = colimiXi. In dia-
gram (4.4), restriction map(Ci, Y ) → map(Si, Y ) is a fibration by (i) of proposition
6.1, and hence so is the pullback restriction mapφ(Xi, Y ) → mapφ(Xi−1, Y ). The
spaces map(Ci, Y ) and map(Si, Y ) have CW homotopy type by [22, Theorem 3].
Now mapφ(X0, Y ) is a point and it follows from [29, Proposition 4.2] that all
mapφ(Xi, Y ) have CW homotopy type.
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By way of composition, mapφ(Xj , Y ) → mapφ(Xi, Y ) are fibrations for all j � i.
The universal property of the limit implies that also the Ri are fibrations. �

Proof of theorem 1.6. Corollary 1.3 guarantees that the maps

mapφ(Xi, Y ) → maplφ(Xi, Y(P )) (6.4)

localize homotopy groups. Corollary 6.2 identifies the inverse limit of maps (6.4) as
mapφ(X, Y ) → maplφ(X, Y(P )). By [31, Theorem 6.1], the spaces map(X, Y ) and
map(X, Y(P )) are nilpotent and this latter map localizes homotopy groups. �

Proof of proposition 1.8. Assume the notation of § 3. Diagram (3.3) exhibits
Zq = mapφq

(X, Yq) as the homotopy fibre of (kq)∗ : Zq−1 → mapA→∗(X, BKq)
where BKq is an Eilenberg–MacLane space. Now mapA→∗(X, BKq) has CW type
since (X, A) is quasi-finite, and as Z0 = {∗}, an inductive application of [33,
Proposition 0] shows that all Zq have CW homotopy type.

Set Zi = mapφ(Xi, Y ), ζi = ζ|Xi
, Ziq = mapφ(Xi, Yq), and ζiq = ζq|Xi

. By
corollary 6.2, Z = mapφ(X, Y ) is the limit of Zi and Zq is the limit of Ziq
for all q, and all Zi and Ziq have CW homotopy type. To establish the (addi-
tional) assumption of corollary 2.7, we show that for every p � 1, restrictions
πp(Z, ζ) → πp(Zq, ζq) are injective for all big enough q. By [29, Corollary 3.4,(i)],
applied to Z = limi Z

i, there exists an i such that πp(Z, ζ) → πp(Zi, ζi) are injec-
tive for all p � 1. Fix some p � 1. By corollary 4.3, πp(Zi, ζi) → πp(Ziq, ζ

i
q) is an

isomorphism for all big enough q. Thus, πp(Z, ζ) → πp(Zq, ζq) must be injective
for those q.

To establish the assumptions of proposition 2.6, fix some q. By another appli-
cation of [29, Corollary 3.4,(i)], this time to Zq = limi Z

i
q, there exists an i such

that πp(Zq, ζq) → πp(Ziq, ζ
i
q) are injective for all p � 1. By [29, Corollary 3.4,(ii)],

applied to Z = limi Z
i, there exists a j � i such that the image of πp(Z, ζ) →

πp(Zi, ζi) coincides with that of πp(Zj , ζj) → πp(Zi, ζi) for all p. Finally, we fix
some p � 1. By corollary 4.3, there exists a t such that πp(Zj , ζj) → πp(Z

j
t , ζ

j
t ) is

an isomorphism. A straightforward diagram chase shows that every element in the
image of πp(Zt, ζt) → πp(Zq, ζq) is also in the image of πp(Z, ζ) → πp(Zq, ζq). �

Proof of proposition 1.9. By homotopy invariance of mapA→∗(X, Y ) for a well-
pointed Y , we may assume that Y = K(G, n) is an H-group with strict unit 1
and an ANR. If {Xi} is any admissible chain for (X, A), then by corollary 6.2,
Zi = mapA→1(Xi, Y ) defines a tower of fibrations whose terms have CW homotopy
type and whose limit is Z = mapA→1(X, Y ). Homotopical representation of Čech
cohomology directly implies that restriction Z → Zi induces the cohomological
restriction Ȟn(X, A;G) → Ȟn(Xi, A;G).

Let ζ : X → Y be a map with restrictions ζi = ζ|Xi
. Pointwise multiplications by

ζ, respectively ζi, comprise a homotopy auto-equivalence of the tower
{
Zi

}
and

its limit that maps the components of const1 to those of ζ, respectively ζi. Thus
we can identify the morphisms πk(Zj , ζj) → πk(Zi, ζi) with Ȟn−k(Xj , A;G) →
Ȟn−k(Xi, A;G). An application of [31, Theorem 4.1] concludes the proof. �
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Example 6.3. Assume the notation of definition 1.5 for a proper space X and set

c(i) = sup
{
n

∣∣ Ȟk(Ci+1, Si; Z) = 0 for all k � n
}
.

We claim that if c(i) � n+ 2 for i � i0, then restriction map(X, K(G, n)) →
map(Xi0 , K(G, n)) is a homotopy equivalence for every abelian group G. To verify
this claim, note first that if i � i0, universal coefficients imply Ȟk(Ci+1, Si;G) = 0
for any G and all k � n+ 1. Next, Wallace’s theorem implies cohomology iso-
morphisms Ȟ∗(Xi+1, Xi;G) → Ȟ∗(Ci+1, Si;G). Arguing as in the above proof,
we use the cohomology exact sequence of the pair (Xi+1, Xi) to infer that if
i � i0, then restriction map(Xi+1, K(G, n)) → map(Xi, K(G, n)) is a homotopy
equivalence. It follows that so also is map(X, K(G, n)) → map(Xi0 , K(G, n)) (see
[29, Corollary 3.7]), rendering map(X, K(G, n)) homotopy equivalent to a CW
complex. In particular, if lim infi→∞ c(i) = ∞, then map(X, K(G, n)) has CW
homotopy type for every G and n. For a simple-minded concrete example of a
proper quasi-finite space that does not have the homotopy type of a CW com-
plex, one can take the infinite wedge X = ∨∞

n=1Hn where Hn is the n-dimensional
Hawaiian earring.

7. Spaces of sections

Let X ∈ PHK be connected and let π : Q→ X be a Hurewicz fibration with typical
fibre of the homotopy type of a nilpotent CW complex. Let Γ(π) denote the space of
sections of π. We assume that π = f∗(p′) is the pullback of a fibration p′ : E′ → B of
spaces of CW homotopy type along the continuous map f : X → B. We can change
π up to fibre homotopy equivalence (over X) and keep the homotopy type of Γ(π).
Thus we assume that B is in fact a simplicial complex with the strong topology;
B is then an ANR with a covering of contractible open subsets (which are ANRs),
see Milnor [22]. The corresponding total space E′′ will still have CW homotopy
type by results of Stasheff [33]. Choosing a homotopy equivalent ANR E′′′ we split
the resulting map E′′′ → B into the composite of a homotopy equivalence and a
fibration p : E → B where E is an ANR. The ‘usual’ splitting in the sense of the
Hurewicz model structure has this property; see also Miyata [23]. Consequently,
each fibre of p is an ANR (being cofibred in E by [35, Theorem 12]) and we will
use Y to denote the fibre over a point understood from the context. As π is fibre
homotopy equivalent to f∗(p), we identify Γ(π) with the space of maps X → E
whose composite with p equals f .

Remark 7.1. In the fibration category on ANRs studied by [23], the fibrations are
what we call regular Hurewicz fibrations (and the author calls maps with the strong
homotopy lifting property). As remarked above, every Hurewicz fibration E → B
between ANRs is regular on the ground of metrizability of B; this remark makes
certain parts of [23] superfluous.

More generally, assume that (X, A) is a proper pair with an admissible chain
{Xi} and that φ : A→ E is a map over f |A. For A ⊂ L ⊂ X, we set

Γφ(L,E) = {s : L→ E | p ◦ s = f |L, s|A = φ} ,
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viewed as a subspace of map(L, E). For A ⊂ K ⊂ L we have a restriction map
Γφ(L, E) → Γφ(K, E). As noted above, if A = ∅, then the homotopy type of
Γ(X, E) is an invariant of the homotopy type of p : E → B. Invariance in the relative
version will be discussed after the following result.

Theorem 7.2.

(i) Restriction maps Γφ(Xi, E) → Γφ(Xi−1, E) are fibrations between spaces of
CW homotopy type.

(ii) Let l : E → E(P ) be a fibrewise localization at the set of primes P where
we assume that E(P ) is an ANR. If (X, A) is locally finite dimensional or
Y is a Postnikov section, then Γφ(Xi, E) are nilpotent and Γφ(Xi, E) →
Γφ(Xi, E(P )) are localizations at P on path components.

Proof. (i) By the assumption on B and normality of the Ci in (1.2), we may refine
each step Xi−1 ⊂ Xi into a finite chain of adjunctions to assume, after reindexing,
that f(γi(Ci)) ⊂ Ki for a contractible open set Ki in B. We get induced pullbacks

Γφ(Xi, E) Γ(Ci, E|Ki
)

Γφ(Xi−1, E) Γ(Si, E|Ki
)

�

�

�
�

(7.1)

By proposition 6.1, the vertical arrow on the right is a fibration, and hence so is
the one on the left. Consider p∗ : map(Ci, E|Ki

) → map(Ci, Ki). As Ci is com-
pact, this is a fibration between spaces of CW homotopy type. In fact map(Ci, Ki)
is contractible and hence fibre inclusion Γ(Ci, E|Ki

) ↪→ map(Ci, E|Ki
) is a homo-

topy equivalence. On the other hand, Y ↪→ E|Ki
is also a homotopy equivalence,

hence map(Ci, Y ) � Γ(Ci, E|Ki
) is nilpotent (under the additional hypothesis) by

theorem 1.1. The same holds for Si in place of Ci and since Γφ(X0, E) is a one
point-space, it follows by induction that all Γφ(Xi, E) are nilpotent (see May and
Ponto [19, Proposition 4.4.3]) of CW type (see Stasheff [33, Propositions 0 and
12]).

(ii) We apply the same reasoning to Γlφ(Xi, E(P )) and note that Γ(Ci, E|Ki
) →

Γ(Ci, E(P )|Ki
) and Γ(Si, E|Ki

) → Γ(Si, E(P )|Ki
) may be identified with, respec-

tively, map(Ci, Y ) → map(Ci, Y(P )) and map(Si, Y ) → map(Si, Y(P )) that localize
by corollary 1.3. Thus if Γφ(Xi−1, E) → Γφ(Xi−1, E(P )) localizes (on path compo-
nents), then so does Γφ(Xi, E) → Γφ(Xi, E(P )) by [19, Proposition 6.2.5]. �

We turn to the question of homotopy invariance of Γφ(X, E) under changes of
p : E → B for general X ∈ PHK with closed subspace A. To this end, assume that
p is homotopy equivalent to p′ : E′ → B′, i.e., there are homotopy equivalences
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η : E → E′ and β : B → B′ for which p′η = βp. Think of

Γφ(X,E) → Γηφ(X,E′) (7.2)

as the restriction to the fibre of the transformation p∗ → p′∗:

mapφ(X,E) mapηφ(X,E
′)

mappφ(X,B) mapp′ηφ(X,B
′)

�η∗

�
p∗

�
p′∗

�β∗

(7.3)

Assume that p∗ and p′∗ are fibrations. If η∗ and β∗ are homotopy equivalences, so
is (7.2) by coglueing [4, Corollary 1.5]. This will be true in the following cases.

(i) φ = conste0 (forcing f |A = constb0 where b0 = p(e0)) and p, p′, η, β are
pointed maps of well-pointed spaces,

(ii) φ = conste0 and p and p′ are regular fibrations (for example if B and B′ are
metrizable) and η and β are homotopy equivalences in the pointed category,

(iii) E, E′, B, B′ are ANRs and (X, A) is a proper pair,

(iv) A is cofibred (in particular, A may be empty).

For (1), the proof of [29, Lemma A.4] shows that p∗ and p′∗ are fibrations, while
if η′ : E′ → E is a pointed inverse for η and η′η � idE and ηη′ � idE′ are pointed
homotopies, then the standard proof that η∗ : map(X, E) → map(X, E′) is a homo-
topy equivalence (as for example [18, Theorem 6.2.25]) will show its restriction
map(X, E)A→e0 → map(X, E′)A→η(e0) is also a homotopy equivalence.

For (2), the proof of [29, Lemma A.4] may be amended using regular lifting
functions (as in Definition 2.1 in [9, Chapter XX]) to show that p∗ and p′∗ are
fibrations, while the proof that η∗ and β∗ are homotopy equivalences is as above.

For (3), we note that p∗ and p′∗ are fibrations because p and p′ are regular on
the ground of metrizability of B. We consider η∗ : mapφ(X, E) → mapηφ(X, E′)
as the map between the fibres induced by the transformation of restrictions:

map(X,E) map(X,E′)

map(A,E) map(A,E′)

�η∗

� �
�η∗

(7.4)

The horizontal arrows in (7.4) are homotopy equivalences ([18, ibid.]) and since
E and E′ are ANRs, the restrictions (i.e., the vertical arrows) are fibrations by
proposition 6.1. Thus, the coglueing theorem will guarantee that the maps between
the fibres will be homotopy equivalences as well. The same argument applies to β∗,
using the fact that B and B′ are ANRs.
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For (4), the argument that p∗ and p′∗ are Hurewicz fibrations is standard. In K, we
simply use the exponential law in K, the fact that inclusion X × {0} ∪A× [0, 1] ↪→
X × [0, 1] is a closed cofibration and the lifting properties of p∗ and p′∗. For Top, we
extend the proof of [29, Lemma A.4]. When A is cofibred in X, the vertical arrows
in (7.4) are fibrations for all E and E′.

Proof of theorem 1.10. The theorem deals with absolute sections (A = ∅), and we
may take a representative for p as specified prior to the statement of theorem 7.2.
Thus, statement (a) follows directly from theorem 7.2 as then X = Xi for some i.

For (b), note that Γ(X, E) → Γ(X, E(P )) is the limit of maps Γ(Xi, E) →
Γ(Xi, E(P )) (which localize by theorem 7.2). Apply [31, Theorems 6.1 and 6.2]. �

We remark that theorem 7.2 also contains [24, Theorem 5.3] as a special case.
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